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esign of polypeptide-based
compartments for synthetic cells

Jianming Mao, a Yongkang Xi, b Armin Shayesteh Zadeh, c Allen P. Liu bdef

and Andrew L. Ferguson *ac

Synthetic cells are prevalent models for understanding and recapitulating complicated functions of natural

cells such as DNA replication and protein expression. Lipid-based vesicles are widely employed but are

limited by their fragility under mechanical forces or osmotic pressure. Elastin-like polypeptides (ELPs)

composed of repetitive (VPGXG) sequences present alternative building blocks with which to construct

the delimiting membrane of synthetic cells possessing high structural stability and tolerance of harsh

environmental stress. In this work, we present a high-throughput virtual screening pipeline combining

coarse-grained simulations, alchemical free energy calculations, Gaussian process regression, and

Bayesian optimization to traverse a library of amphiphilic diblock ELPs for mutant sequences predicted to

form thermodynamically stable bilayer vesicles. From our screening campaign, we have identified

a range of novel ELP candidates with enhanced predicted stability. Analysis of our screening data

exposes new rational design principles that suggest incorporating particular guest residues in hydrophilic

blocks – including histidine, tyrosine, and threonine – and in hydrophobic blocks – including alanine,

phenylalanine, cysteine, and isoleucine – to enhance the thermodynamic stability of ELP bilayer vesicles.

The computational pipeline greatly accelerates the discovery of ELP building blocks for synthetic cells,

exposes new design principles for these molecules, and furnishes a transferable framework for designing

peptides with desirable structural or functional properties.
1 Introduction

Natural cells employ molecular compartments evolved by
natural selection to realize sophisticated biological functions in
living systems.1–3 Inspired by these natural systems, synthetic
cells have been proposed to recapitulate one or more cell
functions in a compartmentalized volume. These articial
systems have found fundamental applications in under-
standing the prebiotic origin of life4,5 and technological appli-
cations in engineering synthetic cells capable of operating in
harsh environments6 or carrying and targeted delivery of drug
payloads.7 Synthetic cells can be constructed by bottom-up or
top-down methods. Top-down methods typically commence
with natural cells followed by removal of the unnecessary genes
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and organelles or replacement of the intrinsic components (e.g.,
genome, proteins) with synthetic substitutions to realize
a minimal viable system.8,9 Bottom-up approaches, by contrast,
construct a synthetic cell from scratch through assembling
different biological machinery into nano- or micro-sized vesi-
cles.10,11 Lipids have been widely deployed in the construction of
the delimiting membrane of synthetic cells but are limited in
further development and wider application due to the relatively
weak mechanical stability of the resulting vesicles and the
requirement for quite harsh and destabilizing chemical condi-
tions for lipid modication or functionalization.12 Alternative
non-lipid materials, such as amphiphilic block copolymers,
emerged as one of the early substitutes to assemble polymer
vesicles or polymersomes with superior toughness and greater
property control,12–14 and other inorganic building blocks have
also been explored.15,16

Biopolymers such as polypeptides present an alternative
class of potential building blocks for synthetic cells or organ-
elles.17 Elastin-like polypeptides (ELPs) have emerged as
particularly promising candidates that have been used to form
vesicles with diameters ranging from 50 nm to 50 mm through
self- or templated-assembly.10,18,19 ELPs are derived from
intrinsically disordered proteins such as tropoelastin and share
a sequence pattern (VPGXG)n possessing a VPGXG pentamer
repeat, where V is valine, P is proline, G is glycine and X is
© 2026 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d5dd00291e&domain=pdf&date_stamp=2026-01-17
http://orcid.org/0000-0002-1604-6527
http://orcid.org/0009-0001-0290-4850
http://orcid.org/0000-0002-9989-6710
http://orcid.org/0000-0002-0309-7018
http://orcid.org/0000-0002-8829-9726
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00291e
https://pubs.rsc.org/en/journals/journal/DD
https://pubs.rsc.org/en/journals/journal/DD?issueid=DD005001


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
2/

20
26

 6
:0

1:
38

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
a guest residue that can be any amino acid except proline.20,21 In
solution, ELPs tend to exhibit a lower critical solution temper-
ature (LCST)-like behaviors.22 Below a transition temperature,
which can vary with the prevailing thermodynamic conditions,
the chains present a random coil conformation and remain
soluble, while above the transition temperature, the phase
transition produces liquid droplets or coacervates. Experi-
mental and computational work have exposed the important
role of partial structural ordering associated with this phase
transition, with a typically increased propensity for b-turns or b-
spiral secondary structures,23–25 but a growing body of work
suggests that these transformations are sparse and transient
with sub-nanosecond lifetimes, and that the ELP remains
highly dynamic and disordered in the condensed form.26–31

The number of repeats n and the identity of guest residue X
are the most important factors dictating the thermal and
mechanical properties of ELPs. Empirically, a longer repeat and
higher hydrophobicity of X tends to reduce the transition
temperature whereas a shorter repeat and higher hydrophilicity
of X tends to elevate the transition temperature.32 This
tunability resulting from the sequence control has encouraged
the exploration of amphiphilic diblock or multi-block ELPs in
which each block can have distinct transition temperature and
thus control the assembly behaviors. For example, Huber et al.33

showed that amphiphilic ELPs comprising phenylalanines and
glutamic acids expressed inside Escherichia coli were able to
form organelle-like compartments. Vogele et al.10 and Frank
et al.34 synthesized self-growing ELP-based synthetic cells.
Schreiber et al.18 investigated the assembly efficiency of ELPs
with different number of repeats and guest residues into uni-
lamellar prebiotic synthetic cells and the dynamics of the
resulting membranes. Recently, Sharma et al.19 demonstrated
the synthesis of giant ELP vesicles consisting (VPGSG)48 and
(VPGIG)48 blocks using an inverse emulsion approach (Fig. 1).
Fig. 1 Construction of ELP vesicles by inverse emulsion transfer. (a) Sc
vesicles by the emulsion transfer approach reported by Sharma et al.19 The
blue portion the hydrophilic block. (b) Schematic illustration and bright
green fluorescence shows the membrane structure labeled by a NBD-PE
are 20 mm. Cartoons used to construct the schematics are obtained fro

