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predicting ionic conductivity in LiZr,(PO4)z-based
solid electrolytes
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Lithium-ion-conductive oxide materials have attracted considerable attention as solid electrolytes for all-
solid-state batteries. In particular, LiZr,(PO4)s-related compounds are promising for high-energy-density
devices using metallic lithium anodes, but further enhancement of their ionic conductivity is requested.
In general, Li-ion conductivity is influenced by mechanisms operating on two distinct length scales. At
the atomic scale, point defects and the associated migration barriers within the crystal lattice are critical,
whereas at the micrometre scale, porosity and grain-boundary characteristics that develop during
sintering become the dominant factors. These coupled effects make systematic optimization of
conductivity difficult. In paticular, microstructural analysis has often relied on researchers’ intuitive
interpretation of scanning electron microscopy (SEM) images. Here, we apply a convolutional neural
network (CNN), a deep-learning approach that has seen rapid advances in image analysis, to SEM images
of LiZr,(POy)s-based electrolytes. By combining image-derived features with conventional vector
descriptors (composition, sintering parameters, etc.), our regression model achieved an R? of 0.871.
Furthermore, visual-interpretability analysis of the trained CNN revealed that grain-boundary regions
were highlighted as low-conductivity areas. These findings demonstrate that deep-learning-based SEM
analysis enables automated, quantitative evaluation of ionic conductivity and offers a powerful tool for
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Introduction

Fast lithium-ion conducting oxides serve as solid electrolytes for
all-solid-state lithium secondary batteries. They are particularly
anticipated to resolve the safety concerns linked to conventional
flammable liquid electrolytes, especially in large-scale applica-
tions like electric vehicles.'” Moreover, solid electrolytes hold
promise as they do not react with lithium metal and can inhibit
dendrite growth, facilitating the use of lithium metal anodes
and thereby significantly enhancing battery capacity.®

Oxide-based lithium-ion conductors are considered advan-
tageous due to their nonflammability, chemical stability, and
mechanical strength.

Representative oxide-based lithium-ion conductors with high
ionic conductivity include perovskite-type LiysLagsTiO;,” garnet-
type Li;LazZr,0,, (LLZ),® and NASICON-type compounds such as
Li sAly 5Ge; 5P,01,,° Liy 5Aly 5Ti; -(PO,); (LATP), and LiZr,(PO,),."*
Among these, LLZ and LiZr,(PO,); are particularly notable because
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accelerating the development of solid electrolyte materials.

they do not react with metallic lithium, making them promising
candidates for high-energy-density all-solid-state batteries with
lithium metal anodes. However, LLZ is known to be sensitive to
experimental conditions, such as its high reactivity with moisture
and CO, in air, and variations in conductivity depending on the
incorporation of Al from crucibles during synthesis."?

Among them, NASICON-type LiZr,(PO,); materials have
attracted attention as they combine high lithium-ion conduc-
tivity with durability against metallic lithium. In fact, Li et al.
successfully fabricated a high-capacity all-solid-state battery
using lithium metal, composed of Li/LiZr,(PO,);/LiFePO,, and
reported stable cycle performance.*

To date, many attempts have been made to improve the
conductivity of LiZr,(PO,); by controlling its composition
through doping with different elements.*** In addition, when
using oxide materials as solid electrolytes, it is essential to
obtain dense sintered bodies in terms of mechanical durability
and the reduction of grain boundary resistance. The control of
oxide sintering depends on heating temperature, atmosphere,
time, and raw powder characteristics. Generally, increasing the
heating temperature enhances the sintering density. However,
in the case of LiZr,(PO,)s;, components such as Li and P often
volatilize at high temperatures, making it necessary to optimize
the heating conditions.***
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We have attempted to maximize lithium-ion conductivity in
Liyiox1yCayZr, ,SiyP; Oy, (hereinafter referred to as LCZSP)
materials, in which Ca and Si are substituted, by controlling the
composition of Ca and Si*® or the heating conditions.*®* For
example, in composition control, the amount of Ca doping was
found to influence microstructure of sintered body, while Si
doping was associated with the formation of the a-phase (high
ionic conductivity) and B-phase (low ionic conductivity),
significantly affecting lithium-ion conductivity (from 2.7 x 107>
to 2.3 x 108 S em " at 30 °C).?"?

