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tonomous identification of stable
adsorption configurations via a large language
model agent
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Yayati Jadhav c and Amir Barati Farimani *c

Adsorption energy is a key reactivity descriptor in catalysis. Determining adsorption energy requires

evaluating numerous adsorbate–catalyst configurations, making it computationally intensive. Current

methods rely on exhaustive sampling, which must navigate a large search space without guaranteeing

the identification of the global minimum energy. To address this, we introduce Adsorb-Agent, a Large

Language Model (LLM) agent designed to efficiently identify stable adsorption configurations

corresponding to the global minimum energy. Adsorb-Agent leverages its built-in knowledge and

reasoning to strategically explore configurations, significantly reducing the number of initial

configurations required while improving the energy prediction accuracy. In this study, we also evaluated

the performance of different LLMs—GPT-4o, GPT-4o-mini, Claude-3.7-Sonnet, and DeepSeek-Chat—as

the reasoning engine for Adsorb-Agent, with GPT-4o showing the strongest overall performance. Tested

on twenty diverse systems, Adsorb-Agent identifies comparable adsorption energies for 84% of cases

and achieves lower energies for 35%, particularly excelling in complex systems. It identifies lower

energies in 47% of intermetallic systems and 67% of systems with large adsorbates. These findings

demonstrate Adsorb-Agent's potential to accelerate catalyst discovery by reducing computational costs

and enhancing prediction reliability compared to exhaustive search methods.
Introduction

The design of optimal catalyst materials for targeted reaction
processes plays an essential role in advancing chemical
processes.1–3 In particular, addressing the dual challenge of
meeting the growing global energy demand while combating
climate change necessitates the development of efficient, low-cost
catalysts to enable the broader use of renewable energy sources.3

Traditionally, the search for optimal catalysts has relied on either
labor-intensive experimental methods or computationally expen-
sive quantum chemistry calculations. Because of the vast material
design space, screening strategies oen focus on identifying key
descriptors that effectively predict catalytic performance.

Adsorption energy, dened as the change in energy upon the
binding of a molecule to a catalytic surface, is one of the most
widely used descriptors in computational catalysis due to its
direct correlation with catalytic reactivity.4,5 The adsorption
energy, corresponding to the most stable adsorption
egie Mellon University, 5000 Forbes Ave,

cmu.edu

r Engineering, University of Nebraska–

negie Mellon University, 5000 Forbes Ave,

y the Royal Society of Chemistry
conguration, serves as a key descriptor of catalyst performance
and plays a crucial role in estimating the reactivity of various
catalysts.4,6–8 Furthermore, adsorption energy is a foundational
parameter in constructing free energy diagrams, which are used
to identify the energetically preferred reaction pathways on
catalyst surfaces.

The adsorption energy, DEads, is mathematically dened as
the global minimum energy among all possible adsorption
congurations.9,10 It is calculated as the difference between the
total energy of the adsorbate–catalyst system (Esys,i), the energy
of the clean surface (slab) (Eslab), and the energy of the gas-
phase adsorbate or reference species (Egas):

DEi = Esys,i − Eslab − Egas (1a)

DEads ¼ min
i
ðDEiÞ (1b)

Accurately determining adsorption energy presents signicant
challenges. The complex electron-level interactions that govern
chemical bonding make it impractical to predict the most stable
conguration based solely on atomic-level information. As
a result, determining the global minimum adsorption energy
typically requires enumerating and evaluating a vast number of
possible congurations.10–12 This process becomes computa-
tionally prohibitive when using quantum chemistry methods
such as density functional theory (DFT).10,13 The difficulty is
Digital Discovery
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further compounded by the combinatorial explosion of potential
binding sites, variations in surface geometries, and diverse
orientations the adsorbate can adopt. Despite exhaustive
conguration searches, there is no guarantee of reliably identi-
fying the true global minimum energy conguration. These
challenges underscore the need for more efficient and accurate
approaches to streamline adsorption energy determination,
paving the way for faster and more reliable catalyst design.

Recent advances in machine learning (ML) have introduced
promising alternatives to conventional quantum chemistry
methods, signicantly improving the efficiency of adsorption
energy prediction tasks. In particular, Graph Neural Networks
(GNNs) have demonstrated exceptional performance in pre-
dicting energy and forces for atomic systems. For adsorbate–
catalyst systems,14 GNNs achieve a high level of precision, pre-
dicting adsorption energies with an error of approximately
0.2 eV and forces with an error of 0.013 eV Å−1.15,16 These
capabilities make GNNs effective surrogates for DFT calcula-
tions in tasks such as geometry optimization and energy
prediction. Building on this foundation, Lan et al. introduced
the AdsorbML method, which achieved a 2000× speedup in
adsorption energy determination while retaining 87.36% of the
accuracy of full DFT calculations by integrating GNNs with
DFT.10 In their approach, GNNs are used to relax structures from
initial adsorption congurations, aer which DFT is employed
for further relaxation or single-point energy calculations to
obtain DFT-validated adsorption energies. Despite this prog-
ress, the placement of adsorbates on the surface and the
sampling of adsorption sites remain reliant on exhaustive
enumeration, posing a signicant challenge in reducing the
initial search space and improving the computational
efficiency.