© 2026 The Author(s). Published by the Royal Society of Chemistry
In this work, we consider the rational design of amphiphilic
ELP diblock polymers capable of forming thermodynamically
stable bilayer vesicles to resist dissociation for long time
periods and/or under harsh conditions. The ELP sequence
space within which we screen is dened by the repeat number
and identity of the guest residues X1 and X2 in the sequence
(VPGX1G)m(VPGX2G)n.21 Selecting guest residue X1 to be hydro-
philic and X2 to be hydrophobic promotes an ELP bilayer vesicle
architecture with the X1 block oriented towards the aqueous
environments on either side of the bilayer, and the X2 hydro-
phobic blocks sequestered within the hydrophobic core of the
bilayer (Fig. 1). This design strategy has been employed by
Schreiber et al.,18 Sharma et al.,19 and Vogele et al.10 to experi-
mentally realize synthetic ELP bilayer vesicles with m and n in
the range of 5–100 repeat units.35 Chemical intuition can help
focus the search towards promising choices for the X1 and X2

guest residues, but can also introduce bias that might impede
the discovery of non-intuitive but high-performing materials.
Data-driven methods and computational modeling offer
opportunities to systematically search and accelerate the
discovery of ELP sequences capable of forming stable vesicles
and to infer design rules linking ELP sequence to emergent
physicochemical properties. Machine learning techniques
present powerful tools for inferring design rules and engi-
neering peptides and proteins with desired chemical
properties.36–39 For example, Lee et al. employed support vector
machines (SVMs) to aid in the design of membrane active
peptides and antimicrobial peptides.40 Zhang et al. built a LSTM
model to generate de novo peptides with specic prospective
therapeutic benets.41 Guntuboina et al. utilized large language
models (LLMs) for the prediction of peptide properties from
sequences.42 Bell et al. applied Gaussian process regression
(GPR) to an experimental data set for the prediction of binding
affinity of antigens to MHC class II.43
hematic illustration showing the process of constructing ELP peptide
red portion of the sequence represents the hydrophobic block and the
field and fluorescence images of labelled S48I48 peptide vesicles. The
lipid and Rhodamine dye encapsulated within the vesicles. Scale bars

m BioRender (https://biorender.com).
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Fig. 2 Schematic illustration of the active learning strategy for data-driven screening of ELPs capable of forming thermodynamically stable
vesicles. (a) Molecular modeling of a bilayer ELP vesicle. The simulated region of a vesicle is approximated as a planar sheet assembled by
amphiphilic diblock ELPs with a generic sequence of (VPGX1G)m(VPGX2G)n, in which X1 is a hydrophilic guest amino acid shown in blue, X2 is
a hydrophobic guest amino acid shown in pink, and m and n are the degree of hydrophilic and hydrophobic block repeats. (b) Alchemical free
energy calculations are performed to quantify the stability of the bilayer via the transfer free energy DG of an ELP candidate from the membrane
into solvent. The colored ELP denotes the coupled state while the gray ELP denotes decoupled state, which are connected through a reversible
alchemical pathway governed by the coupling parameter l. Calculations are performed by free energy perturbation (FEP) using the mbar tool in
the alchemlyb software library.45 (c) The free energy simulation data are used to train a Gaussian process regression (GPR) surrogatemodel which
is then interrogated by Bayesian optimization (BO) to identify and prioritize unsampled ELP candidates within the design space most likely to
possess high values of the objective function for the next round of active learning. The green line indicates the BO acquisition function used to
rank candidates and magenta point is the selected unsampled candidate for the next free energy calculation. The iterative loop is terminated
when no further improvements in the top performing candidates identified in consecutive rounds are observed and/or the posterior of the GPR
model stabilizes and no longer updates with additional rounds of data collection and model retraining. (d) Inference of design rules from the
terminal GPR surrogate model and schematic illustration of down-selection of the ELP candidate space for future experimental validation. The
simulated ELPmolecules and bilayer are visualized using VMD,46 structures of amino acids are drawnwith Avogadro,47 and cartoons are obtained
from BioRender (https://biorender.com).
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Herein, we present a high throughput virtual screening
(HTVS) pipeline that integrates coarse-grained (CG) simula-
tions, alchemical free energy calculations, Gaussian process
regression (GPR), and Bayesian optimization (BO) to identify
top candidates from a library of putative amphiphilic diblock
ELPs that are predicted to form thermodynamically stable and
mechanically robust vesicles (Fig. 2). Although we focus on
bilayer vesicles, this modular pipeline can be readily retargeted
to optimize alternative assembled morphologies such as
micelles or gels. This work builds upon our previous studies19,44

by introducing a computationally efficient alchemical protocol
to evaluate vesicle stability, expanding the space of ELP candi-
dates with calculated stabilities by over 200%, and identifying
novel ELP candidates with predicted bilayer stabilities up to
140% higher than any previously identied candidate. The
active learning-guided screen efficiently lters the high-
performance ELP sequences to rene the large design space
into a smaller number of top performing candidates to guide
and focus future experimental synthesis and characterization
efforts. Moreover, the predictive capability of the model enables
large-scale analysis of amino acid residue preferences in the
hydrophilic and hydrophobic blocks of amphiphilic ELPs to
expose novel design principles that can inform new
216 | Digital Discovery, 2026, 5, 214–230
understanding and rational engineering of these molecules.
This HTVS pipeline is broadly transferable and wemake it freely
available as an open source tools to accelerate the design and
optimization of peptide-based biomaterials with desired struc-
tural or functional properties.
2 Methods
2.1 Computational modeling of ELP vesicle bilayers

The rst step in our screening pipeline is to develop a compu-
tational framework for simulating the bilayer vesicles
comprising amphiphilic ELPs. Instead of simulating the entire
ELP vesicle, we follow a protocol similar to that used for lipid
bilayers48 by commencing from a preassembled vesicle and
focusing on a local region that can be reasonably approximated
as a at bilayer. Conceptually, our in silico modeling approach
endeavors to evaluate the stability of ELP bilayers that may be
assembled by a variety of experimental techniques including
emulsion transfer,19 templated synthesis,10 and self-
assembly.18,49 We focus on the bilayer vesicle chassis because it
presents prevalent experimental practice in which vesicles are
preassembled (e.g., by emulsion transfer) and reside in a meta-
stable state, which make membrane lifetime a question of
© 2026 The Author(s). Published by the Royal Society of Chemistry
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thermodynamic stabilization. Thus, our design objective is to
use this computational model to quantify the thermodynamic
driving force for extraction of an ELP peptide from the bilayer
and discover ELP sequence variants that maximize this driving
force to stabilize these vesicles against dissociation. Our active
learning campaign, therefore, seeks to engineer ELP sequences
to promote the stability of a preassembled bilayer, not, neces-
sarily, to spontaneously self-assemble into a bilayer vesicle
geometry against other competing morphologies such as
micelles or gels.

