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ting rare-earth metal extraction
using equivariant neural networks

Ankur K. Gupta, †* Caitlin V. Hetherington †‡ and Wibe A. de Jong *

The separation of rare-earth metals, vital for numerous advanced technologies, is hampered by their similar

chemical properties, making ligand discovery a significant challenge. Traditional experimental and quantum

chemistry approaches for identifying effective ligands are often resource-intensive. We introduce

a machine learning protocol based on an equivariant neural network, Allegro, for the rapid and accurate

prediction of binding energies in rare-earth complexes. Key to this work is our newly curated dataset of

rare-earth metal complexes—made publicly available to foster further research—systematically

generated using the Architector program. This dataset distinctively features functionalized derivatives of

proven rare-earth-chelating scaffolds, hydroxypyridinone (HOPO), catecholamide (CAM), and their thio-

analogues, selected for their established efficacy in binding these elements. Trained on this valuable

resource, our Allegro models demonstrate excellent performance, particularly when trained to directly

predict DFT-level binding energies, yielding highly accurate results that closely correlate with theoretical

calculations on a diverse test set. Furthermore, this strategy exhibited strong out-of-sample

generalization, accurately predicting binding energies for an isomeric HOPO-derivative ligand not seen

during training. By substantially reducing computational demands, this machine learning framework,

alongside the provided dataset, represent powerful tools to accelerate the high-throughput screening

and rational design of novel ligands for efficient rare-earth metal separation.
1 Introduction

Rare-earth elements (REEs) (namely, Sc, Y, and lanthanides
(La–Lu)) are indispensable in numerous advanced technolo-
gies and modern applications due to their unique proper-
ties.1,2 They are critical components in clean energy
technologies, such as hybrid batteries and permanent
magnets, and are essential in light-emitting materials such as
in displays and various imaging technologies.3 REEs are vital
in hundreds of products, ranging from high-tech consumer
goods to critical defense applications.4 Their growing demand
across industries has placed signicant pressure on the supply
chain, necessitating an accelerated development of strategies
for their recovery and separation from diverse sources.5–7

However, their extraction and separation pose challenges due
to their similar chemical and physical properties, arising from
their stable, comparably sized trivalent ions.8,9 These similar-
ities make the separation process more complex, time-
consuming, and expensive compared to that of other
Research Division, Lawrence Berkeley

SA. E-mail: ankur@lbl.gov; wadejong@

herington (CVH) contributed equally to

omputational Science and Department
ny Brook, New York 11794, USA.

y the Royal Society of Chemistry
elements.10 Consequently, research efforts have focused on
improving separation methods to efficiently recycle REEs,
ensuring a more sustainable and reliable supply of these
critical elements. Solvent extraction is seen as the most effi-
cient way to separate REEs at industrial scale,11–13 involving
selectively binding a specic REE with suitable ligands to form
discrete REE-ligand complexes which then aggregate in an
organic phase that can be extracted from an aqueous phase.
However, since the suitable ligands require high and selective
binding affinities towards specic REEs, this process is still
inefficient, requires multiple steps, and generates a large
amount of waste and pollutants, which is both economically
and environmentally costly.14,15

In the same context, selective precipitation16,17 has emerged
as a promising strategy for separating REEs. This approach
involves precipitating individual REEs from aqueous mixtures
by binding them with organic ligands (or complexing agents),
followed by isolation through ltration. The success of this
method hinges on discovering novel ligands that bind to REEs
with high specicity and selectivity. While hydroxypyridinone
(HOPO) based ligands have demonstrated serendipitous
success, the vast chemical space remains largely unexplored,
offering signicant potential for the discovery of more efficient
ligands that could revolutionize rare-earth separation
processes.18–22
Digital Discovery
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To address the need for efficacious ligands for REE extraction
and separation, the exploration of the vast chemical space via
a high-throughput screening approach is essential. A key factor in
determining a ligand's efficacy in REE separation is its binding
affinity to a given REE, which can be deduced experimentally
through titration techniques and subsequently quantied using
the resultant equilibrium constants and IC50 values.23 However,
the synthesis and experimental evaluation of thousands of novel
ligands for REE separation are time-consuming, resource-
intensive, and cost-prohibitive, rendering wet-lab-based high-
throughput screening impractical. Calculated metal–ligand
binding energies are thermodynamically related to equilibrium
constants; for a given metal and ligand series, a more negative
binding energy implies a favorable exchange toward that ligand
and thus greater extraction efficacy.23 Our study focuses on the
computational prediction of binding energy, serving to rank and
prioritize the most promising ligand candidates for subsequent,
targeted experimental validation through techniques such as
spectrouorimetric titration. Thus, quantum chemistry-based
calculations offer a viable alternative for high-throughput
screening of unexplored ligands through a virtual platform. This
approach allows precise control over molecular structures and
parameters, such as charge, oxidation state, and ligand proper-
ties, irrespective of their complexity or synthetic accessibility.
However, for accurate computation of rare-earth complex (REC)
properties, the choice of theoretical method is crucial due to their
complex electronic structure arising from the involvement of f-
electrons. This complexity results in varied spin multiplicities,
polarization effects,24 and multi-reference character across the
REE series. While computationally intensive correlated wave
function theory (e.g., CCSD(T)) and multi-reference methods (e.g.,
CASSCF) offer higher accuracy, density functional theory (DFT)
with a reasonably sized basis set provides a practical balance
between cost and accuracy for computing reliable binding ener-
gies and other properties for RECs. Nevertheless, applying DFT to
potentially hundreds of thousands of RECs remains computa-
tionally challenging, particularly since RECs can exhibit noisy and
prolonged self-consistent eld (SCF) convergence, further exac-
erbating computational time and resource demands. Static
correlation could also be incorporated during dataset generation
for RECs using correction methods over DFT, such as DFT + U or
static correlation correction (SCC),25,26 though, while relatively
cost-effective, additional accuracy challenges could arise.
Fig. 1 Molecular geometries of HOPO, thio-HOPO, CAM, and thio-CAM
was carried out at the C3 position.