Moving forward, large language models (LLMs) are emerging
as transformative tools in scientic problem-solving by
leveraging their pre-trained knowledge and planning capabil-
ities, as well as their seamless human–machine interaction.17

LLM agents, powered by LLMs, have demonstrated remarkable
potential in reshaping scientic workows. For example, Boiko
et al. proposed Coscientist, an LLM agent that automates
experimental design and execution, signicantly enhancing
productivity while reducing manual effort.18 Similarly, Szy-
manski et al. demonstrated the application of LLMs in an
autonomous laboratory framework for proposing synthesis
recipes.19 In the eld of additive manufacturing, Jadhav et al.
introduced the LLM-3D Print framework, which streamlines the
design-to-manufacturing process by autonomously generating,
validating, and optimizing 3D printing instructions with an
LLM agent at its core.20 These breakthroughs demonstrate how
LLMs are reshaping the landscape of scientic discovery and
innovation.

In this study, we introduce Adsorb-Agent, an LLM-based
agent designed to determine adsorption energy efficiently.
Adsorb-Agent predicts initial adsorption congurations that are
likely to be close to the most stable conguration and relaxes
them to identify the minimum energy state. While human
researchers can propose plausible stable adsorption congu-
rations for specic systems based on domain knowledge—such
Digital Discovery
as chemical bonding and surface science—it remains exceed-
ingly difficult to derive a universal theorem for predicting the
most stable conguration across diverse adsorbate–catalyst
systems. Moreover, in high-throughput screening, where
millions of candidate systems must be evaluated, it is infeasible
to manually propose stable congurations for each individual
system.21 Adsorb-Agent addresses these challenges by autono-
mously deriving stable congurations, relying solely on the
LLM's built-in knowledge and emergent reasoning capabilities.
Because it operates purely through inference from pre-trained
models, it is readily applicable to large-scale tasks.

This study has two primary objectives: rst, to reduce the
computational cost of adsorption energy identication by
minimizing the number of initial congurations required;
second, to enhance the accuracy of adsorption energy predic-
tions by generating rened initial congurations that are closer
to the global minimum while maintaining human interpret-
ability. By bridging state-of-the-art LLM capabilities with cata-
lytic conguration challenges, Adsorb-Agent represents
a signicant step toward broader adoption of AI-drivenmethods
in materials science and catalysis, accelerating the discovery
and design of optimal catalysts. Furthermore, when integrated
with other LLM models and tools for catalyst design,13,22,23

Adsorb-Agent can be extended to a wider range of applications
in optimal catalyst development.

Agentic framework
Workow overview

Adsorb-Agent is an LLM-powered agent designed to identify the
most stable adsorption conguration and its corresponding
adsorption energy. It consists of three core LLM modules—the
Solution Planner, Critic, and Binding Indexer—all powered by
LLMs, as illustrated in Fig. 1a. The process begins with a user
query that species the adsorbate's SMILES, the catalyst's
chemical symbol, and the surface orientation. The core func-
tionality of Adsorb-Agent is to narrow the conguration search
space by identifying promising adsorption candidates for the
specied adsorbate–catalyst system. The agent retrieves the
adsorbate molecule and catalyst surface structure from a data-
base, places the adsorbate according to the predicted congu-
ration, and then relaxes the system using designated
computational tools to calculate the adsorption energy. By
comparing the relaxed energies, the agent identies the
conguration with the lowest energy, which serves as a key
reactivity descriptor in catalysis.

To reduce hallucination and improve reliability, we adopt
two safeguards. First, instead of using the full free-form LLM
output, we extract only four essential descriptors, such as site
type, surface binding atoms, adsorbate orientation, and adsor-
bate binding atoms. They are the minimal elements needed to
dene a conguration. This limits sensitivity to wording or
irrelevant reasoning. Second, a Critic module checks the
internal consistency of the proposed conguration and lters
out contradictory outputs. These measures ensure that only
coherent and well-dened congurations proceed to the relax-
ation stage.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Adsorb-Agent framework. (a) Overall process for identifying the most stable configuration by combining the LLMmodules and tools. The
left yellow box represents the part where the LLM modules are involved, comprising three components—Solution Planner, Critic, and Binding
Indexer. These modules are powered by LLM APIs such as GPT-4o, GPT-4o-mini, Claude-3.7-Sonnet, and DeepSeek-Chat. (b) Illustration of the
iterative interaction between the Solution Planner and Critic modules. (c) Example solution for the NNH–CuPd3 (1, 1, 1) system. The system
metadata comprise the following in order: the SMILES representation of the adsorbate molecule, the chemical composition of the bulk catalyst,
the Miller index, the Materials Project ID, the shift, and the top. (d) Example of binding index derivation from the Binding Indexer module.
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Initial conguration candidates

Based on the natural language input query, the Solution
Planner derives the description for the most probable stable
adsorption conguration. This process is primarily conducted
based on the LLM's built-in knowledge and reasoning capa-
bility. The solution output includes four pieces of information:
the type of adsorption site, the binding atoms on both the
surface and the adsorbate, and the orientation of the adsorbate.
This derivation is guided by a structured list of reasoning
questions provided by the user, as shown in Fig. 1b. These
questions reect the typical thought process of human
researchers—for example, “Are the bonds between the adsor-
bate and surface strong enough to ensure stability?”—while
deliberately excluding system-specic knowledge to ensure
general applicability (see SI Fig. S1). The Solution Planner can
also provide reasoning statements that explain how it arrived at
its prediction, as illustrated in Fig. 1c. A full set of outputs for 20
systems is included in the SI Sections S3 and S4. The effects of
© 2026 The Author(s). Published by the Royal Society of Chemistry
internal and external prompts are discussed in SI Sections S5
and S6.