The ELP candidate space in this work is dened by the
mother sequence (VPGX1G)m(VPGX2G)n, where X1 and X2 are
guest residues. We restrict residue X1 to be hydrophilic and X2

to be hydrophobic to promote an ELP bilayer architecture with
the X1 block oriented towards the aqueous environments to
form either side of the bilayer and the X2 hydrophobic blocks
sequestered within the hydrophobic core.10,18,21,35 We restrict the
hydrophilic and hydrophobic pentamer repeat numbers to be
such that m + n = 9 or 10 to limit the computational cost of
simulations and facilitate HTVS. Following previous work,44 all-
atom ELP structures were built using PyMOL50 and then coarse-
grained with the Martini 2.2 force eld.51 While all-atom
simulations offer higher accuracy, they are computationally
expensive for such large systems within a HTVS framework. The
coarse-grained modeling approach permits the simulation of
∼100 nm2 membrane patches and efficient convergence of the
free energy calculations used to assess stability. Studies have
shown that ELPs can adopt ordered structures, such as b-turns
and b-spirals.23–25 However, these conformational changes are
rare and transient, with lifetimes on the sub-nanosecond scale,
and growing evidence supports a picture in which ELPs remain
highly dynamic and largely disordered in the condensed
phase.26–30 As such, we chose not to assign specic secondary
structures during coarse-graining and modeled the entire ELP
polymer as a random coil. It would be computationally labo-
rious to estimate the transition temperature of each ELP
considered in the active learning cycle, so we simulate all
systems in the random coil state at a temperature of 300 K and
pressure of 1 bar. We assume that the correct rank ordering of
the thermodynamic stability of ELP bilayers is preserved under
these assumptions of our computational model and approach,
and that this strategy can permit the identication of high
performance ELP candidates predicted to assemble stable
bilayer vesicles. To test the effect of secondary structure on
stability, we assigned b-turn structure across the entire hydro-
phobic block for four representative candidate sequences. We
observed that poor candidates such as R6M3 and E4L6 exhibited
some limited additional stabilization under the imposition of
the b-turn, whereas good candidates such as H5F5 and H6F3
showed no change in stability within error bars (Fig. S10).
Furthermore, the overall rank ordering of stability among these
four test sequences was preserved.

A bilayer patch was constructed by arranging 100 ELP mono-
mers in each leaet on a 10 × 10 grid with ∼0.9 nm intermo-
lecular spacing. The initial grid arrangement served only as
a starting conguration, and the bilayer models were subse-
quently simulated and equilibrated under periodic boundary
© 2026 The Author(s). Published by the Royal Society of Chemistry
conditions and a barostat to reach its equilibrium density given
the chosen thermodynamic conditions. A hydrophobic core was
formed by orienting the hydrophobic block of each leaet of ELPs
toward the bilayer interior.44 The system was then placed in
a cuboidal box with x and y dimensions of∼9 nm, a z dimension
of ∼38 nm, and periodic boundaries were employed in all
dimensions. The bilayer was oriented in the x–y plane, and the
extended z dimension is designed to eliminate artifacts associ-
ated with interactions between periodic copies of the bilayer in
this dimension (Fig. 2a). The box was then solvated with non-
polarizable Martini water beads to a density of 1.0 g cm−3. In
the ELP bilayer model, the C-terminus is buried within the
hydrophobic core, and so we represent it in a neutral form (–
COOH) represented by a Martini P5 bead. The N-terminus, in
contrast, is exposed in a solvent environment and remains
a charged state (–NH3

+) represented by a Qd bead. Charges of
ionizable residues were assigned under a physiological pH = 7.4
(E: −1, D: −1, K: +1, R: +1). In each system, counterions were
added to maintain charge neutrality by randomly inserting Na+

(Qd) or Cl− (Qa) ions into the water region.
The system was then equilibrated using classical molecular

dynamics simulations. Energy minimization was performed
using the steepest descent algorithm to eliminate forces larger
than 1000 kJ mol−1 nm−2. Aer minimization, the system was
equilibrated by a 10 ps NVT simulation followed by a 10 ns NPT
equilibration at 300 K and 1 bar. Finally, an NPT production run
of 200 ns at 300 K and 1 bar was conducted to relax the system
prior to subjecting it to free energy calculations (Section 2.2).
For NPT simulations, semi-isotropic pressure coupling was
employed as in lipid membrane simulations.48 The Berendsen
barostat52 was used for equilibration with a time constant of 12
ps and a compressibility of 3.0 × 10−4 bar−1. The Parrinello–
Rahman barostat53 was employed for production runs with
a time constant of 12 ps and a compressibility of 3.0 × 10−4

bar−1. The temperature was coupled by a velocity-rescale ther-
mostat54 with a time constant of 1 ps with separate coupling to
the ELPs and the rest of the system (i.e., water and ions). The
time step was set to 20 fs and Newton's equations of motion
integrated by the leap-frog algorithm.55 Lennard-Jones interac-
tions were smoothly shied to zero at a cutoff of 1.1 nm and
electrostatics were treated using the reaction eld method with
˛rf = N and ˛r = 15 as recommended for the non-polarizable
Martini 2.2 water model.56,57 All simulations were performed
using the Gromacs 2023.1 simulation suite.58 The visualization
and rendering of simulation trajectories were conducted using
VMD.46 We make the simulation codes and screening data
available as a public Github repository at https://github.com/
Ferg-Lab/ELP_Simulation that is also accessible via
a persistent doi at https://doi.org/10.5281/zenodo.15778533.
2.2 Free energy calculation by alchemical transfer

We employ the free energy cost DG to extract a single ELP
monomer from the membrane into the aqueous phase as
a quantitative measure of the thermodynamic stability of the
ELP bilayer vesicle (Fig. 2b). We previously employed umbrella
sampling and the weighted histogram analysis method
Digital Discovery, 2026, 5, 214–230 | 217
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(WHAM) for this purpose,44,59,60 but this approach requires
extensive sampling, large numbers of umbrella windows, and
carefully constructed pathways to handle strong pulling forces,
avoid hysteresis, and assure good convergence.61 Free energy
calculations along a ctitious pathway, such as free energy
perturbation (FEP)62,63 and thermodynamic integration (TI),64–66

are widely employed to compute solvation67 and binding free
energies.68–70 The double decoupling method (DDM)71–73 is
a common approach, but it requires co-alchemical ions for
charge balance when decoupling charged molecules,74–77 which
becomes challenging for ELPs with multiple charged residues
in the hydrophilic block. Instead, we leverage the recently
developed alchemical transfer method,78–81 to simultaneously
decouples an ELP from the membrane and couples its “ghost”
copy in the water phase. This ensures charge neutrality by
construction and enables efficient free energy calculation
within a single set of simulations. Beneting from the
alchemical transfer approach, the number of simulations was
reduced from over 400 to 76 windows and led to a ∼4-fold
speedup in the free energy calculation. Moreover, the computed
per-residue free energies for various ELPs showed better
agreement with the expected partition free energy of amino acid
residues from water to protein condensates.82

The alchemical simulations employed the stochastic
dynamics integrator with a friction constant of 1.0 ps−1. Each
window was equilibrated for 40 ns followed by 100 ns produc-
tion at 300 K and 1 bar using a Langevin thermostat83 and semi-
isotropic pressure coupling by a Parrinello–Rahman barostat.53

Free energy changes were estimated using the multistate Ben-
nett acceptance ratio (MBAR)84 as implemented in the alchem-
lyb soware library,45 with uncertainties evaluated by ve-fold
block averaging. Full details of the alchemical calculations are
provided in Section S1 of the SI and the thermodynamic cycle
for computing the free energy of extracting an ELP monomer
from the membrane to the water region DG is represented in
Fig. S1. MBAR was selected for its superior convergence
behavior compared to thermodynamic integration (TI)64 and
Bennett acceptance ratio (BAR)85 in our systems, which was
particularly pronounced for restraint-related terms (Fig. S2).
Illustrations of the representative cumulative free energy at
different stages and the convergence proles for a bilayer
membrane composed of T5I5 ELPs are shown in Fig. S3 and S4.
The evaluation of DG for each ELP requires approximately 95
GPU-h on an NVIDIA A100 GPU.