Digital Discovery
In response to the computational challenges posed by
quantum chemistry calculations, machine learning techniques
offer a promising avenue for rapid and cost-effective predictions
of REC properties. However, the success of any machine
learning method fundamentally depends on the quality and
breadth of the dataset on which it is trained. Despite the
potential of machine learning, the eld is currently hampered
by a signicant lack of datasets that are specically curated for
REC structures and properties, as most existing datasets mainly
focus on organic or main group elements.27 To bridge this gap,
we propose and develop a rigorous protocol to generate datasets
targeting RECs, particularly those involving ligands known to be
effective in REE separation. Additionally, we demonstrate
various machine learning strategies, utilizing state-of-the-art
equivariant neural networks, to predict REC binding energies,
paving the way for accelerated property prediction and ulti-
mately, the discovery of novel ligands for efficient REE separa-
tion through the application of molecular inverse design
algorithms.
2 Methods
2.1 Data curation

Hydroxypyridinone (HOPO) and catecholamide (CAM) ligands,
along with their sulfur analogues, thio-HOPO and thio-CAM
(Fig. 1), have been experimentally identied to exhibit strong
binding affinity to REEs,23,28–30 making them promising candi-
dates for REE separation. However, existing datasets incorpo-
rating these critical ligands are scarce, underscoring the need
for curated representative datasets. We therefore designed
a high-throughput computational approach to efficiently iden-
tify the most promising ligand candidates from a vast chemical
space, thereby guiding and prioritizing subsequent experi-
mental synthesis and validation efforts. By strategically
focusing on derivatives of experimentally validated scaffolds
like HOPO and CAM, and by using the calculated binding
energy as a direct proxy for binding affinity, our workow
provides a direct link between fundamental quantum chemical
properties and the practical goal of discovering new, more
effective ligands for real-world separation applications. Given
the structural complexity of RECs, manual generation of a large,
diverse, and accurate dataset is impractical and error-prone. To
address this challenge, we utilized the recently developed
Architector program (version 0.0.10)31 to design an automated,
ligands (grey: C, red: O, blue: N, yellow: S, white: H). Functionalization

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Workflow for the data curation process. Functionalized ligands are first used with Architector to generate initial lanthanum (La) rare-earth
complex (REC) structures. These structures are then used as templates and transformed to create complexes for the other targeted rare-earth
elements (REEs). Finally, each complex undergoes geometry optimization at the GFN2-xTB level, followed by a DFT single-point energy
calculation to determine its binding energy.
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high-throughput protocol (Fig. 2) for generating 3D structures
of RECs. Architector enables the in silico design of mononuclear
organometallic complexes, leveraging metal-center symmetry to
generate diverse 3D conformers from minimal 2D inputs, such
as ligand SMILES (Simplied Molecular Input Line Entry
System)—a line notation used to represent a chemical structure
as a text string—metal oxidation state, and spin state. This
facilitated the creation of a wide range of metal-complex
congurations, while affording precise control over specic
complex and ligand structural properties. The resulting 3D REC
structures served as the foundation for our curated dataset,
enabling accurate quantum chemistry-based property compu-
tations, as detailed below. Since these systems contain ligand
derivatives from experimentally identied rare-earth extraction
systems, we would expect them to exhibit similar properties and
those found to have the highest binding affinities could inform
the use of the particular ligand for selective extraction of
specic REEs from complex solutions.