To ensure the logical coherence of the solution output, the
Critic module evaluates the initial solution generated by the
Solution Planner. It takes the solution as input and uses
a knowledge prompt that claries the terms within the solution
to guide its review (see Fig. 1b). Details of the knowledge prompt
are provided in SI Fig. S1. The module focuses on two aspects:
(1) the coherence between the adsorption site type and the
binding atoms on the surface and (2) the alignment between the
adsorbate's binding atoms and its orientation. For instance, if
the solution species a bridge site, it must involve two binding
surface atoms. Similarly, for adsorbate orientation, if the
adsorbate is described as end-on, it should have only one
binding adsorbate atom. If any incoherence is identied, the
Critic rebuts the solution, and the Solution Planner is re-
initialized to produce a revised solution. This iterative
Digital Discovery
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interaction ensures the nal adsorption conguration is logi-
cally coherent and self-consistent.

Once a coherent solution is generated, the Binding Indexer
module assigns indices to the adsorbate's binding atoms based
on the solution. This step translates the human-readable
conguration into a numerical format suitable for computa-
tional processing. As illustrated in Fig. 1d, the Binding Indexer
takes the identied binding atoms and orientation from the
solution, along with the adsorbate's atomic number array, to
generate a binding index array. This array species which atoms
in the adsorbate are involved in binding to the surface. Using
this array, the adsorbate can be positioned on the catalytic
surface, reecting both the surface orientation and binding
atom information. This automation removes the need for
manually pre-dening binding atoms—commonly required in
datasets like the Open Catalyst Project, which explicitly mark
binding atoms with asterisks (e.g., NNH). In addition, we
introduce a new placement strategy capable of handling side-on
adsorbates (see the Methods section).

Energy determination

The following steps are carried out without the involvement of
the LLMmodules, but using the pre-written computation scripts.
The catalytic surface and adsorbate molecule are retrieved using
the Open Catalyst Project demo API, based on the adsorbate
SMILES, catalyst bulk composition, and Miller indices provided
in the user query. Details about the Open Catalyst Project demo
are provided in the Methods section. The adsorbate is then
placed onto the catalytic surface to generate initial adsorbate–
catalyst structures, guided by the predicted conguration and the
binding index array. If the LLM proposes a physically unrealistic
conguration, such cases are automatically ltered out during
Table 1 Comparison of Adsorb-Agent and the algorithmic approach.
configurations. Results for individual runs are provided in SI Table S1

No. Adsorbate Catalyst

Adsorption energ

Adsorb-Agent (Y)

1 H Mo3Pd (111) −0.764 � 0.113
2 NNH Mo3Pd (111) −1.265 � 0.158
3 H CuPd3 (111) −0.380 � 0.003
4 NNH CuPd3 (111) 0.745 � 0.006
5 H Cu3Ag (111) −0.019 � 0.041
6 NNH Cu3Ag (111) 1.504 � 0.057
7 H Ru3Mo (111) −0.587 � 0.002
8 NNH Ru3Mo (111) −0.498 � 0.013
9 OH Pt (111) 0.990 � 0.001
10 OH Pt (100) 0.991 � 0.001
11 OH Pd (111) 0.814 � 0.000
12 OH Au (111) 1.408 � 0.002
13 OH Ag (100) 0.440 � 0.001
14 OH CoPt (111) −0.208 � 0.015
15 CH2CH2OH Cu6Ga2 (100) −2.338 � 0.833
16 CH2CH2OH Au2Hf (102) −2.761 � 0.592
17 OCHCH3 Rh2Ti2 (111) −4.561 � 0.007
18 OCHCH3 Al3Zr (101) −4.616 � 0.014
19 OCHCH3 Hf2Zn6 (110) −5.922 � 0.209
20 ONN(CH3)2 Bi2Ti6 (211) −3.454 � 0.337

Digital Discovery
this structure generation stage handled by the structure retriever.
As illustrated in the atomic visualization in Fig. 1, multiple initial
congurations remain possible; however, their number is
signicantly reduced compared to conventional conguration
enumeration approaches.

These initial structures are subsequently relaxed to deter-
mine the minimum energy conguration, as relaxed energies
are necessary for meaningful comparison. In this study, we
employ a GNN model, specically EquiformerV2 trained on the
Open Catalyst 2020 dataset,14,16 although other machine
learning models or quantum chemistry simulations could also
be used. Details of the GNN-based relaxation process are
provided in the Methods section. During relaxation, even
initially similar congurations can evolve into distinct nal
structures with different energies. Structures exhibiting anom-
alies such as extensive surface reconstruction, adsorbate
dissociation, or desorption may occur, and any structures
exhibiting these anomalies are ltered out.10,24,25 Among the
remaining valid congurations, the one with the lowest energy
is identied as the most stable conguration. This energy is
recognized as the adsorption energy, which serves as a critical
reactivity descriptor for the adsorbate–catalyst combination.
Performance evaluation