Furthermore, even with the same composition, we found
that systematically varying the first and second heating
temperatures resulted in significant changes in lithium-ion
conductivity over two orders of magnitude (from 3.3 x 1077 to
6.4 x 1077 S ecm " at 30 °C).® It was also revealed that the
optimal heating temperature lies in the middle of the specified
temperature range, suggesting a trade-off relationship likely
due to sintering density and component volatilization as
mentioned above. These findings clearly indicate that opti-
mizing the composition and processing conditions is crucial in
the development of solid electrolyte materials.

Optimization of composition and processing has tradition-
ally relied on a trial-and-error approach based on the knowledge
and experience of researchers and engineers. However, in
recent years, materials development utilizing Materials Infor-
matics (MI) has been explored. MI aims to predict physical
properties such as activation energy using machine learning,
and by applying information science to materials development,
it is expected to accelerate the discovery of new functional
materials.**** We have demonstrated efficient determination of
the optimized temperature and composition by applying
Bayesian optimization to LCZSP materials.>**®* However, one
challenge with above mentioned Bayesian optimization is that it
employs black-box functions, such as Gaussian process regres-
sion, which often fails to provide systematic knowledge on
factors affecting Li ion conductivity. Traditionally, various
analytical techniques have been used to understand the
mechanisms underlying material functionality. For inorganic
crystalline compounds, commonly used methods include X-ray
Diffraction (XRD) for analyzing crystal phases, Scanning Elec-
tron Microscope (SEM) for observing microstructure, and X-ray
Photoelectron Spectroscopy (XPS) for elemental analysis and
chemical bonding states of surfaces. Recently, we evaluated the
relationship between XRD profiles obtained from LCZSP mate-
rials sintered at various temperatures and the solid electrolyte
properties (activation energy for lithium-ion conduction) using
deep learning with an attention mechanism.*® As a result, it was
suggested that the activation energy can be predicted from XRD
profiles and is mainly influenced by the resulting crystal phases
(-phase, B-phase, and impurity phases). On the other hand,
while XRD is sensitive to crystal structures derived from
composition and atomic arrangements, it is not suitable for
analyzing microscale information such as particle morphology
and sintering microstructures. SEM images are effective tools
for analyzing micrometer-scale information, and indeed,
studies have been reported in which such images are directly
analyzed using deep learning techniques. For example, Kondo
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et al.** developed a model that predicts oxide ionic conductivity
in yttria-stabilized zirconia by training a modified VGG16 con-
volutional neural network (CNN)** on microscopic images of
ceramic microstructures. Furthermore, by visualizing the
intermediate features in the CNN architecture, they specified
microstructural features in SEM images affecting measured
ionic conductivity positively or negatively. More recently, deep
learning has also been used to elucidate the relationships
between microstructures and properties such as mechanical
strength and thermal conductivity in sintered silicon nitride
ceramics (a heat-resistant structural material),*® and between
sintered structures and ionic conductivity in lithium-ion
conductive materials.

In this study, we acquired 130 SEM image data for a total of 52
sintered LCZSP specimens, each with different compositions and
sintering conditions, for which ionic conductivity had been
measured previously, and then used a CNN to predict their
conductivities. We placed particular emphasis on how microstruc-
ture affects ion transport, and sought to deepen our understanding
of LCZSP ionic conduction by visualizing which regions of the SEM
images exert positive or negative influence on conductivity.*”