The data curation protocol comprised of ve steps, as illus-
trated in Fig. 2. The rst step involved functionalizing HOPO-
and CAM-based ligands (Fig. 1) with diverse substituents at
position C3, i.e. diametrically opposite the metal coordinating
atom that is adjacent to the side chain (Fig. 2, step 1). This
diversication of the dataset enabled the investigation of the
inuence of various chemical and electronic environments on
REE binding affinities. The selected substituents (Fig. 3) were all
uncharged and encompassed a range of electron-donating
groups (e.g., alcohols, amines) and electron-withdrawing
groups (e.g., carboxylic acids, esters), allowing for the explora-
tion of ligand polarity effects on REE binding affinity. Further-
more, to examine how different heteroatoms modulate metal–
ligand binding strength, we included substituents containing
© 2025 The Author(s). Published by the Royal Society of Chemistry
nitrogen (e.g., amino), oxygen (e.g., hydroxyl), sulfur (e.g., thiol),
and phosphorus (e.g., phosphonate). Substituent size and
complexity were systematically varied, ranging from simple
methyl groups to larger, more complex moieties like 2-methyl-
benzoic acid, to generate a diverse array of ligand sizes and
shapes. Halogen substituents, such as chloride and uoride,
were also incorporated to investigate their impact on REC
acidity. Notably, due to its higher electronegativity, uoride
increases the complex's acidity (lower pKa) compared to chlo-
ride through inductive electron withdrawal. Furthermore, the
dataset focused exclusively on mononuclear RECs, with the
central metal atom being the sole heavy metal present in the
complexes.

In the second step, 3D geometries of RECs were generated
using Architector. Each complex consisted of the previously di-
scussed ligands (Fig. 1) attached to a REE metal center, and
identical ligands were used for each individual REC. This
process utilized the SMILES strings of the ligands and
Architector-specic parameters as input (Fig. 2, step 2). The
Architector setup involved determining the optimal metal center
symmetry and 3D ligand geometry to generate a diverse set of
REC conformers. The following settings were employed: GFN2-
xTB32 (version 6.6.0) for structure optimization and energy-
based ranking of the generated structures, and a coordination
number of eight for all complexes, consistent with common
coordination environments observed for RECs.33 Up to ten
different metal-centered symmetries were explored during the
generation and optimization of multiple conformers. To
enhance conformational sampling and ensure identication of
the most stable structures, the Conformer-Rotamer Ensemble
Sampling Tool (CREST, version 2.12)34 integrated into Archi-
tector was employed in conjunction with GFN2-xTB. CREST
Digital Discovery
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Fig. 3 Geometries of substituents that are attached to the ligands (grey: C, red: O, blue: N, yellow: S, white: H, pale green: F, bright green: Cl).

Fig. 4 Optimized geometries of four different types of lanthanum (La)
rare-earth complexes (RECs) generated using Architector, illustrating
varied coordination environments. The complexes feature differing
numbers of aldehyde-functionalized HOPO ligands and coordinated
water molecules: (a) four HOPO ligands; (b) three HOPO ligands and
twowater molecules; (c) two HOPO ligands and four water molecules;
and (d) one HOPO ligand and six water molecules. (Atom colors: C:
grey, O: red, N: dark blue, H: white, La: light blue).
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initiated a further search for lower-energy conformations,
starting from the lowest-energy REC conformer obtained in the
previous step. This approach facilitated a more thorough
exploration of the conformational space. The resulting lowest-
energy conformer from the CREST protocol was then utilized
in subsequent steps, as detailed below.

To optimize computational efficiency and minimize pro-
cessing time, only lanthanum (La) complexes were initially
constructed during the REC structure generation step. La serves
as an excellent representative for the entire series of REEs due to
their shared chemical properties. The selection of La as the
starting point for generating RECs was motivated by two
primary factors. Firstly, La possesses the largest atomic radius
among REEs, facilitating greater adaptability when subse-
quently replacing La with other REEs in each REC structure.
This allowed for structural modications without signicantly
altering metal–ligand coordination behavior. Secondly, La's
natural and only stable oxidation state of +3 is universally
accessible across all REEs, ensuring consistency in electronic
conguration throughout the REE series.

To simulate a realistic aqueous environment while ensuring
computational feasibility, we employed a hybrid solvation
strategy. In addition to an implicit model for the bulk solvent,
we explicitly included water molecules in the primary coordi-
nation sphere to model the crucial competition for metal
binding. To capture the diversity of potential coordination
environments, we generated four distinct types of REC geome-
tries by varying the ratio of bidentate ligands to explicit water
molecules, all while maintaining a coordination number of
eight (Fig. 4). This approach not only enhanced the physical
realism of our models but also increased the overall diversity
and size of the dataset. The rst geometry type consisted of four
bidentate ligands attached to the metal center (Fig. 4a). The
remaining three types of complexes incorporated water
Digital Discovery
molecules, reecting their potential to bind to the metal in
aqueous media. The second geometry type featured three
ligands and two water molecules (Fig. 4b), while the third type
comprised two ligands and four water molecules (Fig. 4c). The
nal geometry type included one ligand and six water molecules
coordinated to the metal center (Fig. 4d). This comprehensive
set of geometries allowed for a thorough exploration of various
ligand–water combinations in the coordination sphere,
providing a more realistic representation of RECs in aqueous
environments.