Theoretically, the most stable adsorption conguration corre-
sponds to the global minimum energy among all possible
congurations. However, due to the vast congurational space, it
is practically impossible to exhaustively identify the true global
minimum. Conventional approaches instead rely on enumera-
tion algorithms, such as and algo-
rithms, which sample numerous congurations to approximate
The adsorption energy corresponds to the minimum energy among

y [eV] Number of initial sets

Algorithm Adsorb-Agent (Y) Algorithm

−0.941 � 0.002 6.7 � 2.1 59
−0.903 � 0.117 9.3 � 3.7 51
−0.398 � 0.017 16.7 � 1.2 98
0.867 � 0.072 17.3 � 3.1 78

−0.072 � 0.002 21.3 � 4.1 98
1.500 � 0.002 16.7 � 2.6 56

−0.586 � 0.050 17.0 � 2.2 94
−0.276 � 0.003 18.7 � 0.5 81
0.990 � 0.071 7.0 � 1.6 54
0.991 � 0.001 10.3 � 4.2 54
0.814 � 0.001 20.0 � 5.7 54
1.409 � 0.002 23.3 � 5.2 54
0.463 � 0.009 23.7 � 4.5 53

−0.166 � 0.046 41.3 � 1.2 120
−3.077 � 0.062 28.7 � 15.5 66
−3.761 � 0.129 28.0 � 4.5 78
−4.275 � 0.086 29.0 � 4.3 62
−4.325 � 0.052 22.0 � 2.4 68
−5.443 � 0.037 18.0 � 2.2 67
−2.441 � 0.103 33.0 � 3.6 139

© 2026 The Author(s). Published by the Royal Society of Chemistry
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the global minimum adsorption energy. Details of these
enumeration procedures are provided in the Methods section.

Adsorb-Agent's ability to identify the most stable congura-
tion is evaluated against exhaustive enumeration algorithms.
Performance is assessed based on three key criteria: (i) effi-
ciency in reducing the conguration search space, (ii) accuracy
in identifying adsorption congurations with energies compa-
rable to those found by enumeration algorithms, and (iii)
consistency of results across independent trials.

The evaluation is conducted on 20 adsorbate–catalyst systems
selected for their practical importance, particularly in nitrogen
production and fuel cell applications.26–28 For example, the
electrocatalytic nitrogen reduction reaction (NRR) offers a potential
route for sustainable nitrogen xation. However, its performance is
oen limited by the high activation energy required to cleave the
inert N^N bond and by strong competition from the hydrogen
evolution reaction (HER).29 Likewise, the oxygen reduction reaction
(ORR) is a vital reaction process in fuel cell operation and holds
a central position in the broader eld of electrocatalysis.28

Eight of the selected systems are associated with the NRR
and HER. These include four catalysts proposed by Zhou et al.,29

each interacting with two key adsorbates: NNH for the NRR and
H for the HER, resulting in a total of eight systems. An addi-
tional six systems are associated with the ORR, with OH as the
key adsorbate, selected from the experimentally veried sets
Fig. 2 Comparison of search space between the algorithmic approach a
while right panels present atomic visualizations of surfaces with initia
OCHCH3–HfZn3 (110) (blue dots: initial sites; red stars: relaxed stable sit

© 2026 The Author(s). Published by the Royal Society of Chemistry
reported by Kulkarni et al.28,30,31 To broaden the evaluation
beyond simple adsorbates, six more systems featuring larger
molecules—such as CH2CH2OH, OCHCH3, and ONN(CH3)2—
and intermetallic catalysts were included. These complex
systems were randomly selected from the Open Catalyst 2020-
Dense (OC20-Dense) dataset.10 A complete list of adsorbate–
catalyst systems is provided in Table 1, with detailed slab
information available in SI Table S1.
Results and discussion
Search space reduction demonstration

Adsorb-Agent effectively reduces the conguration search space
for further energy determination by specifying both the
adsorption site and the binding atoms, thereby limiting the
number of initial congurations to be evaluated. In search
problems, beginning from an initial point proximal to the
optimal solution is essential, as this can signicantly reduce the
search space and improve the convergence efficiency.32 Fig. 2
illustrates three example cases: NNH–CuPd3 (111), OH–Pt (111),
and OCHCH3–HfZn3 (110), which represent NRR-related, ORR-
related, and large adsorbate-containing systems, respectively.
Among these, the OH–Pt (111) system serves as an example of
a monometallic surface, which is more homogeneous
compared to intermetallic surfaces. In atomic visualizations,
nd Adsorb-Agent. Left panels show solutions derived by Adsorb-Agent,
l adsorption sites for (a) NNH–CuPd3 (111), (b) OH–Pt (111), and (c)
es).
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blue dots denote the initial adsorption sites, while red stars
mark the relaxed adsorption sites corresponding to the most
stable congurations.

Adsorb-Agent signicantly reduces the number of initial
congurations by focusing on likely adsorption sites, compared to
the exhaustive enumeration algorithmic approaches. For example,
Adsorb-Agent predicts the bridge site at the intersection of Cu and
Pd atoms as the primary adsorption site for NNH–CuPd3 (111).
Similarly, it identies the hollow site of the Pt (111) surface as the
optimal adsorption site for OH and the bridge site between Zn and
Hf atoms for the OCHCH3–HfZn3 (110) system. Occasional devia-
tions from the predicted solutions arise due to the distancemargin
used to dene targeted adsorption sites. By focusing on specic
sites, Adsorb-Agent effectively reduces the search space.

