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us labeling and binding affinity
prediction for protein–ligand structures

Aditya Ranganath, *a Hyojin Kim,a Heesung Shim b and Jonathan E. Allenc

Machine learning models are often used as scoring functions to predict the binding affinity of a protein–

ligand complex. These models are trained with limited amounts of data with experimentally measured

binding affinity values. A large number of compounds are labeled inactive through single-concentration

screens without measuring binding affinities. These inactive compounds, along with the active ones, can

be used to train binary classification models, while regression models are trained using compounds with

binding affinities only. However, the classification and regression tasks are often handled separately,

without sharing the learned feature representations. In this paper, we propose a novel model

architecture that jointly performs regression and classification objectives, aiming to maximize data

utilization and improve predictive performance by leveraging two complementary tasks. In our setup, the

regression yields the binding affinity, whereas the classification task yields the label as active or inactive.

We demonstrate our method using PDBbind, the standard 3D structure database, as well as a dataset of

flavivirus protease compounds with binding affinity data. Our experiments show that the new joint

training strategy improves the accuracy of the model, increasing applicability in various practical drug

screening scenarios.
1 Introduction

The demand for efficient drug screening has surged over the
past decade, driven by the emergence of new viral infections
and the need for new treatments. This urgency is amplied by
the limitations of traditional drug discovery methods, which are
time-consuming and resource-intensive. Recent advancements
in machine learning (ML) and deep learning (DL) give prom-
ising new tools that enable researchers to explore molecular
structures with an improved balance between accuracy and
efficiency. Deep learning models for binding-affinity prediction,
address one of the tasks of assessing the strength of interaction
between a protein and a ligand and are critical to accelerating
the identication of potential drug leads.

Deep learning models have become widely used as scoring
functions for predicting protein–ligand binding affinity. These
models leverage molecular structure and various descriptors to
learn complex interactions between proteins and ligands.
Commonly used descriptors include atomic coordinates,
atomic weights, interatomic distances, physiochemical
descriptors and molecular ngerprints,1,2 which serve as input
features for deep learning architectures.3–7 By capturing these
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structural and physicochemical properties, these approaches
aim to improve binding affinity prediction accuracy over tradi-
tional docking-based methods.

A popular approach that effectively exploits structural
information in graph-based representations is the use of
equivariance. Equivariance is a property of a function or
a model where the output changes in a predictable way when
the input is transformed. Specically, a function f is equivariant
to a transformation G if applying G to the input and then
applying f is the same as applying f to the input and then
applying some corresponding transformation G0 to the output.
The most common types of models that use this equivariant
information include the SE3 transformer8 and its graphical
counterpart E(n) Equivariant Graph Neural Networks (EGNN).9

The EGNN model has been used most recently in predicting
protein binding sites by Zhang et al.,10 where the authors predict
the ligand binding site and the relative direction of the pocket
to compute the direction of its nearest ligand atom.

Fusion networks have emerged as a popular approach, where
two networks extract different feature modalities from struc-
tural data and fuse these features to predict the binding affinity
of a protein–ligand pair. One such example is Jones et al.,11

where the authors use a Spatial graph CNN (SGNN) and a 3D-
Convolutional Neural Network (3D-CNN).12,13 The 3D-CNN vox-
elizes the 3D space around the protein–ligand pair and extracts
the features using a 3D convolutional layer. The SGNN archi-
tecture uses the protein–ligand pair as a 2-D graph adjacency
matrix representation. These features are then merged and
Digital Discovery
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combined to predict the binding affinity of the protein and
ligand. These multi-feature learning models showed improved
accuracy, but do not scale well on large training sets and as the
network becomes too large.

Another multi-head learning approach is GanDTI,14 where
the authors extract the ligand features using a residual graph
neural network from the SMILES strings and the protein
features using an attention network module. The features are
then concatenated and fed to an MLP which predicts both the
classication of binding inhibition and the binding affinity of
the protein–ligand complex structures. One drawback of this
approach is that the authors do not use structural information,
but rather use feature descriptors to train the models resulting
in a lack of information for the model to exploit.