Following the CREST search, the lowest-energy lanthanum
(La)-ligand complexes were used as templates for further
© 2025 The Author(s). Published by the Royal Society of Chemistry
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exploration. La was systematically substituted with 15 other
REEs (Fig. 2, step 3): yttrium (Y), cerium (Ce), praseodymium
(Pr), neodymium (Nd), promethium (Pm), samarium (Sm),
europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium
(Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb),
and lutetium (Lu). This substitution strategy expanded the
dataset, essential for developing robust machine learning
models. Throughout this process, the ligand identity and
molecular charge remained unchanged; only the spin multi-
plicity was adjusted to reect the properties of the substituted
REEs. Since the ligands are closed-shell, the spin multiplicity of
each complex was assigned based on the corresponding iso-
lated REE ion in its +3 oxidation state.

All generated structures were optimized using the GFN2-
xTB32 method, employing the analytical linearized Poisson–
Boltzmann (ALPB) implicit water solvation model35 to better
simulate experimental conditions (Fig. 2, step 4). This compu-
tationally efficient semiempirical method was chosen to
balance geometric accuracy with the high-throughput demands
of generating several thousand optimized complex structures.27

To ensure high-quality data for the machine learning model,
a quality control procedure was also implemented. During
GFN2-xTB geometry optimizations, some RECs underwent
changes in atom connectivity, potentially leading to incorrect
ligand valencies. To identify and exclude such erroneous
structures, we converted the ligands into their hashed Inter-
national Chemical Identiers (InChIKeys).36 As InChIKeys
function as unique molecular identiers, a complex was
retained only if the InChIKeys of its ligands matched those of
the corresponding free ligands; otherwise, it was excluded. Only
a small number of complexes were ltered out during this
process, yielding a total number of 5356 complexes.

Despite being robust for the structure optimization of large
transition-metal complexes,37 xTB has limited applicability to
REEs in which f-electrons play a crucial role in determining
their properties, due to its semi-empirical and highly parame-
terized nature, leading to reduced accuracy. A notable limita-
tion of the current GFNn-xTB methods is their lack of spin-
dependent energy expressions, which prevents proper differ-
entiation between high-spin and low-spin states. Therefore, to
achieve higher delity in energy calculations, we computed
single-point energies and gradients using density functional
theory (DFT) at the B3LYP-D438,39 level of theory. The def2-
SVPD40 basis set was used for the ligands, and the def2-TZVP
basis set was employed for the metals, utilizing the ORCA41,42

program (version 5.0.4). Effective Core Potentials43 (ECPs) were
applied to account for the core electrons of the metals. The
RIJCOSX approximation was employed to efficiently compute
Coulomb integrals and perform numerical integration for
Hartree–Fock exchange. Additionally, the SMD44 implicit
solvation model was used to simulate aqueous conditions more
accurately.

To quantify the affinity of a ligand to the metal in RECs, we
calculated themetal–ligand binding energies using the absolute
energies obtained from DFT. Theoretically computed binding
affinities are thermodynamically related to equilibrium
constants (DG = −RT ln(K)). Here binding energy is evaluated
© 2025 The Author(s). Published by the Royal Society of Chemistry
with matched fragment stoichiometry, charge, and spin (and
consistent protonation states), providing a robust proxy for the
free energy when comparing ligand efficacy for metal extraction.
Thus, the binding energy (Ebinding) for an REC can be dened as

Ebinding ¼ Ecomplex � EREE �
X

i

Eligandi; (1)

where Ecomplex is the absolute energy of the REC, EREE is the
absolute energy of the REE, and Eligandi

is the absolute energy of
the ith ligand in the REC. A more negative binding energy
indicates a stronger metal–ligand interaction, suggesting that
the ligand is more suitable for metal extraction.
2.2 Model architecture and training

For predicting the binding energies of rare-earth complexes
(RECs), we employed the Allegro architecture,45 an E(3) equiv-
ariant deep neural network. While classical machine learning
techniques have been explored for predicting predominantly
experimental properties of RECs,46–48 to our knowledge, this
work is among the rst to apply an E(3) equivariant model like
Allegro to predict metal–ligand interactions for these f-block
element complexes.

An equivariant neural network is a model that respects the
physical symmetries of a molecule by operating directly on 3D
atomic coordinates. Its internal representations are designed to
transform consistently with the molecule's rotation or trans-
lation, ensuring that predicted scalar properties (like energy)
remain unchanged (invariant), while predicted vector proper-
ties (e.g. forces, dipoles) transform in the exact same way as the
molecule (equivariant). This approach has been shown to
signicantly improve data efficiency and accuracy for property
prediction. The inherent E(3) equivariance of the Allegro
framework is key to its exceptional performance, allowing it to
achieve high accuracy with less training data—a crucial benet
when using datasets derived from computationally expensive,
high-delity quantum chemical calculations. We also note that
while architectures like Allegro are oen used as interatomic
potentials, their design as general-purpose equivariant
networks makes them highly adept for direct property predic-
tion tasks,49 as demonstrated in this work.