We validated our alchemical transfer free energy pipeline in
ve benchmark validations, the full details of which are
provided in Section S2 of the SI. In the rst three validations, we
computed the solvation free energies of three small molecules –
1,2,3-trichloro-5-(2,5-dichlorophenyl)benzene (TCDP), decane,
and F-uracil – using all-atom simulations in which we trans-
ferred the molecules from a water slab to a vacuum slab
employing the alchemical transfer approach (Fig. S5a). In the
fourth validation, we computed the partition free energy of
a guanine molecule from water into a POPC membrane using
the coarse-grained Martini 2.2 force eld51,57 (Fig. S5b). In all
four cases, we obtained agreement with previously reported
values computed using DDM schemes or umbrella sampling
218 | Digital Discovery, 2026, 5, 214–230
with a mean average error of 0.95 kcal mol−1 (Fig. S5c). In our
h validation, which is a direct test of the approach for the
present ELP system, we performed a symmetric decoupling of
one ELP monomer within a (VPGHG)2(VPGAG)2 ELP bilayer and
coupling of another ELP monomer within the same bilayer
(Fig. S6). The expected value of this free energy change is zero,
by construction, and the calculated value of DG = (0.02 ± 0.05)
kcal per mol per residue is consistent with the expected value
within error bars. These ve validations lend condence that
our alchemical transfer method presents a robust and accurate
means to compute transfer free energies.
2.3 Closed-loop optimization of ELP membrane stability

Having dened a computational measure of membrane stability
via alchemical free energy calculations (Section 2.2), we aim to
maximize the free energy DG of extracting an ELP monomer out
of the membrane so as to maximize the stability of the
membrane with respect to the sequence of the constituent ELPs.
This process can be regarded as optimization of a black box
function y = f(x), where the input x is the sequence of the ELP
dictated by the identity of the guest residues and the number of
their repeats {X1, X2, m, n}, and the target output y is the free
energy DG. A closed-loop active learning pipeline was employed
to traverse the ELP space more efficiently and minimize the
number of simulations required to discover high-performing
candidates. A general scheme is shown in Fig. 2a–c, where we
employ alchemical transfer free energy calculations to evaluate
the performance of ELP candidates, train a data-driven surro-
gate model employing GPR to predict the performance of all
remaining candidates within the design space, then employ BO
to prioritize the next candidates for free energy calculations. We
terminate the active learning search when we cease to see
improvements in DG with successive active learning rounds or
the GPR posterior stabilizes and no longer changes with addi-
tional rounds of data collection and retraining. Simulation
tools, codes, and Jupyter Notebooks implementing our pipeline
are hosted on GitHub https://github.com/Ferg-Lab/
ELP_Simulation that is also accessible via a persistent doi at
https://doi.org/10.5281/zenodo.15778533.

2.3.1 Gaussian process regression. Given the DG values
computed for all ELP candidates considered to date, we wish to
predict the DG values for the remaining candidates f̂ (x)j, j ˛
unsampled in our design space by constructing a surrogate
model. In active learning, the surrogate model ŷ = f̂ (x) is
frequently furnished by GPR models that intrinsically provide
the predictive means and uncertainties that are required for
BO.86

A GPR model is dened by a kernel function dening the
similarity of any pair of candidates.87 In the present case, we
therefore require a means to dene the similarity between ELP
sequences. String kernels, such as the local-alignment kernel,88

oligo kernel,89 and physico-chemical descriptors based kernels90

are all possible options, but, following prior work,44 we adopt
the generic string (GS) kernel proposed by Giguère et al.91 The
GS kernel denes the similarity between any pair (x, x0) of
strings of amino acids with lengths jxj and jx0j as,
© 2026 The Author(s). Published by the Royal Society of Chemistry

https://github.com/Ferg-Lab/ELP_Simulation
https://github.com/Ferg-Lab/ELP_Simulation
https://doi.org/10.5281/zenodo.15778533
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00291e


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
2/

20
26

 6
:0

1:
38

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
GS
�
x; x

0
;L; sp; sc

�
: ¼

XL
l¼1

Xjxj�l

i¼0

Xjx0 j�l

j¼0

exp

 
� ði � jÞ2

2sp
2

!
�

exp

0
B@�

kclðxiþ1;.; xiþlÞ � cl
�
x

0
jþ1;.; x

0
jþl

�k2
2sc

2

1
CA;

(1)

where cl(x1, ., xl) = (c(x1), ., c(xl)) and c(xi) is the column
corresponding to amino acid xi in the BLOSUM62 substitution
matrix.92 Mathematically, the GS kernel compares all substrings
of length l between two strings under a product of two Gaussian
kernels. The parameter sp in the rst Gaussian controls the
shiing contribution term encoding the shi in starting posi-
tions of the substrings, and the sc parameter in the second
Gaussian controls the characteristic bandwidth on the BLO-
SUM62 similarity of the two substrings. Conceptually, the
product of the two Guassian kernels functions like a logical
AND gate,93 such that a pair of substrings are judged to be
similar if both their positional offset is small relative to sp and
their BLOSUM62 distance is small relative to sc. The overall
kernel sums over all substrings of length l = 1.L and all sub-
string offsets. The GS kernels can be viewed as a generalization
of other well-known kernels.91 For instance, the GS kernel
reduces to the oligo kernel89 when sc/ 0 and to the radial basis
function (RBF)94 when L / N and sp / 0. In this work, the
kernel parameters, sp and sc, were optimized during each
training round by maximizing the log-likelihood of the training
data. Themaximum string length parameter L= 50 was selected
by grid search in the rst active learning round and xed for all
subsequent rounds. We implemented the GPR using the
BoTorch libraries.95