DL approaches also face a challenge with the availability of
data. This essentially stems from the lack of ligands and
appropriate target protease pairs. To tackle this, researchers
oen resort to docking methods. Docking methods involve
structurally placing the ligand in a protein pocket to analyze
their binding energy based on their physical properties. While
their predictions are notoriously noisy, they can help generate
“hit” compounds without requiring experimentally determined
co-crystal structures, which are expensive to generate. Docking
and virtual screening pipelines use scoring functions to rank
putative poses of a particular ligand at a binding site. The
fastest and most widely used method to predict binding affinity
is Auto-Dock Vina.15,16 AutoDock Vina uses an AD4 scoring
function, which is a physics-based model with van der Waals,
electrostatic, and directional hydrogen-bond potentials derived
from an early version of the AMBER force eld. Thus, when the
number of experimental data is limited, docking provides an
alternative resource of simulation data to understand the
binding affinities of compounds and targets.

Existing approaches essentially pose the problem of binding
affinity prediction in two ways – binding affinity regression
problem or activity classication problem. A key limitation of
these existing methods is the failure to incorporate features and
information from both from the binding affinity values and
their activity classication. For example, in a typical experi-
mental compound library screen against a protein target, the
vast majority of the tested ligands will show no binding activity.
Yet, a docking program can attempt to virtually place the ligand
in a target pocket and attempt to score the binding affinity.
Similarly, for previous structure-based deep learning methods,
the common training set for learning protein–ligand interac-
tions comes from PDBbind, where all of the examples are from
ligands that show some binding activity. However, these
examples do not contain any examples of ligands which do not
show any binding affinity.

To address this type of problem, DL approaches oen
incorporate a multi-task loss17,18 which motivates a deep
learning model to learn multiple tasks in conjunction. Multi-
task loss in deep learning is used when a model is trained to
perform multiple tasks simultaneously. Instead of optimizing
for just one objective, the model learns to minimize a combi-
nation of losses from multiple tasks. These kind of multi-task
losses can improve the robustness of the model owing to their
Digital Discovery
shared representations.19 The loss function for a multi-task loss
is oen represented as

L
�
Y; Ŷ;Q

�
¼

XN
i¼0

liLi

�
Y ; Ŷ i; Q

�
;

where Y = y0.yN are the different labels and Ŷ = ŷ0.ŷN are its
corresponding predictions by the model and li ˛ R is a scalar
weighing constant. An important observation in the above
equation is that the parametersQ of the model are shared by all
the objective loss functions. In other words, the parameter
space Q learns from all the existing loss functions applied to it.

A multi-objective loss function can enhance prediction
accuracy by rening the learning process and improving
generalization. Instead of treating binding affinity purely as
a regression problem, classication helps the model learn
distinct patterns between inactive and active binders, reducing
noise and improving overall predictive performance. This
approach is particularly useful in handling data imbalance and
outliers, as binding affinity datasets oen exhibit skewed
distributions. By dening clear categories, classication
prevents extreme values from negatively impacting affinity
predictions. Additionally, classication provides a clear deci-
sion boundary, making results more interpretable for drug
discovery applications and screening away potential inactive
candidates. It also contributes to model robustness by pre-
venting overtting, especially in deep learning approaches like
graph neural networks (GNNs) and transformers. When
combined with affinity regression, classication strengthens
the model's ability to generalize, leading to more accurate,
stable, and interpretable predictions.

A substantial amount of research has been conducted in
augmenting the regression loss function using a xed threshold
classication on the regression values.6,7,20–23 However, these
approaches typically rely on a xed threshold applied to
regression predictions to classify protein–ligand interactions as
active or inactive binders, without jointly training on experi-
mental data with inactive binders.

In this paper, we propose a unied framework that integrates
both classication and regression, using a novel composite
multiloss scoring function to jointly predict binding affinities
and active/inactive labels from protein–ligand structure data.
The contributions of our approach are as follows:

1. The proposed approach enables training on both inactive
compounds and those with varying binding efficacy by simul-
taneously optimizing complementary classication and regres-
sion objectives.