For model development, a standard data partitioning
strategy of 80 : 10 : 10 was implemented, randomly allocating
samples for the training, validation, and test sets, respectively.
All Allegro models were congured with a 6 Å radial cutoff. This
cutoff was chosen to effectively capture the relevant atomic
interactions within the metal complexes, encompassing both
the primary coordination sphere interactions and pertinent
secondary non-covalent effects. The training process utilized
the mean absolute error (MAE) in energy as the loss function.
Parameter optimization was performed using the Adam algo-
rithm, coupled with a ReduceLROnPlateau learning rate
scheduler that initiated at a rate of 0.01. Training for each
model proceeded until the learning rate adaptively decreased to
10−5, signaling convergence. Comprehensive hyperparameter
specications for the Allegro models tested are detailed in Table
S3 of the SI.
Digital Discovery
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3 Results and discussion

Each metal complex studied comprised a single metal atom
coordinated by identical ligands. We systematically introduced
various substituents to the base ligands—HOPO, CAM, thio-
HOPO, and thio-CAM—to investigate how electronic proper-
ties, such as electron-donating and electron-withdrawing
effects, along with steric factors, inuence ligand–metal
binding strengths. Fig. 5 exemplies this, showing the binding
energies of Eu-CAM complexes arranged in ascending order.
Notably, complexes substituted with smaller electron-
withdrawing groups, such as chloro and uoro, exhibited the
weakest binding energies. In contrast, bulkier substituents,
including phosphonate and 2-methylbenzoic acid, resulted in
relatively higher binding energies. This variation in binding
strengths, spanning from approximately 230 to 300 kcal mol−1,
highlights the importance of substituent selection in opti-
mizing ligand design. Identifying substituents that maximize
binding affinity could enhance selective extraction of specic
REEs from complex solutions. A primary outcome of our high-
throughput screening is the identication of guiding princi-
ples for the rational design of novel ligands. Our results
consistently show that the CAM and thio-CAM scaffolds provide
a more promising backbone for strong chelation than their
HOPO counterparts. Across all scaffolds, binding affinity was
most signicantly enhanced by functionalization with bulky
substituents, particularly the phosphonate, 2-hydroxypyridine,
and 2-methylbenzoic acid groups. This suggests that combining
a CAM-based scaffold with one of these high-performing
substituents represents a top-tier candidate for experimental
synthesis and validation. Furthermore, the predicted differen-
tial affinities across the REE series, for example, the consistently
Fig. 5 Binding energy variation for Eu-CAM complexes with differe
(i.e., increasingly negative values). All binding energies were calculated
model.

Digital Discovery
stronger binding of lanthanides like Ytterbium (Yb) and
Gadolinium (Gd), provide a thermodynamic basis for designing
selective separation strategies. However, while thermodynamics
governs the ultimate binding preference, it is important to note
that kinetic factors may also play a crucial role in the rate of
metal exchange and the overall efficiency of a practical separa-
tion process.

We evaluated two distinct modeling strategies using the
Allegro architecture (detailed in Section 2.2) to predict the
binding energies of the RECs. The rst approach, hereaer
referred to as Strategy 1, involved training the ML model on the
absolute energies of the complexes computed via DFT. The
binding energies were then derived from the model's predicted
absolute energies using eqn (1), requiring separate DFT calcu-
lations for the energies of the isolated metal ions and ligands
performed at the same level of theory. The second approach,
termed Strategy 2, trained the ML model to predict the binding
energies directly, using pre-computed binding energies as
target labels, thus eliminating the need for post-processing
calculations.

Fig. 6 presents parity plots comparing the DFT-calculated
(ground truth) binding energies with the Allegro-predicted
values for both strategies on the test set. While Strategy 1
(predicting absolute energies) yielded a strong correlation with
a coefficient of determination (r2) of 0.91 and a mean absolute
error (MAE) of 11.3 kcal mol−1 (Fig. 6a), Strategy 2 (predicting
binding energies directly) proved superior. The direct predic-
tion method employed in Strategy 2 achieved both a higher
correlation (r2 = 0.96) and a signicantly lower MAE of
6.1 kcal mol−1 (Fig. 6b), indicating it provides more accurate
binding energy predictions for RECs. Results obtained with
a simpler Allegro architecture (employing only 2 tensor
nt substituents, presented in order of increasing binding strength
using the B3LYP-D4 functional with the SMD implicit water solvation

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Parity plots comparing binding energies predicted by the Allegro model (features = 4) against DFT-calculated values (B3LYP-D4) for the
test set. (a) Results using Strategy 1, where absolute energies were predicted first (r2 = 0.91). (b) Results using Strategy 2, where binding energies
were predicted directly (r2= 0.96). Binding energies are in kcal mol−1. The dashed black line represents perfect correlation (y= x), while the solid
red line indicates the line of best fit.
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features), are presented in Fig. S1 of the SI. This simpler model
variant yields lower performance for Strategy 1 (absolute energy
prediction, r2 = 0.85), while Strategy 2 (direct binding energy
prediction) maintains comparable accuracy (r2 = 0.96).