2.3.2 Bayesian optimization. The nal step in the active
learning cycle is to pass the predictions along with the uncer-
tainties from the surrogate GPR model to a BO routine to
prioritize as yet unsampled ELP sequences for alchemical
transfer free energy calculations. Candidates are rank ordered
by the BO under a so-called acquisition function. A number of
such functions are available that balance different degrees of
exploitation – prioritizing candidates likely to possess high
values of the objective function – and exploration – prioritizing
candidates in poorly sampled regions of the search space. The
surrogate model is used primarily to guide sequence selection
toward promising regions of design space rather than to achieve
globally uniform predictive accuracy across the entire library. In
the initial rounds of this work, we employed the batched quasi-
Monte Carlo (qMC) batch noisy expected improvement (qNEI)
acquisition function95 as a balanced exploit-explore search
strategy. Aer we observed no further improvements in DG for
20 successive rounds, we switched to the batched qMC batch
upper condence bound (qUCB) acquisition function,96 with
the exploit-explore trade-off selected to pure exploit. We
implemented the BO using the BoTorch libraries.95 In all rounds
we selected a batch size of q = 2 ELP candidates that enabled us
to make use of our parallel compute resources in conducting
our alchemical free energy calculations.
© 2026 The Author(s). Published by the Royal Society of Chemistry
3 Results and discussion
3.1 Denition of ELP sequence space for active learning
search

The candidate space of ELP sequences comprises the family of
diblocks (VPGX1G)m(VPGX2G)n, or, for brevity, X1mX2n, where X1

is one of the hydrophilic amino acid residues (except proline)
classied by the Kyte–Doolittle hydropathy scale97 {G, T, S, W, Y,
H, E, Q, D, N, K, R}, and X2 is one of the hydrophobic residues
{I, V, L, F, C, M, A}. We acknowledge that using a single
hydropathy scale inevitably introduces bias into residue classi-
cation, particularly for borderline amino acids whose classi-
cation may vary under alternative hydrophobicity scales, and
cause our library to miss potentially high performing candi-
dates. In principle, we could conduct a more comprehensive
search of ELP space by constructing the design library as the
union of ELP sequences designed under a number of scales, but
in this work we elect to employ the Kyte–Doolittle scale as one of
the most commonly used hydrophobicity scales and, as a scale
based on the relative tendencies of amino acids to be buried
within protein interiors versus exposed to solvent, an appro-
priate scale for amphiphilic ELP systems where the interplay
between solvent exposure and burial within hydrophobic
domains is central to membrane stability.98–102 The sequence
length (m + n) is a key factor contributing to the stability of
resulting vesicles, with longer sequences typically employed in
experimental work. For example, Schreiber et al.18 tested ELPs of
different lengths with a repeat number of up to 70, while
Sharma et al.19 used a diblock ELP with a repeat number of 96.
Free energy calculations become extremely expensive for large
molecules due to the computational costs of simulating large
systems, slow equilibration times, and the need for increasing
numbers of windows to achieve good overlap in the alchemical
path. This prompts the question of whether calculations of DG
for shorter chains (m + n z 10) can reect the trends of DG for
longer chains (m + n z 100) typically considered in experi-
mental settings.

To probe this question, we considered ELPs consisting of
equal-length hydrophobic and hydrophilic blocks (m = n) and
considered three ELP sequences, HnAn, KnIn, and TnIn, with n =

2–6. The guest residues in these sequences were selected to
span both charged and neutral hydrophilic residues and large
and small hydrophobic residues. We assembled bilayer
membranes for all 15 sequences (Section 2.1) then subjected the
relaxed membranes to alchemical free energy calculations to
measure the free energy cost DG to extract an ELP from the
membrane into solvent (Section 2.2). We observe a strongly
linear relationship in DG as a function of n for each of the three
series (Fig. 3a), such that the DG per amino acid is approxi-
mately constant for a particular choice of X1 and X2 (Fig. 3b).
While we cannot rule out the possibility that these linear trends
may not persist up to the very long sequences employed in
experiments due to potentially new folding dynamics, aggre-
gation modes, or entanglement effects, they lend condence
that the stability trends computed for short sequences are
representative of the behaviors of longer sequences, and that
Digital Discovery, 2026, 5, 214–230 | 219
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Fig. 3 The free energy DG to extract an ELP (VPGX1G)n(VPGX2G)n from an equilibrated membrane into solvent as a function of repeat number n.
We consider three chemically distinct sequences ELPs families – HnAn, KnIn, and TnIn – with n = 2–6. (a) The DG to extract the full ELP molecule
scales linearly with the repeat number n for each of the three series. (b) As a corollary, the DG per residue is approximately constant for each
choice of X1 and X2. Dashed lines in (a) correspond to best least squares linear fits and those in (b) to means.
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the rank ordering of the short sequence trends can provide
a proxy for identifying promising choices of the X1 and X2 guest
residues that can guide and focus subsequent experimental
synthesis and testing. We observe that similarly strongly linear
trends have been previously reported for the self-partition free
energies of Nup98 FG domains during phase separation.103

While the molecular details of FG domain condensation and
ELP bilayer stability are distinct molecular processes, both
systems share the principle that once the polymer reaches
a sufficient length, each additional repeat unit experiences
a similar physicochemical environment and therefore contrib-
utes approximately additively to the free energy.

On the basis of the linear relationship between DG and ELP
length, we restrict our virtual screen to ELPs of a total pentamer
repeat ofm + n= 9 or 10 as a suitable regime for high throughput
screening, and consider specic combinations of (m, n) = [(3, 6),
(4,5), (4, 6), (5, 5), (6, 4), (5, 4), (6, 3)]. These seven (m, n) combi-
nations together with the twelve options for the X1 hydrophilic
guest residue and seven options for the hydrophobic guest
residue dene an ELP candidates space of 12 × 7 × 7 = 588
amphiphilic diblocks of the form of (VPGX1G)m(VPGX2G)n. This
represents a 2.5-fold expansion in the search space relative to
prior work,44 and we also note that all candidate sequences are, in
principle, accessible to recombinant synthesis.104
3.2 High throughput screening of amphiphilic ELPs

The primary goal of the HTVS is to discover novel ELPs that
maximize thermodynamic stability of peptidic vesicles for
synthetic cells. Experimentally, the vesicles are fabricated by
emulsion transfer19 or templated assembly.10,18,49 Computa-
tionally, we seek to mimic this experimental protocol by pre-
assembling the ELPs into a bilayer rather than building the
membrane patch from self-assembly. With these pre-assembled
models, we then aim to search for sequences that maximize the
thermodynamic cost to extract a single ELP from the membrane
as a proxy for membrane stability. A limitation of this protocol
is that competing aggregate structures (e.g., micelles, gels) are
not considered, but our rationale is that placing a pre-
220 | Digital Discovery, 2026, 5, 214–230
assembled vesicle into a deep thermodynamic free energy well
maximizes its lifetime by minimizing its propensity to disag-
gregate or transition into alternative structures.