2. This approachmaximizes data utilization by incorporating
inactive compounds without binding affinity and compounds
with binding affinity, aligning with practical drug screening
scenarios.

3. Although we present only a few specic models, the
method can be adapted to different network architectures.

4. The framework is lightweight, augmenting the size of the
network architecture by additional 40 oating point
parameters.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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2 Method
2.1 Problem statement

For the docking (or co-crystal complex) dataset, we use the
complex crystal-structure with the highest binding affinity value
(or lowest binding energy value). The data is represented as X =

{x1
D,., xK

D}, where xi ˛ RD represents each data-point's features
with dimensionality D. There are two labels for each datapoint –
the binding affinity (yi) and its corresponding label (zi). The
binding affinity is represented as Y = {y1,., yK}, where yi ˛ R is
a scalar value representing the affinity for xi. For the label, we
divide each dataset into two parts – weak binders and strong
binders. We set an inactive threshold (IT) for each data point and
assign a label zi to it. Given a threshold IT, the label zi is dened as

zi ¼ ½1; 0� if yi # IT
½0; 1� otherwise

:

Thus, if the binding affinity value is less than IT, it is labeled
as weak, otherwise a strong binder. Themain goal is to predict yi
and zi given xi. Each instance xi ˛ RD contains the atomic
representation such as the 3D coordinates of the atoms and
their atomic features. We describe the data and describe IT in
detail in Sections 2.2 and 4.
2.2 Data

We evaluate our proposed approach on 3 datasets – PDBBind,
dengue, and Zika (aviviruses).

2.2.1 PDBBind. The PDBbind 2020 dataset24 is a compre-
hensive collection of protein–ligand complexes with experi-
mentally measured binding affinities, primarily used for
training and bench-marking molecular docking, scoring func-
tions, and AI-driven drug discovery models. It is derived from
the Protein Data Bank and includes binding data from experi-
mental techniques such as isothermal titration calorimetry,
surface plasmon resonance, and enzyme inhibition assays.
PDBBind is the collection of experimentally measured binding
affinity data (in the form of Kd, Ki or IC50 values). The dataset is
divided into general, rened and core subsets and contains
a total of 23 496 bio-molecular complexes in PDB, which
includes protein–ligand (19 443), protein–protein (2852),
protein–nucleic acid (1052) and nucleic acid-ligand (149)
complexes. It is a fairly balanced dataset where most complex
structures have a non-zero normally distributed binding affinity
values. The dataset is divided in to general, rened and core
datasets arranged in an ascending order of binding resolution
quality. The core dataset, or CASF-2016 has the highest quality
curation based on resolution and nature of the complexes. The
distribution of the binding affinities of the data is illustrated in
Fig. 2. Each atom feature consists of 3D coordinates (x, y, z),
amongst other features such as atom hybridization, number of
heavy atom bonds, bond properties, partial charge etc. In
addition, each data item has its associated label describing
whether its active or inactive.

2.2.2 Flavivirus. Flaviviruses are an important group of
viruses because they include many signicant human
© 2025 The Author(s). Published by the Royal Society of Chemistry
pathogens such as Dengue,25–28 Zika,29–31 West Nile32,33 and
Yellow fever34,35 viruses, which are responsible for widespread
outbreaks and severe diseases. However, due to the lack of West
Nile and yellow fever examples, we choose the Zika (pdbid:
6kk4)36 and dengue (pdbid: 2fom)37 proteases as our avivirus
targets. These targets were retrieved from publicly available
protein data bank (PDB)38 database. A total of 2807 ligands were
gathered from various publication sources. The ligands,
provided in SMILES string format, required pre-processing
before further computational analysis. Molecular Operating
Environment (MOE) was used for ligand preparation, ensuring
proper formal charge assignment and generating 3D energy-
minimized conformations of the ligands.39 For protein prepa-
ration, MOE Protein Quick Prep was utilized to rene structures
by adding missing hydrogen atoms, assigning partial charges,
optimizing side-chain conformations, and resolving structural
inconsistencies such as gaps or missing residues.