Overall, the model employing 4 tensor features and trained
using Strategy 2 is well-suited for its primary purpose of high-
throughput virtual screening, a context where the ability to
correctly rank potential ligands is the most critical metric. Its
high correlation with DFT reference data (r2 = 0.96) demon-
strates a strong capacity to reliably distinguish between strong
and weak binders, enabling the rapid down-selection of prom-
ising candidates from vast chemical libraries for more rigorous
and costly evaluation.
3.1 Evaluation of D-ML strategies

To potentially enhance the prediction accuracy for the target
DFT-level energies, we extended the two modeling strategies by
incorporating a delta machine learning (D-ML) approach.50,51

The D-ML technique oen improves energy predictions by
learning the correction needed to elevate results from a cost-
effective baseline theory to a more accurate, high-cost target
level of theory. This strategy leverages the typically systematic
nature of the errors between the two methods, aiming to reduce
these errors and potentially capture longer-range interactions
more effectively thanmodels trained solely on absolute energies
or properties from the target level.50,52 Due to the cancellation of
systematic errors, we expect to observe an improvement in the
predictive accuracy of the D-ML model, enabling the trained
model to be used to correct the calculated GFN2-xTB energies
and to achieve DFT-like accuracy during inference. Note that
since the training phase for D-ML requires energies from both
DFT and GFN2-xTB methods, the training cost itself is not
reduced.

In this study, we employed the semi-empirical GFN2-xTB
method as the low-cost baseline and DFT (B3LYP-D4) as the
© 2025 The Author(s). Published by the Royal Society of Chemistry
high-cost target level. Within theD-ML framework, the energy at
the target DFT level (EML-DFT) is estimated by adding an ML-
predicted correction (DML) to the baseline GFN2-xTB energy
(EGFN2-xTB),

EML-DFT = EGFN2-xTB + DML. (2)

The correction term, DML, represents the learned difference
between the high-delity DFT energy (EDFT) and the low-delity
GFN2-xTB energy,

DML = EDFT − EGFN2-xTB. (3)

We applied this D-ML concept to our two primary modeling
strategies:

� Strategy 1 (D-ML on absolute energies): the Allegro ML
model was trained to predict the difference in absolute energies
between DFT and GFN2-xTB (DML from eqn (3)). The predicted
DML for the test set complexes was added to their GFN2-xTB
energies (calculated separately) according to eqn (2) to esti-
mate the absolute DFT energies. Subsequently, binding ener-
gies were calculated using eqn (1), requiring the corresponding
isolated metal and ligand energies at the DFT level.

� Strategy 2 (D-ML on binding energies): this approach offers
a more direct route to the target property. The Allegro model
was trained to learn the difference between the binding energies
calculated at the DFT level and the GFN2-xTB level (DEbinding =
Ebinding,DFT − Ebinding,GFN2-xTB). The predicted DEbinding for the
test set complexes was then added to their GFN2-xTB binding
energies (calculated separately) to estimate the binding energy
at the DFT level.

Fig. 7 displays the parity plots comparing the D-ML predicted
binding energies against the ground truth DFT values for the
test set. Applying D-ML to the rst strategy (absolute energies,
Fig. 7a) resulted in an r2 of 0.92 and an MAE of 9.9 kcal mol−1.
This represents a modest improvement in the metrics
Digital Discovery
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Fig. 7 Parity plots comparing binding energies predicted using the Allegro (features= 4) D-ML approach against DFT-calculated values (B3LYP-
D4) for the test set. (a) Results using D-ML Strategy 1, where the correction was learned on absolute energies (r2 = 0.92). (b) Results using D-ML
Strategy 2, where the correction was learned directly on binding energies (r2 = 0.95). Binding energies are in kcal mol−1. The dashed black line
represents perfect correlation (y = x), while the solid red line indicates the line of best fit.