We commenced our active learning campaign by selecting an
initial set of the 24 ELP sequences to subject to alchemical free
energy calculations and initialize the rst round of the active
learning search (Fig. 2). This initial set of sequences was
designed such that each X1 and X2 guest residue appeared at
least once, in order to provide broad initial coverage of the 588-
candidate sequence space. We conducted 24 rounds of active
learning with the initial 20 rounds employing a batched noisy
expected improvement acquisition function to balance exploi-
tation and exploration and propose diverse candidates, while
subsequent 4 rounds employed a pure exploit batched upper
condence bound acquisition function to extract the top per-
forming candidate within the explored regions of sequence
space. The 24 sequences considered in the initial round of the
search together with batches of two candidates considered in
each of the subsequent 24 rounds led us to consider a total of 24
+ 2× 24= 72 ELP sequences, comprising a little over 12% of the
588-candidate search space. A comprehensive listing of the
particular ELP sequences considered in each round of the active
learning search along with their calculated DG values is
provided in Table S1 in the SI, and hosted as a machine read-
able csv le along with the simulation codes on a public Github
repository at https://github.com/Ferg-Lab/ELP_Simulation that
is also accessible via a persistent doi at https://doi.org/
10.5281/zenodo.15778533.

We present in Fig. 4a a summary of the active learning search
showing the calculated DG values for the ELP sequences
sampled in each round over the course of the active learning
campaign. The most stable candidate in the initial round of the
search (H6I3) possessed a free energy of extraction from the
membrane bilayer of DG= 2.11 kBT per residue. Themost stable
ELP sequence identied by the search was discovered in round
10 (H6F3) with a DG= 2.87 kBT per residue aer consideration of
just 44/588 ELP candidates. Although we cannot rule out the
possibility that higher performing sequences remain to be
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Active learning screen for amphiphilic diblock ELP sequences forming highly stable bilayer vesicles. (a) Distribution of the transfer free
energy DG of an ELP candidate from the membrane into solvent over the 24 rounds of the active learning campaign. More positive DG values
correspond to more stable membranes. The cumulative best ELP candidate is denoted by the black line. The middle line in the box plot
represents the median value of the DG values and the box includes the middle 50% of the data. The whisker is defined as 1.5 times the inter-
quartile range. The initial round comprises 24 initial ELP sequences. Each successive round employs BO to select two ELPs for subsequent
alchemical free energy calculations (green points), which are then fed into the loop to retrain and update the GPR model for subsequent
predictions. In the first 20 rounds, we employ a qNEI acquisition function that balances exploitation and exploration. In the final five rounds, we
employ a pure exploit qUCB acquisition function. (b) The Bhattacharyya distance and Kullback–Leibler divergence between the posterior
distributions of GPR models over the whole design space in successive rounds, i and (i + 1), indicate convergence of the GPR posterior distri-
bution after round 10. (c) A two-dimensional kPCA projection of the 72 ELPs sampled over the course of the active learning campaign. The circles
correspond to the 24 candidates from the initial round, and the crosses to those selected over the subsequence 24 rounds by Bayesian opti-
mization. Points are colored by the calculated DG. The most stable ELP sequence identified by the search was discovered in round 10 (H6F3) with
a DG = 2.87 kBT per residue.
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discovered within the candidate space, we observed no further
improvements in DG over the remaining 14 rounds of the active
learning screen. Calculation of the Bhattacharyya distance and
Kullback–Leibler divergence between successive GPR models
indicates that the GPR posterior converges aer round 10, and
that the incorporation of additional measurements into the
GPR training does not lead to substantial updates to the
posterior predictions of the model (Fig. 4b). To gain under-
standing of the progression of the active learning search over
ELP candidate space, we applied kernel principal components
analysis (kPCA)105 to the 72 sequences considered over the active
learning campaign using the same kernel as that employed in
the terminal GPR. A 2D projection of the 72 ELP sequences into
the two leading kPCs reveals the design space to comprise
© 2026 The Author(s). Published by the Royal Society of Chemistry
multiple distinct pockets accommodating high-performance
ELPs (Fig. 4c). That the top performing sequences span
diverse regions of this projection of the design space indicates
that the GPR/BO has identied sequence-diverse top perform-
ing candidates and highlights the complex structure–property
relationships that emerge from the combinatorial diversity of
amino acid residues within the ELP candidate sequences.
3.3 Thermal stability of high-performing ELP membranes

Having identied top-performing ELP sequences under the
active learning campaign using the transfer free energy DG as
our measure of membrane stability, we subsequently sought an
independent in silico verication that ELPs with large DG
indeed exhibit greater thermodynamic stability. To do so, we
Digital Discovery, 2026, 5, 214–230 | 221
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Fig. 5 Evaluation of thermal stability of the ELP membranes by computing the change in membrane area between 300 K and 360 K. Higher
transfer free energies DG correspond to smaller relative area changes upon heating, with a Spearman correlation coefficient of rS = −0.69
(p = 1.5 × 10−11). We visualize the membranes at 360 K of the most stable (H6F3) and least stable (R6M3) ELPs as ranked by DG.
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simulated the assembled ELP bilayer membrane at a higher
temperature of 360 K and assessed the relative area of the
membrane per ELP under the expectation that more thermo-
stable membranes are able to maintain their membrane integ-
rity and exhibit more limited thermal expansion in the lateral
dimension due to the stronger intermolecular interactions.106

We acknowledge the limited temperature transferability of the
Martini model and its inability to capture the LCST-like
behaviors of ELPs, but assume that while the predictions of
the coarse-grained model may not be quantitatively accurate,
that the rank ordered stability of the various sequences should
be preserved. We present in Fig. 5 the calculated area per ELP at
360 K relative to that at 300 K (Arelative = A360K/A300K) for all 72
ELPs considered over the active learning campaign. The results
show the ELPs possessing large DG values maintain intact,
compact membrane structures with limited lateral expansion,
while the low DG candidates undergo signicant lateral
expansion and, in extreme cases, membrane dissociation. The
moderately strong and statistically signicant Spearman corre-
lation coefficient rS = −0.69 (p = 1.5 × 10−11) between Arelative
and DG further supports the notion that the selected top ELP
candidates offer promising candidates for experimental testing
in the development of highly stable vesicles for synthetic cells
and also suggests that Arelative can serve as a computationally
efficient alternative to expensive extraction free-energy evalua-
tions and a practical proxy for membrane stability.
3.4 Performance and residue preferences in stable ELP
membranes

Relatively little experimental data for the thermodynamic
stability of short ELP sequences exist, but Schreiber et al.
experimentally obtained vesicles of an H5L4 ELP—along with
some other short chain ELPs H10L4, H5A5, H5V5, and D10V5—

and demonstrated these vesicles to be stable for hours.18 This
particular sequence was considered in our initial round of the
active learning search and has an extraction free energy of
DG = 1.2 kBT per residue. We present in Fig. 6a a graphical
representation of the DG values of the top ten most stable ELP
222 | Digital Discovery, 2026, 5, 214–230
sequences identied in our active learning screen. These
sequences identied by our search possess stabilities in the
range DG = 2.14–2.87 kBT per residue, representing an increase
of 78–139% beyond the DG = 1.2 kBT per residue stability of
H5L4. This suggests that vesicles formed by these sequences
may be more stable and longer lived than the experimentally
validated H5L4 ELP.