2.2.3 Sars-CoV-2. We also selected compound collections
targeting the SARS-CoV-2 main protease receptor (“Mpro”)
curated by,40 aimed at identifying potential antiviral agents
against the virus, which were obtained from various publication
sources. The receptor structure was obtained from the protein
data bank (pdbid: 6LU7).41

Once the structures were retrieved, we perform molecular
docking to enrich our dataset. Molecular docking was per-
formed using AutoDock Vina 1.2.0, a widely used docking
engine that incorporates improved docking methods and an
expanded force eld.16 The docking workow was implemented
within the Conveyor LC pipeline at Lawrence Livermore
National Laboratory (LLNL), which enables high-throughput
virtual screening in an automated and parallelized environ-
ment.42 We generated 20 docking poses complex structure,
which were further analyzed for binding affinity and molecular
interactions. For the dengue dataset, the protein target was
docked with 2303 unique ligands. We choose a scaffold split
using the AMPL library.43

These datasets provide us with three unique scenarios – with
the PDBBind dataset, we are aware of the exact binding affinity
values as these have been experimentally tested and curated. In
dengue, we choose a large number of active as well as inactive
examples. A ligand is considered as inactive if it shows no
inhibitory activity against the protein during single concentration
screening. With 20 docking poses for each example, the training
subset of the dengue dataset has 1019 (20 380 docking) active
examples and 909 (18 180 docking) inactive examples. Similarly,
the testing dataset has 266 (5320 docking) active examples and
119 (2380 docking) inactive examples. In the case of Zika, the
inactive examples only exist in the training set, not in the testing
set, providing a unique scenario of classifying a biased test set.
The test set Zika contains 89 (1780 docking) examples, while the
train set contains a total of 442 (8840 docking) examples with 379
(7580 docking) active examples and 63 (1260 docking) inactive
examples. Thus the performance of the proposed approach will
depend on how the inactive and active compounds are identied
in the training set to generalize well on the test set.Wewill explore
how the results of the proposed approach changes by introducing
inactive complexes in the dataset.
Digital Discovery
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Fig. 1 Proposed SLAB framework. The structural data with its corresponding features are fed to a network module (SGNN and EGNN). The
affinity predictor module and the label classifier take the output of the network modules to predict the affinity and the label simultaneously.
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2.3 Experimental setup

In this section, we describe the proposed framework illustrated
in Fig. 1 in detail. For the loss function, we use the unweighted
sum of the cross-entropy (CE) loss and the mean-squared error
(MSE). The CE loss is used for the label classication while the
MSE is used for the binding affinity prediction, given by

L(Y,X,Ŷ;Q) = l1MSE(Ŷ,Y;[G,F]) + l2CE(Ẑ,Z;[G,J]

where L is the loss function,Q is the parameters of the network,
F is parameters of the affinity predictor, J is the parameters of
the label classier and G is the parameters of the network
module. Ẑ is the predicted labels, l1 & l2 are scalars and Y is the
predicted binding affinity values. We use l1 = 1 and l2 = 1.