Method

Dataset & evaluation

All samples used in this study, including those reported in our
previous publications, were synthesized and characterized by
the authors. In detail, the dataset used for the LZP materials
consisted of 52 LCZSP samples, where Zr was partially
substituted by Ca and P was partially substituted by Si.****** The
samples varied in Si and Ca doping levels (x, y) in
LijsoxyCayZr, ,SiyP; 01, (LCZSP) and the temperatures of
both the first and second heating processes. The ranges of x and
y were 0.05-0.4 and 0.05-0.15, respectively. The 1st and 2nd
heating temperatures ranged from 900-1300 °C and 1100-
1350 °C, respectively. The first heating was a pre-heating step
intended to synthesize precursors while preventing composi-
tional changes due to the evaporation of low-melting or volatile
components. This was followed by intermittent grinding and
a second heating, which aimed to promote diffusion among
elements for phase formation and densification. The ionic
conductivity at 30 °C, derived from the total resistance of grains
and grain boundaries measured by impedance spectroscopy,
varied from 107%% to 107*° § em ™. Fig. 1 illustrates how the
measured ionic conductivity varied with composition (x, y) and
heating temperatures, and details of the dataset are provided in
Table S1 (SI) and in the associated repository.? To prepare input
for the CNN, SEM images of the sintered pellet surfaces of 52
LCZSP materials [25, 26] were acquired. All SEM images were
taken using a JSM-6360LV (JEOL, Japan) at an accelerating
voltage of 20 kV and 1000 times magnification. To expand the
dataset, 3 distinct surface locations were photographed per
material, resulting in a total dataset of 130 SEM images. Fig. 2
shows representative SEM images. As seen in Fig. 2(a), samples
sintered at lower temperatures tended to exhibit columnar
particles, likely indicating the formation of the B-phase, which
has lower ionic conductivity.*® Depending on the composition

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Relationship between ionic conductivity and composition and heating temperature in Liiy a4, CaxZro_Si,P3_,O1o (52 samples). Panels
(a)—(d) show the logarithm of the measured ionic conductivity at 30 °C as functions of the composition parameters x and y, and the first and
second heating temperatures, respectively. Panels (e) and (f) display the sampling points in the (x, y) composition space and in the first and second
heating temperature space, respectively. The color of each point represents the logarithm of the ionic conductivity at 30 °C, as indicated by the
color bar on the right.
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Fig.2 SEMimage of the surface of a representative Liiyx2,CayZr,_,SixPs_O1, sintered body. The Ca/Si labels indicate the composition y/x ratio.
The two numbers connected by an arrow indicate the temperatures of the 1st and 2nd heating (units: °C).

and sintering conditions, some samples exhibited intra-particle
voids as seen in Fig. 2(c), while others showed significant
particle growth as seen in Fig. 2(d). For these images, during
training and verification, we randomly cropped (512 x 512
pixels) after flipping them horizontally and vertically with
a probability of 50%, and prepared a total of 130 image data
samples, one three for each sample. Center cropping (512 x 512
pixels) was used during testing (see validation method
described later). These augmentations are effective for sup-
pressing overfitting and improving model performance by
diversifying the training data. The target variable was the ionic
conductivity at 30 °C, and due to the wide distribution across
several orders of magnitude, logarithmic values were used. For
each sintered pellet, one-three SEM images were taken at
different surface locations to enlarge the dataset. All three
images from the same pellet share the same measured ionic
conductivity value. (Number of SEM images per sample is listed
in the SI Datasets.)

For training the CNN model, we employed leave-one-out
cross-validation, which is suitable for small datasets. Since
each material had three images, all three were used as the test
set for that material, while the remaining 153 images were used
for training and validation (Fig. 1). Four-fold cross-validation (k
= 4) was performed on the training data, and the hyper-
parameters that yielded the minimum loss were adopted.
Details of these hyperparameters are listed in Table S2. The four
models obtained through k-fold cross-validation were used to
predict the test data, and their average was taken as the final
prediction. Mean Squared Error (MSE) was used as the loss

Digital Discovery

function for training and validation, while Root Mean Squared
Error (RMSE) and the R* score were used as evaluation metrics
for the test data. For training the CNN model, we employed
leave-one-out cross-validation at the sample level, which is
suitable for small datasets. Each material was associated with
1-3 SEM images, and all of the images belonging to the held-out
sample were used together as the test set. The remaining images
(from the other 51 samples, totaling 127-155 images depending
on the test case) were used for training and validation (Fig. 1).
This procedure ensures that no data leakage occurs between
training and test sets, as different images from the same sample
were never split across them.