For the NNH–CuPd3 (111) and OCHCH3–HfZn3 (110) systems,
the relaxed adsorption sites of the most stable congurations
precisely match the solutions proposed by Adsorb-Agent. In both
cases, Adsorb-Agent achieves adsorption energies lower than
those obtained via algorithmic approaches. However, for the OH–

Pt (111) system, the adsorption site of the most stable relaxed
conguration identied by both the algorithmic methods and
Adsorb-Agent is an ontop site, differing from the initial Adsorb-
Agent prediction. Despite this discrepancy, the initial site sug-
gested by Adsorb-Agent successfully guided the system to the
most stable conguration during the relaxation process.

Additionally, the solution generated by Solution Planner
includes reasoning prompts beyond the four essential pieces of
information required for determining the initial conguration
(see Fig. 1c). Although the adsorption site and surface-binding
details suggested are not explicitly reported in prior literature,
the general concept of side-on orientation preference is reason-
able. The idea that a “side-on orientation allows both nitrogen
atoms to interact effectively with the surface, providing optimal
orbital overlap and electronic interactions” is plausible in general
surface science contexts but lacks direct support in CuPd nitrate
reduction. Orientation effects (tilt/side-on vs. end-on) have been
studied for NO and NHx species on metal (111) surfaces, where
orbital overlap and back-donation govern adsorption.33 The
proposal that the mixed-metal Cu–Pd environment “offers
balanced interactions, optimizing charge transfer and adsorption
energy”, is supported by multiple studies of Cu–Pd alloys and
intermetallic catalysts. For example, ordered B2 CuPd nanocubes
can break classical adsorption-energy scaling by stabilizing early
oxy-nitrogen intermediates (e.g., *NO3) while weakening late
nitrogen-containing fragments (e.g., *N) via subsurface Pd elec-
tronic effects.34,35 Similarly, Cu–M alloys (M = Pd, Zn, etc.) have
been reported to tune intermediate binding energies and charge
transfer in nitrate reduction reactions.36
Adsorption energy identication

The performance of the Adsorb-Agent is evaluated against
conventional algorithmic approaches ( and

), as summarized in Table 1. To quantify the
effectiveness of Adsorb-Agent in identifying adsorption energies,
three key metrics are dened, and their mathematical formula-
tions are provided in the Methods section. Success Ratio (SR)
Digital Discovery
assesses the ability of Adsorb-Agent to identify adsorption ener-
gies comparable to those found by the algorithmic approaches.
Lower Energy Discovery Ratio (LEDR) measures the capability of
Adsorb-Agent to discover adsorption energies lower than those
identied by the algorithmic approaches. Reduced Search Space
Ratio (RSR) quanties the reduction in the number of initial
congurations required by Adsorb-Agent compared to the algo-
rithmic approaches.

These metrics provide a comprehensive framework for
evaluating Adsorb-Agent's effectiveness in identifying the most
stable congurations relative to conventional methods. Specif-
ically, the RSR reects the efficiency of the search process, while
the SR and LEDR reect the accuracy of energy identication.
An increase in the number of initial congurations, as reected
by a higher RSR, oen corresponds to improvements in SR and
LEDR values. Therefore, all three metrics should be considered
collectively to thoroughly assess Adsorb-Agent's performance in
comparison to algorithmic approaches.

As shown in Fig. 3a, Adsorb-Agent successfully identies
adsorption energies comparable to those found by the algo-
rithmic approach in 83.7% of cases and discovers lower ener-
gies in 35.0% of cases. Remarkably, it achieved these results
while using only 6.8–63.6% of the initial congurations
required by the algorithmic methods (see Fig. 3b). As discussed
earlier, increasing the number of initial congurations is likely
to improve both the SR and LEDR. To ensure a fair comparison
in this study, the number of initial congurations used by
Adsorb-Agent is scaled relative to the algorithmic approach,
resulting in a reduction of 6.8–63.6% of the original, with an
average of 26.9% across three independent runs. For practical
applications, the number of initial congurations can be
further increased, particularly for systems with lower RSRs, to
improve the performance of adsorption energy determination.

An analysis of specic system categories reveals that the
results vary with system complexity, as shown in Fig. 3a. The
systems are categorized based on the composition of the cata-
lytic surface (monometallic and intermetallic) and the size of
the adsorbate molecule (small and large molecules). Large
adsorbates are dened as those with more than three atoms,
such as CH2CH2OH, OCHCH3, and ONN(CH3)2.

For systems with monometallic catalysts, Adsorb-Agent
consistently identies adsorption energies comparable to
those found by the algorithmic approach across all three trials.
However, it does not achieve lower adsorption energies, indi-
cating that the algorithmic approach successfully identies the
adsorption conguration with the global minimum energy. This
outcome is likely due to the relatively homogeneous nature of
monometallic surfaces, which consist of a single atom type (see
Fig. 2b). These ndings suggest that extensive site enumeration
is unnecessary for monotonous surfaces.