2.3.1 Models. We experiment the proposed framework
with two very common graphical network modules – EGNN9

and SGNN. We use the Adam44 optimizer to train these neural
networks with a learning rate of 1 × 10−3 over 300 epochs. The
EGNN has 4 equivariant graphical convolutional layers with
residual connections. The SGNN uses a graph neural network
concept, by weighing the bonds between different atoms of the
molecule and applying a graphical convolutional layer. We set
the covalent threshold of 1.5 Å (cut-off distance for covalent-
bonds) and a non-covalent neighbor threshold of 4.5 Å. The
features from this layer is then fed to a fully connected layer.
The features of both the networks are pooled using the glob-
al_avg_pool and global_avg_pool library in pytorch-
geometric.45 The SGNN SLAB architecture has a total of 9323
parameters while the EGNN SLAB has 12 569 parameters. We
also apply a scheduling algorithm which scales the learning
rate by 0.1 every 50 epochs to ensure active training in later
epochs. However, we notice that the networks train within the
rst 100 epochs. The networks were trained on 4 AMD MI300A
gpus with an Intel Xeon E5-2695 processing architecture. In
case of the PDBBind datasets, we use the general subset for
training. For evaluation, we test on the CASF-2016 core data-
set. The networks were trained with a batch-size of 32
complexes.
Digital Discovery
2.3.2 Inactivity. For the dengue and Zika datasets, we
introduce an inactive assignment (IA) value. For both dengue
and Zika, we assign IA = 0 (IA0) for all the inactive ligands
against the dengue and Zika proteases. Even though the
PDBBind dataset does not contain any compounds with
a binding affinity value of 0, we maintain the inactive assign-
ment IA0. In such cases, instead of drug-screening between
active and inactive complexes, the label-classier behaves like
a regularization term,46 conditioning the overestimated and the
underestimated complexes. In addition to IA, we introduce
another value for the dengue and Zika dataset – Inactive
Threshold (IT), which we briey explain in Section 2.1. During
concentration screenings, low inhibition scores (yi < 3, for
example) are deemed inactive owing to their poor inhibitory
behavior. Hence, it is safe to consider these as inactive exam-
ples, even though they show some inhibitory value in a single
concentration screening. We discuss this in more detail in the
discussion section (see Section 4).
3 Results

The results are broadly divided into 3 sections – PDBBind,
Dengue, and Zika. The PDBBind data is curated based on the
measured binding affinities from multi-concentration
measurements. This dataset is used to evaluate performance
where ligand-complexes structures are explicitly solved using
crystallographic methods (crystal-structures). For our experi-
ments, we treat the general dataset as training data and
CASF2016 as our test set. The avivirus data (Dengue and Zika)
reect more practical cases where there is a combination of
single concentration screens and measured activity reported as
IC50 with no crystal complexes. We follow from Kim et al.47 and
choose the Root-Mean Square Error (RMSE), Mean Absolute
Error (MAE), coefficient of determination (r2), Pearson correla-
tion (R) and Spearman correlation (r) metrics. We present the
results of the proposed SLAB framework using a network
module of SGNN12 and EGNN.9 Any of these models can be used
as the network module to train the network. We choose the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The table shows the results of testing the models on
PDBBind2020 CASF-2016. The first section shows the EGNN frame
work (rows 1–2), the second section (rows 3–4) shows the SGNN
models both with and without the SLAB framework. From these
results, it is clear that the proposed SLAB framework with an EGNN
network module is able to perform comparably to the other
approaches

Approach RMSE MAE r2 Pearson (R) Spearman (r)

EGNN 1.3113 1.0604 0.6249 0.8040 0.7764
EGNN-SLAB 1.2883 1.023 0.6380 0.8051 0.778
SGNN 1.3950 1.12696 0.5759 0.7726 0.7593
SGNN-SLAB 1.3961 1.1115 0.5752 0.7858 0.7681

Table 2 The table presents the metric values of Dengue type-2. The
best values for each metric are highlighted in bold. The superscript
‘avg’ describes the averaging of the binding affinity values over the 20
docking poses. The EGNN-SLAB approach achieves the best perfor-
mance across all metrics, demonstrating its effectiveness in predicting
binding affinities

Approach RMSE MAE r2 Pearson (R) Spearman (r)

EGNN 1.6527 1.2208 0.6287 0.7944 0.7767
EGNN-SLAB 1.4978 1.0315 0.6950 0.8337 0.8136
SGNN 1.7633 1.0867 0.5403 0.7415 0.7021
SGNN-SLAB 1.6563 1.0977 0.5944 0.7793 0.7052

Table 3 The table shows the prediction accuracy of the model on the
Zika virus. The bold metrics show the best prediction accuracy among
the proposed approaches. The proposed SLAB architecture with the
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SGNN and EGNN as our network module here owing to the ease
in training these models.
EGNN network module outperforms all existing approaches. The
SGNN approach performs comparably with and without the SLAB
architecture. For these results, we do not focus on the accuracy since
all the labels in the training and testing sets are positive samples. The
predicted accuracy for all approaches listed above is 100%