Fig. 8 Optimized geometry of HDEV (grey: C, red: O, blue: N, white:
H). Functionalization was carried out at the C3 position.
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compared to the direct approach for Strategy 1 (r2 = 0.91, MAE
= 11.3 kcal mol−1, Fig. 6a). For the second strategy (direct
binding energy prediction, Fig. 7b), the D-ML approach yielded
an r2 of 0.95 and an MAE of 6.6 kcal mol−1. Compared to the
direct prediction of binding energies without the delta correc-
tion (Strategy 2: r2 = 0.96, MAE = 6.1 kcal mol−1, Fig. 6b), the D-
ML approach in this case resulted in a slightly lower correlation
and a slightly higher MAE, indicating a comparable but not
superior performance for REC binding energy predictions.
Fig. S2 in the SI details the performance of a simplied Allegro
model variant with 2 tensor features, where Strategy 2 (direct
binding energy prediction) sustains a similar level of accuracy
(r2 = 0.95), while Strategy 1 (absolute energy prediction) expe-
riences a notable decrease in performance (r2 = 0.83).

3.2 Out-of-sample generalization with an isomeric ligand

To further assess the generalizability of our trained models to
previously unseen ligand environments, their performance was
evaluated on RECs formed with an out-of-sample ligand not
included in the original training datasets. We therefore built an
out-of-sample dataset of RECs containing the ligand HDEV,
a positional isomer of HOPO. In HDEV, the positions of the N-
hydroxy (–N–OH) and carbonyl (C]O) groups are interchanged
relative to HOPO. Under our binding conditions, the N-hydroxy
is deprotonated (–N–O−), and coordination remains O,O-bi-
dentate via the deprotonated N-hydroxy oxygen and the
carbonyl oxygen (see Fig. 8 for structure).53 The structural
alteration in HDEV creates a chemical environment distinct
from the ligands (HOPO, CAM, and their thio-analogues from
Fig. 1) used in the model's training set, making it well-suited for
this validation. Additionally, HDEV has been identied experi-
mentally for its selective binding to REEs, establishing its
relevance as a candidate for synthetically feasible rare-earth
separation.53 For this out-of-sample evaluation, 325 RECs
without any coordinated water molecules, featuring HDEV—
Digital Discovery
functionalized at the C3 position with the same range of
substituents shown in Fig. 3—were generated using the high-
throughput protocol detailed in Section 2.1 and illustrated in
Fig. 2. These HDEV complexes formed a dedicated out-of-
sample test set, and binding energy predictions for these
complexes were made using the Allegro models previously
trained on 80% of the original dataset (which excluded any
HDEV complexes).

The predictive performance of the different modeling strat-
egies on this HDEV test set is illustrated by the parity plots in
Fig. 9, which compare Allegro-predicted binding energies
against the ground truth DFT values. When employing Strategy
2 (direct prediction of binding energies), the model demon-
strated excellent correlation for the HDEV complexes. As shown
in Fig. 9a, this approach yielded an r2 of 0.92 and an MAE of
9.4 kcal mol−1. These results indicate that directly training on
precomputed binding energies enables robust predictions for
RECs with ligands not encountered during training. In stark
contrast, Strategy 1 (predicting absolute energies rst) proved
less effective for generalizing to new, unseen RECs. This
approach yielded a signicantly lower r2 value of 0.10 (refer to
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Parity plots comparing binding energies for the out-of-sample HDEV test set predicted using Allegro (features = 4) against DFT-
calculated values (B3LYP-D4). (a) Results using Strategy 2, where binding energies were predicted directly (r2 = 0.92). (b) Results using the D-ML
strategy where the correction to binding energies was learned (r2 = 0.87). Binding energies are in kcal mol−1. The dashed black line represents
perfect correlation (y = x), while the solid red line indicates the line of best fit.

Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
3/

20
26

 8
:4

3:
50

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Fig. S3a in the SI) and exhibited a large deviation from the ideal
y = x correlation. This shi from ground truth binding energies
may stem from inconsistencies between the ML-predicted
absolute energies of the RECs and the DFT-calculated abso-
lute energies of the free ligands used to compute the nal
binding energies.

We also tested the D-ML approach where the model learns
the difference in binding energies (DEbinding) between DFT and
GFN2-xTB (D-ML Strategy 2). The results for this strategy,
depicted in Fig. 9b, show an r2 of 0.87 and an MAE of
19.7 kcal mol−1. While still showing a reasonable correlation,
this D-ML strategy was less accurate for the HDEV test set
compared to the ML model trained directly on binding energies
(Fig. 9a). Furthermore, D-ML Strategy 1, which predicts absolute
energy differences, showed improved correlation over the orig-
inal Strategy 1 with an r2 of 0.34 (Fig. S3b in the SI) but remained
insufficiently accurate for practical applications. Overall, the
high accuracy achieved with the HDEV out-of-sample test set,
particularly by the Strategy 2 model trained directly on pre-
computed binding energies, underscores the model's general-
izability and its promising potential for reliable high-
throughput screening of novel ligand candidates.