In contrast, for systems with intermetallic catalysts, Adsorb-
Agent demonstrates a distinct advantage. While the SR slightly
decreases to 82.2% compared to monometallic systems, the
LEDR signicantly improves to 46.7%. This highlights the
ability of Adsorb-Agent to uncover new global minima through
targeted searches, which the algorithmic approach cannot
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Quantitative analysis of Adsorb-Agent results. (a) Success Rate (SR) and Lower Energy Discovery Rate (LEDR) across different categories;
(b) Reduced Search Space Rate (RSR) obtained from three independent runs. For each system, the number of configurations is averaged over the
three runs, and the error bars indicate the standard deviation; (c) consistency rate across independent runs.
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achieve through simple enumeration because of the increased
complexity and heterogeneity of intermetallic surfaces.

A similar trend is observed when analyzing systems based on
adsorbate complexity. Systems with large adsorbates exhibit
a lower SR but a signicantly higher LEDR compared to those
with small adsorbates. Notably, systems with large adsorbates
achieve the highest LEDR of 66.7%, underscoring the effective-
ness of the targeted search approach employed by Adsorb-Agent.
These results suggest that simple enumeration is relatively less
effective at identifying the global minimum in systems contain-
ing complex adsorbates. Furthermore, this nding reinforces the
effectiveness of Adsorb-Agent in addressing these challenges.
Consistency across independent trials

As LLMs are inherently non-deterministic, ensuring consistent and
reproducible outputs is important. The energy distribution panels
in Fig. 4 demonstrate that Adsorb-Agent consistently identies
lower-energy congurations, rather than doing so by chance. For
© 2026 The Author(s). Published by the Royal Society of Chemistry
the NNH–CuPd3 (111) and OCHCH3–Hf2Zn6 (110) systems, the
frequency of identifying lower-energy congurations is signi-
cantly higher compared to the algorithmic approach. This suggests
that Adsorb-Agent effectively targets adsorption congurations
closer to the global minimum. For the OH–Pt (111) system, where
the algorithmic approach already exhibits a high frequency of
lower-energy identications, Adsorb-Agent preserves this trend.
These results indicate that Adsorb-Agent systematically identies
congurations with energies near the global minimum, demon-
strating its capability rather than relying on chance.

Furthermore, as shown in Table 1, the standard deviations of
adsorption energies across multiple implementations of Adsorb-
Agent remain within an acceptable range for most systems. The
only exceptions are two systems involving CH2CH2OH, where
higher deviations are observed. This variability highlights the
need for further renement in handling complex adsorbates
while affirming the overall robustness of Adsorb-Agent.
Digital Discovery
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Fig. 4 Comparison of relaxed adsorption configurations (upper panels) and energy distributions (lower panels). (a) NNH–CuPd3 (111); (b) OH–Pt
(111); (c) OCHCH3–Hf2Zn5 (110). The energy distributions are generated by combining results from all three independent runs.
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To quantitatively evaluate consistency across independent
trials, we introduce the consistency ratio, which measures the
proportion of systems that yield consistent solutions across
three independent trials. The consistency ratio is dened as:

Consistency ratio½%� ¼
PN

i¼1

1
�
Strial1 ;i ¼ Strial2 ;i ¼ Strial3 ;i

�

N
(2)

Here, N represents the total number of systems evaluated,
which is set to 20, and Strialj,i denotes the solution obtained for
the i-th system in the j-th trial.

Consistency is evaluated separately for surface-related and
adsorbate-related information. A solution is deemed consistent
if the binding atom arrays across the three trials either match
exactly or differ by no more than one atom, with the shorter
array being a subset of the longer array. This criterion is applied
to both surface binding atoms and adsorbate binding atoms
Digital Discovery
using the algorithm detailed in Algorithm 1. A solution is
considered fully consistent only if both surface-related and
adsorbate-related information meet these criteria.

Adsorb-Agent demonstrates reasonable reliability,
producing consistent solutions for 17 out of 20 systems when
the Critic module is applied. Specically, only one system fails
to achieve consistency in adsorbate-related solutions, while two
systems fail in surface-related solutions. This highlights
Adsorb-Agent's strong performance in generating reliable
adsorbate-related solutions. Without the Critic module, one
additional system fails to achieve consistency in surface-related
solutions, indicating the Critic module's potential role in
enhancing solution reliability. Although the limited size of the
test set makes it challenging to generalize the effectiveness of
the Critic module, these results suggest that the Critic module
may help improve consistency by ltering out incoherent
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Comparison of Adsorb-Agent performance using different language models. (a) Success Rate (SR) and Lower Energy Discovery Rate
(LEDR) across models; (b) box plots of Reduced Search Space Rate (RSR) for each language model over three iterations, where the red line
indicates the median, the box represents the interquartile range (IQR), and the whiskers extend to the minimum and maximum values within 1.5
times the IQR; (c) consistency ratios for total (surface and adsorbate categories) across independent runs.
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solutions within the tested systems. Further discussion of the
Critic module performance is provided in SI Section S7.
Comparison across language models