Approach RMSE MAE r2 Pearson (R) Spearman (r)

EGNN 1.2282 0.9306 −0.5615 0.4302 0.5222
EGNN-SLAB 1.0679 0.7882 -0.1804 0.4509 0.5366
SGNN 1.1532 0.8463 −0.3766 0.2991 0.3789
SGNN-SLAB 1.1589 0.8055 −0.3901 0.2453 0.4157
3.1 PDBBind

The PDBBind data results are shown in Table 1. Rows 1 and 3
present the results without using the proposed SLAB framework
while rows 2 and 4 present the results using the SLAB frame-
work. We notice that the EGNN-SLAB architecture is able to
perform comparably all the other approaches even with one
class. In the case of SGNN-SLAB architecture, the model is able
to outperform its SGNN alternative in all metrics except RMSE
and r2. Since all compounds in the PDBBind dataset were
labeled as active, the predictions of the label classier were
active as well. Hence, we do not present a classication score for
this dataset.

We present the scatter plot of each complex in CASF-2016
dataset in Fig. 3. We draw the reader's attention towards the
binding affinity at the higher end (specically with a binding
affinity greater than 10). These examples (Fig. 3(b)) have
a higher correlation than the examples where no label (Fig. 3(d))
classier was applied, thus showing a higher correlation in
comparison. This correlation improvement is reected in data-
points with a lower binding affinity as well. Even though the
SLAB architecture with the EGNN network outperforms the
SGNN network, the relative improvement is comparable.
However, the improvement margin of the SLAB architecture is
much higher from the regular regression model.
3.2 Dengue type-2

Given that the dataset contains 20 docking poses for each
compound, we report the results using the average predicted
binding affinity across all docking poses. In Table 2 we present
the outcomes of both the standard regression task and the SLAB
approach. With the addition of substantial inactive compounds
in the training set, we observe that the SLAB method outper-
forms signicantly across all metrics. Specically in case of
EGNN-SLAB, we notice a signicant improvement in all metric
values against both of the SGNN models and EGNN without the
proposed framework. For more details on the classication
accuracy, please refer Section 4, experiment IA0.
© 2025 The Author(s). Published by the Royal Society of Chemistry
3.3 Zika

The results of training and testing the models on the Zika
dataset are shown in Table 3. The SLAB architecture with an
EGNN network outperforms the SGNN and EGNN on all
metrics. However, the SGNN performs comparably with and
without the SLAB architecture. We notice that in case of Zika,
the correlation values (r2, Pearson (R) and Spearman (r)) values
are much lower when compared with Dengue and PDBBind
results. This can be attributed to the high imbalance between
the training and test set in terms of the number of active and
inactive examples. We also note that all the examples in the Zika
testset have been classied as active. Hence we do not report the
classication scores for them. For the reader's convenience, we
have provided the scatter plots for Zika in the SI section.
3.4 Sars-CoV-2

We compare the SLAB architecture on the EGNN model. For
results on Sars-Cov-2, please refer to the SI section. From the
results, it is clear that the proposed EGNN-SLAB approach is
able to outperform the EGNN model.

We discuss the results for the Dengue dataset in more detail
(along with their scatter plots) in Section 4.
4 Ablation study and discussion

From the experiments, it is clear that the proposed approach is
able to perform as well or better than single regression task
models in all 3 datasets. In the case of the highly curated
Digital Discovery
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Fig. 2 The figure illustrates the distribution of binding affinities from all the datasets in use. (a) and (d) Represent the PDBBind train and test set, (b)
and (e) presents the dengue train and test set, (c) and (f) present the Zika train and test set respectively.
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datasets, the proposed approach performs marginally better.
However, it prevents the model from overestimating binding on
lower binding affinity compounds, thus reducing the false
positive rate. The Dengue datasets are biased for active ligands.
Regardless, there is a high number of inactive compounds in
the dataset (see Fig. 2). In such situations, we might notice that
some of the weaker protein–ligand binders get mis-classied,
and the performance might degrade.48 This can be concluded
from the performance improvement indicated in Table 2 (see
rows 1 and 2). Thus, in the absence of the classication module,
the regression module degrades signicantly in performance.
Fig. 3 Scatter plots of binding affinity prediction versus experimental
value on the PDBBind CASF-2016 dataset. (a) SGNN-SLAB, (b) EGNN-
SLAB, (c) SGNN and (d) EGNN. From the figure, and the metrics from
Table 1, the proposed approach with the EGNN network module
performs comparably or better than all other approaches.