3.3 Comparison with a universal foundation model

The recent emergence of large-scale, pre-trained foundation
models for chemistry raises the question of their out-of-the-box
applicability to specialized chemical domains. To investigate
this, we tested a state-of-the-art universal potential, the MACE-
OMOL (extra-large; MACE v0.3.14) foundation model,54–57 on
a representative complex from our dataset, [Y(HOPO-
hydroxyl)4]

−1. The pre-trained model, which references the
wB97M-V level of theory, predicted a binding energy of
−1050.54 kcal mol−1. This value is in stark contrast to our
B3LYP-D4 reference value of −278.85 kcal mol−1, a discrepancy
of over 770 kcal mol−1 that represents an overestimation of the
binding strength by a factor of nearly four. While
© 2025 The Author(s). Published by the Royal Society of Chemistry
acknowledging the different DFT functionals, this large error
suggests that even advanced universal models may not yet
possess the required accuracy for electronically complex
systems like rare-earth coordination chemistry without domain-
specic training or ne-tuning. Due to the vastness of chemical
space, curated datasets for novel chemical domains will there-
fore remain highly relevant for improving model generaliz-
ability. These foundation models can serve as an excellent
starting point, and ne-tuning them on domain-specic data-
sets, such as the one presented here, offers a computationally
efficient path toward developing highly accurate potentials for
specialized applications.
4 Conclusions

The critical role of REEs in clean energy and advanced tech-
nologies necessitates more efficient and rapid methods for their
separation and extraction. This study addressed this challenge
by developing and validating an equivariant neural network
model, leveraging the Allegro architecture, for the accurate
prediction of binding energies in RECs. Alongside the devel-
opment of the ML model, a key contribution of this work was
our systematic data curation protocol. Employing the Archi-
tector program, this protocol enabled the generation of a new,
diverse dataset of over 5000 RECs, which is being made publicly
available to the scientic community. This dataset was strate-
gically focused on functionalized derivatives of
hydroxypyridinone (HOPO), catecholamide (CAM), and their
thio-analogues—ligand families chosen for their established
efficacy and promising interactions with REEs—thereby form-
ing a robust and relevant foundation for both the current study
and future machine learning endeavors in this eld.

Key ndings indicate that machine learning models, even
when trained on moderately sized datasets, can achieve strong
correlations with high-delity DFT calculations. Specically, we
demonstrated that training the ML model to predict binding
Digital Discovery
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energies directly is more effective and accurate (r2 = 0.96, MAE
= 6.1 kcal mol−1 on the initial test set) than predicting absolute
energies rst. While the D-ML approach, learning the correction
between GFN2-xTB and DFT, showed promise by improving
upon the absolute energy prediction strategy, it did not surpass
the performance of directly predicting DFT-level binding ener-
gies for our primary test sets. Crucially, the model predicting
binding energies directly also exhibited encouraging out-of-
sample generalization when tested on complexes with the
isomeric HDEV ligand (r2 = 0.92, MAE = 9.4 kcal mol−1),
highlighting its potential for broader applicability in screening
novel candidates.

Despite these promising results, certain limitations warrant
acknowledgment. While Architector aids in generating diverse
structures, the vastness of chemical space means our current
dataset, though substantial, represents only a fraction of
potential ligand motifs and substituent combinations. Future
investigations should aim to broaden the scope and robustness
of these predictive models. Extending the dataset with a wider
array of ligand backbones, diverse functional groups, and
potentially different metal oxidation states ormolecular charges
would be benecial. A particularly exciting avenue for future
work lies in the development of self-supervised foundation
models.56–59 By training on large-scale datasets of REC geome-
tries—which can be generated more readily using tools like
Architector without the immediate need for computationally
expensive DFT labels—these models could learn fundamental
representations of metal–ligand interactions, potentially
enhancing transferability and applicability to a wider range of
systems and tasks with minimal ne-tuning. Additionally, while
this study has focused on the prediction of static binding
energies, we envision this work as a foundational step toward
the development of a full interatomic potential (IP). Such
amodel, trained on forces from intermediate geometries, would
enable dynamic simulations and geometry optimizations. The
high accuracy achieved here validates the use of equivariant
models for this chemical space and provides a clear path for
prioritizing promising candidates for which the signicant
computational investment required to develop a full IP is
warranted.

In summary, this work demonstrates the signicant poten-
tial of equivariant neural networks to accelerate the computa-
tional screening of ligands for REE extraction. The developed
models and insights pave the way for integration into high-
throughput virtual screening workows and, ultimately,
toward the inverse design of novel, highly selective ligands,
thereby contributing to more sustainable and efficient REE
separation technologies.
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zenodo.17666661. The underlying equivariant neural network
architecture, Allegro, is open-source and available at https://
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and D-ML prediction approaches (Fig. S1 and S2); results for
Strategy 1 (absolute energy prediction) applied to the HDEV out-
of-sample complexes (Fig. S3); schematic of a graph neural
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MACE: Higher order equivariant message passing neural
networks for fast and accurate force elds, Adv. Neural Inf.
Process. Syst., 2022, 35, 11423–11436.

55 I. Batatia, S. Batzner, D. P. Kovács, A. Musaelian, G. N. Simm,
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