We evaluated the performance of various LLMs, including GPT-
4o, GPT-4o-mini, Claude-3.7-Sonnet, and DeepSeek-Chat,
serving as the “brain” of Adsorb-Agent. Among them, GPT-4o
demonstrated the strongest overall performance for both SR
and LEDR, as shown in Fig. 5a, although its improvements over
Claude-3.7-Sonnet and DeepSeek-Chat were marginal. In
contrast, GPT-4o-mini exhibited the weakest performance, with
an average SR of 77% and an LEDR of 16.7%. DeepSeek-Chat
showed the most aggressive reduction of the conguration
space, achieving the lowest average RSR of 20.8%, while the other
models yielded average RSR values in the range of 26–28%, as
illustrated in Fig. 5b. Here, the average RSR refers to the mean
value calculated across 20 samples over three iterations. Both
GPT-4o and DeepSeek-Chat attained a high consistency ratio of
85%, whereas GPT-4o-mini displayed a substantially lower
consistency ratio of 65%, as shown in Fig. 5c. In summary, GPT-
4o consistently delivered the best overall performance, while
GPT-4o-mini underperformed relative to other models. Notably,
despite being a free and open-source model, DeepSeek-Chat
achieved performance comparable to the proprietary LLMs.
Conclusion

We introduced Adsorb-Agent, an LLM-powered agent designed to
efficiently explore adsorption conguration spaces and accu-
rately identify adsorption energies. Adsorb-Agent streamlines the
computational process by signicantly reducing the number of
initial congurations required while improving the efficiency and
accuracy of minimum adsorption energy predictions, thereby
mitigating the computational cost of extensive DFT simulations.

A key aspect of our approach is that the agent is built on
a standard LLM trained on general language corpora, rather
than domain-specic data. By leveraging its built-in
© 2026 The Author(s). Published by the Royal Society of Chemistry
understanding of chemical bonding, surface chemistry, and
emergent reasoning capabilities, Adsorb-Agent autonomously
proposes plausible adsorption congurations tailored to
specic systems. Adsorb-Agent demonstrates a strong ability to
identify congurations with energies closer to the global
minimum, particularly in complex systems such as interme-
tallic surfaces and large adsorbate molecules. This capability
highlights a critical advantage of our approach in addressing
computationally intensive and chemically complex systems.
Methods
GPT-4o

The GPT-4o model is an optimized variant of OpenAI's GPT-4,
which builds on the advancements of the Generative Pretrained
Transformer (GPT) series.37,38 Like its predecessors, GPT-4 is
a large-scale language model based on the transformer architec-
ture, utilizing self-attention mechanisms39 to effectively model
long-range dependencies in text. The GPT-4o model retains the
core advantages of GPT-4, including its powerful transformer
architecture that ensures high accuracy in language-based tasks.
Additionally, GPT-4o has been optimized for more efficient pro-
cessing, making it well-suited for tasks that demand reduced
computational resources without compromising its ability to
understand and generate human-like text. This optimization is
especially valuable for multi-step reasoning, problem-solving, and
decision-making applications. In this study, we used GPT-4o with
its default settings: a temperature of 1.0 and top_p of 1.0.
GPT-4o-mini

GPT-4o-mini is a smaller and more lightweight variant of Open-
AI's GPT-4o model. While it shares the same underlying trans-
former architecture and core design principles as GPT-4 and
GPT-4o,37,38 GPT-4o-mini is specically optimized for faster
inference and lower computational costs. This makes it suitable
for resource-constrained environments or applications requiring
rapid response times. Its reduced parameter count may lead to
Digital Discovery
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trade-offs in accuracy and reasoning depth compared to the full
GPT-4o model. In this study, we used GPT-4o-mini with its
default settings: a temperature of 1.0 and top_p of 1.0.

Claude-3.7-Sonnet

Claude-3.7-Sonnet is a large language model developed by
Anthropic as part of the Claude 3 family.40 Claude-3.7-Sonnet is
positioned as a mid-sized model in the Claude 3 lineup,
balancing performance and speed. While its exact number of
parameters is not publicly disclosed, it is intended to offer
strong capabilities for multi-step reasoning and code genera-
tion, with faster responses compared to larger models like
Claude-3.7-Opus. Claude-3.7-Sonnet is trained using
Anthropic's reinforcement learning from human feedback
(RLHF) framework, with particular emphasis on controllability
and safety to reduce harmful or biased outputs. In this study, we
used Claude-3.7-Sonnet through the Anthropic API with its
default settings: a temperature of 1.0 and a top_p value of 0.999.

DeepSeek-Chat

DeepSeek-Chat is an open-source large language model devel-
oped by DeepSeek AI, released as part of the DeepSeek LLM
series.41 It is based on a transformer decoder-only architecture,
similar to models like GPT, and is trained on large-scale
internet datasets to handle a wide range of natural language
tasks, including text generation, reasoning, and dialogue. The
version used in this study is DeepSeek-V3-0324 7B, which
contains approximately 7 billion parameters. It is trained with
supervised ne-tuning and reinforcement learning from human
feedback (RLHF) to enhance its instruction-following capabil-
ities.42 In this study, we used DeepSeek-Chat via the Hugging
Face Transformers library with its default generation settings:
a temperature of 1.0 and a top_p value of 1.0.