Four-fold cross-validation (k = 4) was then performed on the
training portion, and the hyperparameters that yielded the
minimum loss were adopted. Details of these hyperparameters
are listed in Table S2. The four models obtained through k-fold
cross-validation were used to predict the test data, and their
average was taken as the final prediction. Mean Squared Error
(MSE) was used as the loss function for training and validation,
while Root Mean Squared Error (RMSE) and the R* score were
used as evaluation metrics for the test data.

Machine learning

Table 1 presents a summary of the neural network architectures
used in this study. We conducted evaluation experiments on
a total of four architectures, including the pre-packaged Effi-
cient Net* and a model based on that of Kondo et al.** Efficient
Net is a deep learning model pretrained on the ImageNet
dataset,* and it is currently widely used due to its higher

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 List of CNN architectures employed table

Model name Mode Figure
Efficient Net-B3 Transfer —

Baseline Original Fig. S1
Baseline with descriptors Original Fig. S2
Baseline with Attention Original Fig. S3

accuracy compared to traditional CNNs, despite having fewer
parameters. In this study, transfer learning was performed
using pretrained parameters. Due to computational constraints,
we adopted EfficientNet-B3, which is considered medium-sized
within the EfficientNet series.

Among the remaining architectures, the “Baseline” model
represents the simplest structure, and the other two are modi-
fications of this “Baseline” model. The detailed structure of the
“Baseline” model is shown in Table 2. In the “Baseline with
descriptors” model, we focused on the Global Average Pooling
(GAP) layer and observed changes in regression accuracy by
concatenating additional material-derived descriptors to the
one-dimensional feature vector. The “Baseline with Attention”
model introduces an attention mask into the intermediate
convolutional layers.****™** Specifically, a single image is gener-
ated from the feature maps using a 1 x 1 convolution,*™* and
a Sigmoid function is applied to this image to transform it into
an attention mask (attention score). This mask is then element-
wise multiplied (Hadamard product) with each original feature
map to produce a set of weighted feature maps, which are
passed on to the next layer. The attention mask highlights the
regions that should be focused on, thus enhancing the effect of
feature extraction through convolution.

The schematic figure of the “Baseline,” “Baseline with
descriptors,” and “Baseline with Attention” architectures are
shown in Fig. S1-S3, respectively. Also codes are available in the
associated repository.* In addition, to address the concern that
the network design might be overly simplistic, we conducted
supplementary experiments by increasing the depth of the
“Baseline” model ((1) doubling convolutional layers, (2)
doubling fully connected layers, and (3) doubling both). The
results, summarized in SI Table S3, show that these deeper
variants did not yield any significant improvement in RMSE
compared to the original Baseline model. This confirms that the

Table 2 A specific structure of “Baseline” architecture
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adopted network depth is already appropriate for the dataset
size, and deeper architectures only increased the risk of over-
fitting without enhancing predictive accuracy.

Results & discussion
Regression analysis

For all evaluations, cropped SEM images resized to 512 x 512
pixels were used as input data. First, the results of predictions
on the test data using a model trained via cross-validation with
the Efficient Net-B3 derived model are shown in Fig. 3(a). As
previously mentioned, three images of the same material were
used as the test set, and the remaining data were used for
training. The diagnostic plot in Fig. 2 shows the average pre-
dicted values for the three test images. The coefficient of
determination (R®) for the test data was approximately 0.63.
While this indicates that qualitative classification between high
and low ionic conductivity materials was achieved to some
extent, it was not sufficient for quantitative evaluation. Partic-
ularly in the low ionic conductivity region, where data points
were relatively sparse, significant prediction errors were
observed. This is believed to be due to insufficient training
caused by the limited amount of available data. We further
examined the variability of predicted values across multiple
SEM images of the same sample (see Fig. S5). The results
showed that the variability was somewhat larger for low-
conductivity samples; however, this is mainly due to the loga-
rithmic scale, which amplifies small numerical deviations.
Importantly, no outlier-like behavior was observed among
images of the same sample, indicating that increasing the
number of SEM images per sample would likely provide only
limited benefit in accuracy while increasing experimental and
computational costs. Fig. 3(b) shows the diagnostic plot for test
data using the “Baseline” architecture. It is clear that the
accuracy is lower compared to the Efficient Net-B3 derived
model. The “Baseline” model is the simplest CNN architecture
used in this study, and it has significantly fewer trainable
parameters (weights) compared to Efficient Net-B3. Neverthe-
less, the prediction trend was similar to that of Efficient Net,
with higher prediction accuracy for images corresponding to
high ionic conductivity (where more data were available), and
lower accuracy for low conductivity images (with less data). To
improve prediction accuracy while keeping the descriptor set