We then sought to understand which combinations of
hydrophobic and hydrophilic guest residues tend to produce
highly stable bilayer membranes with the goal of extracting
interpretable design rules from the analysis of our active
learning screen. Intuitively, hydrophobicity can be an important
factor dominating the stability ELP chassis membranes, with
higher hydrophobicity potentially correlating with a higher DG.
We computed the Grand Average of Hydropathy (GRAVY) values
for the whole sequence, the hydrophilic block, and the hydro-
phobic block of ELPs using 28 hydropathy scales107 and corre-
lated them with DG of the evaluated candidates. However, we
observed only weak to moderate mutual information (MI)
values between the extraction free energy and sequence hydro-
phobicity, with the highest MI = 0.57 nats (p = 0.002) for the
Roseman scale applied to the hydrophilic block (Fig. S7). These
results expose relatively moderate shared information between
the hydrophobicity of the ELP sequence and the extraction free
energy DG, and that the stability is only partially explained by
simple measures of hydropathy. This motivated us to search for
more nuanced, multi-body design rules for engineering vesicle
stability.

Accordingly, we next analyzed the inuence of particular X1

and X2 guest residues on the DG from the 72 ELP sequences
evaluated in the active learning campaign. Specically, we
classied each ELP as high or low stability using a cutoff of DG
= 1.2 kBT per residue corresponding to the value of the experi-
mentally demonstrated H5L4 sequence that is known to form
vesicles stable for hours at room temperature.18 We illustrate in
Fig. 6b the counts of the number of ELP candidates falling into
the stable (DG > 1.2 kBT per residue) and unstable (DG# 1.2 kBT
per residue) categories partitioned by the identity of the
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Top ELPs and design rules obtained from the active learning-guided computational screening. (a) Bar plots showing the DG of the top 10 ELPs
filtered from the ELP library. The statistical uncertainty is estimated by five-fold block averaging. (b) Analysis of residue preferences at the hydrophilic and
hydrophobic guest residue positions X1 and X2 among the 72 diblock amphiphilic ELPs considered over the active learning campaign. (c) Analogous plot to
panel (b) but pertaining to the predictions of the terminal GPRmodel over all 588 ELPs in the candidate space. The ELPs are classified into two categories
(high stability and low stability) using a threshold of 1.2 kBT per residue corresponding to a previously reported ELP H5L4 capable of forming stable vesicles.
The blue and orange bars represent the occurrences of ELPs appearing in high and low stability ELPs, respectively. The number on each bar denotes the
number of ELP candidates falling into each class. The top three residues in the X1 and X2 guest positions promotingmembership of the stable ELP class are
illustrated using ChemDraw in the inset.
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hydrophilic guest residue X1 or hydrophobic guest residue X2.
Essentially, we ask the questions: (i) of all the ELP sequences
considered with a particular hydrophilic guest residue X1, how
many are more and less stable than H5L4 regardless of the
identity of the hydrophobic guest residue X2 (Fig. 6b, le), and
(ii) of all the ELP sequences considered with a particular
hydrophobic guest residue X2, how many are more and less
stable than H5L4 regardless of the identity of the hydrophilic
guest residue X1 (Fig. 6b, right)? In doing so, we deliberately
exclude consideration of correlations between the residue
identity in the X1 and X2 positions in favor of a simple and
interpretable appraisal of residue preferences in one guest
residue position marginalized over the identity of the residue in
the other guest position. In regards to hydrophilic block guest
residue, we observe that the active learning screen has priori-
tized the selection of ELP sequences with histidine (H) and
tyrosine (Y) occupying the X1 hydrophilic guest residue position,
with 29 and 15, respectively, of the 72 sequences screened over
the course of the active learning campaign possessing H and Y
hydrophilic guest residues, all of which fall into the high
stability category. Smaller numbers of threonine (T), serine (S),
and tryptophan (W) residues were selected, numbering 7, 5, and
4, respectively, all of which were also classied as high stability.
Turning to the hydrophobic block guest residue, the active
learning screen prioritized the selection of ELP sequences with
alanine (A), phenylalanine (F), cysteine (C) and isoleucine (I)
occupying the X2 hydrophobic guest residue position, with 19,
16, 12, and 9, respectively, of the 72 sequences in the active
learning campaign possessing A, F, C, and I hydrophobic guest
residues, of which 89%, 88%, 92%, and 100%, respectively, fall
into the high stability category.

An attractive feature of an analysis of residue preferences
founded on the 72 sequences considered within the active
learning screen is that DG values are available for all sequences
from the alchemical free energy calculations. Deciencies of
this analysis include that these 72 sequences represent only
12% of the 588 sequences comprising the ELP design space, the
number of ELPs with a particular guest residue are unequally
sampled, and the analysis does not account for temporal trends
in the active learning screen associated with the changing
predictions of the GPR surrogate model as it is exposed to more
training data, and changes in candidate prioritization by the BO
routine as the search space becomes increasingly explored. As
such, we conducted a second analysis in which we analyzed the
posterior predictions of the terminal GPR model that allows us
to predict the DG values for all remaining (588 − 72) = 516 ELP
sequences that were not subjected to alchemical free energy
calculations over the course of the active learning campaign.
This allows us to exhaustively analyze all possible combinations
of guest residues and diblock sequence lengths and compare
residue preferences on an equal footing regardless of the
number of each guest residue actually sampled over the course
of the active learning campaign, albeit under the caveat that DG
predictions of the GPR surrogate model may carry signicant
uncertainties in regions of ELP sequence space where the model
lacks substantial training data.
224 | Digital Discovery, 2026, 5, 214–230
An analysis of the classication of ELP sequences into the
high stability and low stability categories under the predictions
of the terminal GPR model is presented in Fig. 6c. In the anal-
ysis of the hydrophilic guest residue X1 preferences (Fig. 6c,
le), for each selection of the X1 residue identity there are a total
of seven options for the hydrophobic guest residue X2 and seven
different diblock sequence length combinations, meaning that
the total number of ELPs in the candidate space with a partic-
ular X1 residue identity number 7 × 7 = 49. In the analysis of
the hydrophobic guest residue X2 preferences (Fig. 6c, right), for
each selection of the X2 residue identity there are a total of 12
options for the hydrophobic guest residue X2 and seven
different diblock sequence length combinations, meaning that
the total number of ELPs in the candidate space with a partic-
ular X2 residue identity number 12 × 7 = 84. Analyzing the
posterior GPR predictions for guest residue preferences, we
observe that the hydrophilic guest residue X1 strongly favors
histidine (H), tyrosine (Y), and threonine (T), with 48 (98%), 46
(94%), and 45 (92%), respectively, of ELP candidates possessing
each of these residues in this position falling into the high
stability class. Similarly, the hydrophobic guest residue X2

strongly favors alanine (A), phenylalanine (F), isoleucine (I), and
cysteine (C), with 69 (82%), 68 (81%), 63 (75%), and 61 (73%),
respectively, of ELP candidates possessing each of these resi-
dues in this position falling into the high stability class.