Digital Discovery
The network module plays an important role in the perfor-
mance of our framework. In our case the EGNN performed well
with or without the SLAB framework, followed closely by the
SGNN. We explored other model architectures for the network
module, however, other models did not yield competitive
results due to their memory footprint or inefficiency in training.
The EGNN and SGNN are easy to train and easily reproducible,
making it an excellent network module for the SLAB framework.
4.1 Inactive assignment (IA)

Binding affinity values are expressed as pIC50, which is calcu-
lated on a logarithmic scale using the formula pIC50 =

−log(IC50) using molar units. Since a pIC50 value of 0 is unde-
ned on a logarithmic scale, assigning such a value to inactive
complexes is not meaningful. Hence, we assign a higher
binding affinity value of 1 and 2 for the inactive compounds. For
example, if the docking results reveal a binding affinity value of
Fig. 4 The figure represents the Inactive Assignment (IA) results for
the dengue dataset with the inactive assignment set to 0, 1 and 2. (a)
Represents the results setting the IA0, (b) represents the results IA1 and
(c) represents the results with IA2. Blue color represents the complexes
predicted as active by the model, while the red color represents the
inactive predictions. The figure shows the reassigning the affinity value
to a lower bound limits the outliers. This reassignment also boosts the
correlation in these cases.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 4 The table presents the results of binding affinity prediction with the inactive values set to 0, 1 and 2 in dengue dataset. In rows 1–3, we
present the result of not using the inactive threshold. In rows 4–6, we present the results of using a threshold. From this table, it has been
demonstrated that using an inactive threshold can significantly improve across metrics such as RMSE. However, it can affect the classification
accuracy

Approach RMSE MAE r2 Pearson (R) Spearman (r) Accuracy (%)

IA0 1.4978 1.0315 0.6950 0.8337 0.8136 88.75
IA1 1.4736 1.0474 0.5312 0.7501 0.7306 85.18
IA2 1.0791 0.8167 0.6044 0.7907 0.7545 85.16
IT3 IA0 1.8768 1.4226 0.4791 0.7352 0.6984 67.02
IT3 IA1 1.548 1.228 0.4823 0.6976 0.7352 76.27
IT3 IA2 1.1009 0.8146 0.5883 0.7559 0.7750 81.53
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0, we assign these examples with the value of 1 and 2. The
results for IA experiments are presented in Fig. 4. The scatter
plot for this experiment shows a higher correlation and limits
the overestimation of weak binders, and improves across all
metrics (see Table 4 rows 1–3).
4.2 Inactive threshold (IT)

As briey discussed in Section 2.3, generally a complex with
a low binding affinity value (<3 for example) is considered
a weak binder, which is equivalent to calling these complexes as
inactive due to a lack of inhibitory behaviour. In such cases, it is
safe to consider these examples as inactive and assign the IA to
these complexes. To validate this, we dene a threshold for the
inactive compounds – we set a threshold at pIC50 = 3, ensuring
that compounds with pIC50 values above this threshold are
labeled as active binders, while those at or below are labeled as
inactive binders. For example, if the inactive threshold is set to
3, all compounds revealed with a binding affinity of lower than 3
are replaced with inactive assignments of 0, 1 or 2. This reas-
signment to a lower constant inactive assignment also improves
the model's performance by focusing on the higher binding
affinity values. This improvement is empirically reected in the
results. Our SLAB architecture is trained based on these labels,
with all other network parameters remaining unchanged.
Results are shown in Table 4 and the scatter-plot for this
experiment is in Fig. 4. Fig. 4 shows the results of setting the
binding affinity to 2 for the labels of the inactive examples. In
this study, we explore setting a strong threshold for the binding
affinities to 3. This means, all the complexes with a binding
Fig. 5 Inactive threshold results for dengue dataset. The threshold
value for the compound structures is IT3. The pointsmarked in blue are
examples predicted as active by the classifying module, while the ones
marked in red were labeled inactive by the classifier module. (a)
Represents IA1, (b) represents IA2 and (c) represents IA3.