Adsorbate placement

A commonly used adsorbate placement involves the
site enumeration algorithm, which leverages surface symmetry.11,12

Using Pymatgen's , this algorithm
identies the most energetically favorable sites, such as ontop,
bridge, or hollow sites. The adsorbate is then placed at the selected
sites with a random rotation about the z-axis and minor adjust-
ments along the x- and y-axes, ensuring the binding atom is posi-
tioned at the site.14

To expand the conguration space beyond the
algorithm, Lan et al. proposed a algorithm.10 This
method uniformly samples surface sites at random. Aer per-
forming a Delaunay triangulation of the surface atoms, random
sites are selected within each triangle. At each randomly
selected site, the adsorbate is placed with random rotations
about the x-, y-, and z-axes, ensuring alignment of the center of
mass with the target site.14

In this paper, we introduce a new placement strategy
specically designed to accommodate side-on oriented adsor-
bates, offering a key differentiation from the above methods.
Our approach determines the placement center as the weighted
center of the binding atoms and orients the adsorbate to
Digital Discovery
maximize the exposure of its binding atoms to the surface. This
method differs from the above placement strategies, which
position a single binding atom at the site and apply stochastic
rotations. Although our strategy operates similarly to existing
methods for adsorbates with a single binding atom, it speci-
cally enables side-on placement for bidentate adsorbates.

GNN relaxation

To evaluate the ground-state properties of an atomic structure,
it is necessary to optimize its geometry by minimizing the
system's energy. This optimization is typically achieved by
calculating interatomic forces and adjusting atomic positions
accordingly while minimizing the total energy of the system.
Traditionally, this process is performed using quantum chem-
istry methods, such as DFT. However, GNNs have recently
emerged as a fast and cost-effective surrogate for DFT-based
relaxation.10,14

In GNN-based relaxation, the atomic system is represented
as a graph, where atoms are treated as nodes and interatomic
bonds or interactions as edges. The GNN iteratively performs
message passing, where neighboring atoms exchange infor-
mation, allowing the network to capture local chemical envi-
ronments. Through these learned representations, the GNN
predicts both the system's energy and the atomic forces. The
atomic positions are then updated using optimization algo-
rithms based on the predicted forces, and this process is
repeated until the system converges to a stable, low-energy
conguration.

In this study, we use EquiformerV2 as the core GNN model
due to its demonstrated high accuracy (∼0.2 eV MAE). We
specically use the checkpoint “EquiformerV2-31M-S2EF-OC20-
All+MD”, available from the Equiformer repository.16 This
checkpoint corresponds to a model trained on the OC20 S2EF
(Structure-to-Energy-and-Forces) dataset, including both the
full OC20 training set and additional MD trajectories.

Aer the GNN relaxation, the energy of the adsorbate–cata-
lyst system can be predicted. Since a single adsorbate–surface
systemmay havemultiple possible adsorption congurations, it
is necessary to evaluate the energies of all candidate congu-
rations to identify the most stable one. The adsorption energy is
determined by selecting the conguration with the lowest
energy, offering insights into the energetically favorable
conguration. The calculation is dened as eqn (1).

Open Catalyst demo

Conventional GNN-based relaxation was conducted using the
Open Catalyst demo (OC-demo) API. The OC-demo is an inter-
active platform that allows users to explore and optimize
binding sites for adsorbates on catalyst surfaces.43 It supports
11 427 catalyst materials and 86 adsorbates, with the catalyst
crystal structures sourced from the Materials Project44 and the
Open Quantum Materials Database.45 The OC-demo helps
identify the adsorption energy of the selected adsorbate and
catalytic surface by generating multiple initial congurations
and evaluating them using state-of-the-art graph neural
networks, like GemNet-OC and EquiformerV2. In our workow,
© 2026 The Author(s). Published by the Royal Society of Chemistry
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we use the OC-demo to place adsorbates on catalyst surfaces
using enumeration algorithms, perform structure relaxation
with EquiformerV2, and obtain the corresponding adsorption
energies. These results serve as the baseline for the conven-
tional algorithmic approach, against which we compare our
LLM-agent-based method.
Evaluation metrics

The Success Ratio (SR) estimates Adsorb-Agent's ability to
identify adsorption energies comparable to those found by the
algorithmic approach. Given the inherent error margins in the
energy and force predictions by EquiformerV2, a successful
identication is dened as the adsorption energy predicted by
Adsorb-Agent falling within a predened tolerance (3) of the
algorithmic approach. The SR is mathematically expressed as:

SR½%� ¼
PN

i¼1

1
���Eagent;i � Ealgorithm

��# 3
�

N
� 100 (3)

Here, N is the total number of adsorbate–catalyst systems
evaluated, which is set to 20 in this study. The threshold 3 is
dened as 0.1 eV, approximately half the energy prediction error
of EquiformerV2.16 Ealgorithm is computed as the average of three
independent trials conducted using the algorithmic
approaches. The indicator function 1ð$Þ is dened to be 1 if the
condition inside is satised and 0 otherwise.

The Lower Energy Discovery Ratio (LEDR) assesses Adsorb-
Agent's ability to identify adsorption energies that are lower than
those found by the algorithmic approaches. It is dened as:

LEDR½%� ¼
PN

i¼1

1
�
Eagent;i #Ealgorithm � 3

�

N
� 100 (4)

The Reduced Search Space Ratio (RSR) quanties the
reduction in the number of initial congurations required by
Adsorb-Agent (Ninit,agent) compared to the algorithmic
approaches (Ninit,algorithm). A lower RSR indicates a greater
reduction in the search space. It is dened as:

RSR½%� ¼ Ninit;agent

Ninit;algorithm

� 100 (5)
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