The residue preference analyses using the 72 sampled
sequences with calculated DG values (Fig. 6b) and predictions of
the terminal GPR surrogate model over all 588 candidate ELPs
(Fig. 6c) are in good agreement, with both analyses suggesting
a preference for histidine (H), tyrosine (Y), and threonine (T) in
the hydrophilic guest residue X1, and for alanine (A), phenyl-
alanine (F), cysteine (C), and isoleucine (I) in the hydrophobic
guest residue X2 to promote high stability ELP bilayers. These
trends are consistent with physicochemical intuition in
reecting the role of hydrogen bonding and polar interactions
in the hydrophilic region and non-polar hydrophobic aggrega-
tion and p–p stacking in the hydrophobic region in promoting
stable bilayer membranes and, notably, these residues are
commonly employed in the design of ELP vesicles in experi-
mental studies. For example, histidine (H) is frequently used as
the hydrophilic residue while isoleucine (I) and phenylalanine
(F) are most oen incorporated in the hydrophobic residues
(Table S2). In contrast, charged residues consistently performed
poorly, likely due to electrostatic repulsion between charged
chains within the bilayer and their strong hydrophilicity, which
may facilitate water permeation into the membrane and there-
fore reduce the membrane stability. To gain insight into the role
of hydrogen bonding and p–p stacking, we backmapped the
membranes of three selected top candidates – H5A5, H6F3, Y6F4
– to all-atom resolution using the Martini backmap tool,51

relaxed the structures under all-atommolecular dynamics using
the CHARMM36 force eld,108 and quantied the presence of
∼0.2 hydrogen bonds and ∼0.05 p–p stacking interactions
within the membranes per residue in the ELP chain (Fig. S8).
We observe that the overall membrane stability results from
a complex interplay of many-body interactions and a variety of
molecular forces, but these all-atom calculations are consistent
© 2026 The Author(s). Published by the Royal Society of Chemistry
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with a role for hydrogen bonds and p interactions in mediating
membrane stability.

4 Conclusions

In this work, we present an active learning computational
screen that integrates CG molecular simulations, alchemical
free energy calculations, GPR, and BO to guide the rational
design of amphiphilic ELP diblock sequences capable of
forming stable membrane bilayers for synthetic cells. Our
approach employs molecular simulation to give a quantitative
measure of the stability of ELP bilayer vesicles and leverages BO
to maximize the thermodynamic stability of the vesicles. The
iterative screening process converged within 24 cycles aer
sampling 72 ELP sequences corresponding to ∼12% of the 588-
member candidate space dened by variations in guest residues
and block lengths and requiring ∼6840 GPU-h of compute.
From our screen, we identied a number of novel ELP
sequences with predicted bilayer stabilities up to 140% higher
than previously reported experimental systems10,18,19 and which
are strong candidates for experimental validation in the
construction of robust synthetic cells. Additionally, we observed
that high-stability ELPs tend to incorporate hydrophilic blocks
with particular guest residues including histidine, tyrosine, and
threonine, and hydrophobic blocks with alanine, phenylala-
nine, cysteine, and isoleucine. These trends align with chemical
intuition but also expose the value of combining physical
modeling with active learning to extract new understanding and
predictive design rules for accelerated materials discovery.18

Moreover, the framework employed in this work can be readily
extended to optimize other measurable properties of interest
that may be determined computationally or
experimentally.109–111 Altogether, this work presents a generaliz-
able computational framework for the rational design of
peptide-based materials and extracts interpretable design rules
for ELP sequence–property relationships to guide future
experimental design, synthesis, and testing.

We envisage a number of future directions for this work.
ELPs are known to exhibit LCST-like transitions, enabling them
to undergo phase transitions and structural changes in
response to environmental stimuli such as temperature, salt
concentration, and pH.35 A compelling future direction would
be to assess the stability of ELP-based vesicles under a broader
range of thermodynamic conditions and probe the intersection
of thermodynamic stability and phase behavior. In our proof-of-
concept study, we observed decreasing stability of an H6F3 ELP
membrane with increasing fraction of protonated histidines
mimicking decreasing pH environment (Fig. S9). In addition,
future studies could focus on the feasibility of decorating ELP
membranes with functional proteins, channels, or signaling
moieties through engineered ELP-protein fusions, therefore
enabling more complex architectures and functions of synthetic
cells.10,34,112 Another important extension relates to the explo-
ration of additional ELP vesicle properties, such as transport
properties. In particular, the permeability of solutes or small
molecules across ELP membranes is of great interest because
cross-membrane transportation plays a central role in
© 2026 The Author(s). Published by the Royal Society of Chemistry
engineering synthetic cells to allow for exchange of mass and
chemical signals with the external environment.113,114 The
concurrent optimization of both membrane stability and rele-
vant biological properties or functions can lead to the design of
ELP-based synthetic cells with desired functions. ELP
sequences comprising different types of blocks may also display
multi-phase transition behaviors, offering opportunities to ne
control the physicochemical properties of vesicles and engineer
more complex cellular functions. For example, Ibrahimova
et al.115 designed temperature-sensitive lipo-proteinosomes by
incorporating ELPs into the membrane architecture, enabling
thermally triggered cargo release from vesicles. Investigating
such dynamic membrane behaviors may necessitate higher-
resolution models, such as all-atom simulations, which are
oen prohibitively expensive for these large systems. However,
recent advancements in coarse-grained force elds tailored for
intrinsically disordered proteins, such as hydropathy-scale
models,116,117 Mpipi,118 and Mpipi-T,119 offer promising alterna-
tives. Leveraging these coarse-grained models, we also aim to
broaden the ELP design space by incorporating longer
sequences and more complex architectures such as multi-block
copolymers.120 In parallel, future work could also incorporate
a consensus classication of amino acids across multiple
hydropathy scales to mitigate potential biases introduced by
dependence on a single scale and further validate residue
preference trends. Finally, we envision our active learning-
guided screening framework as a versatile platform for
broader applications in biopolymer and biomolecular design.
By coupling GPR and BO with diverse computational or exper-
imental performance metrics, this approach can facilitate the
efficient exploration of large sequence spaces in domains
ranging from peptide therapeutics to smart biomaterials.121,122
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calculated DG values (CSV). See DOI: https://doi.org/10.1039/
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