© 2025 The Author(s). Published by the Royal Society of Chemistry
affinity less than or equal to 3 are set to a binding affinity of 0, 1
or 2. Model accuracy is shown in Fig. 5.

It is clear from the gure that the proposed approach with
a threshold and setting a higher inactive assignment value
yields signicantly better RMSE values. However, we do notice
that the classication accuracy in case of the IT results are
compromised. With a lower IA (IT3IA0 and IT3IA1), the classi-
cation accuracy is much less when compared with IT3IA2. In
case of the IT3IA2, the experiment yielded the best RMSE value
of all the experiments. This experiment yielded the best metrics
across all the IT experiments.
4.3 Precision-recall

Fig. 6 shows the precision-recall curve when the model is eval-
uated as an active/inactive classier with the binding affinity
threshold for actives is set to 3. The y-axis is precision, given by

TP
TPþ FP

where TP is the True-positive rate and FP is the false

positive rate. The x-axis is the recall, given by
TP

TPþ FN
, where FN

is the False negative rate. The trade-off between correctly
identifying positive cases and incorrectly classifying negatives is
shown when adjusting the model's prediction threshold. The
Fig. 6 Precision-recall curve comparing model performance on
dengue dataset. The curve illustrates the trade-off between true
negatives and false positive rate (1-specificity). The x-axis and y-axis
range between [0, 1]. A higher area under the curve (AUC) indicates
better classification performance. (a) Represents the curve if both the
regression and classification modules are used, while (b) represents
the results only with the classification module. We notice that the
classification AUC is significantly improved by using both the classifi-
cation module and the regression module over using just the classi-
fication module.
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Fig. 7 Binding affinity precision-recall curves for dengue dataset with
IA = 1. The orange line represents using just the classifier, while the
blue line represents using both the classifier and the regressor. From
the graph, it is clear that using both the classification module and the
regression module a higher AUC than just using the classifier.
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Area Under the Curve (AUC) quanties overall model perfor-
mance, with values closer to 1 indicating better discrimination.

Fig. 6 shows performance when using the classier rst, and
where the classier predicts the ligand to be active, the regres-
sion value is used at varying thresholds to re-classify the ligand
as an active. The model was compared with the baseline of
using only the classication module to classify ligands.

We present the results for the threshold results in Fig. 6.
From this gure it is clear that having a higher lower-bound
with a threshold increases the AUC, therefore indicating
better discrimination.
4.4 Comparative performance

To show the improvement of combined classication and
regression modules against the classier, we present the results
with IA1 in Fig. 7 with a threshold of IT3. We choose this result
owing to the improvement from using just the classier i. From
these results, it is clear that using both the classier and
regression module is signicantly better than just using the
classier.
5 Conclusion

We present a new training framework to incorporate classi-
cation into a regression task. Through experimentation, we
empirically show that the proposed SLAB approach outperforms
existing regression techniques. Further experimentation using
a inactive threshold and inactive assignment showed signicant
improvement in binding affinity value predictions.

We do notice a drop in classication performance with a low
inactivity assignment and an inactive threshold value. However,
the margins improved as we increased the inactivity assignment
values for those thresholds. In addition, the precision-recall
curves have clearly illustrated that using the classication
module in conjunction with the regression module has yielded
Digital Discovery
in a better AUC when compared against the classier. In addi-
tion, we would like to note that this surrogate model is trained
on target-specic data, which may inuence its generalizability.
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