Type Input Kernel Stride Pad Output

Input 512 x 512 x 1 N/A N/A N/A 512 x 512 x 1
Convolution 512 x 512 x 1 3 x3 1 1 512 x 512 X 16
Convolution 512 x 512 x 16 3x3 1 1 512 x 512 X 16
Max pooling 512 x 512 X 16 2 %2 2 0 256 X 256 X 16
Convolution 256 X 256 X 16 3x3 1 1 256 X 256 x 32
Convolution 256 X 256 x 32 3 x3 1 1 256 X 256 x 32
Max pooling 256 x 256 x 32 2 X2 2 0 128 x 128 x 32
Convolution 128 x 128 x 32 3x3 1 1 128 x 128 x 64
Convolution 128 x 128 x 64 3x3 1 1 128 x 128 x 64
Global average pooling 128 x 128 x 64 128 x 128 1 0 1x1x64
Fully connected 1x1x64 1x1 1 0 1x1x1

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Diagnostic plots of the logarithmic values of the measured ion conductivity (30 °C) based on SEM images, predicted by (a) the EffcientNet-
B3 model, (b) the "Baseline” model, (c) the "Baseline with Attention” model, and (d) the “Baseline with descriptors” model. For each material, one
to three SEM images were used for prediction, and the average of these predictions was plotted to represent the sample-level conductivity.

unchanged, a model trained using the “Baseline with Attention”
architecture—which incorporates an attention mechanism—
was used for test predictions. The resulting diagnostic plot is
shown in Fig. 3(c). It was confirmed that the addition of the
attention mechanism improved the R* score to 0.75. For some
materials with low ionic conductivity, the prediction accuracy
was significantly improved; however, there still remained
outlier samples. This suggests that while SEM images contain
information related to ionic conductivity, there is also relevant
information that cannot be captured by SEM images alone.
Notably, despite being a simpler model without pretrained
parameters, the “Baseline” model with attention mechanism

Digital Discovery

achieved results comparable to Efficient Net. This indicates that
a relatively simple CNN architecture may be sufficient for SEM
image analysis related to ionic conductivity.

To improve the prediction accuracy for images of low ionic
conductivity materials—which previously showed lower accu-
racy—we conducted regression analysis using the “Baseline with
descriptors” model, which incorporates additional numerical
vector descriptors such as sintering temperatures, composition,
and so forth (the specific information of added descriptors is
summarized in Table 3). As previously described, material-
derived features were newly appended at the GAP layer. The
ionic conductivity characteristics of oxide solid electrolytes are

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 3 A list of the new descriptors added to the GAP layer of “Baseline with descriptors”. [X], T1, and T2 correspond to the concentration of
element X, the first heating temperature, and the second heating temperature, respectively. All 33 descriptors were standardized before training

so that they were input with equal weighting

[Ca] [si] [Li] [zr] [F] T1 T2

[Ca]? [si]? [Li]? [zr]? [P T1? T2?

[Ca] x [si] [Ca] x [Li] [ca] x [zr] Ca] x [P] [Li] x [Zr] [Ca] x T1 [Ca] x T2
[Si] x [Li] [Si] x [Zr] [Si] x [P] [Li] x [P] [zr] x [P] [Si] x T1 [Si] x T2
[Li] x T1 [Li] x T2 [Zr] x T1 [Zr] x T2 T1 x T2

determined by the material composition and the sintering
temperature necessary to form ion-conducting pathways. There-
fore, in this study, we created 33 descriptors: seven basic
descriptors consisting of the molar ratios of [Li, Ca, Zr, Si, P]
representing the composition of LCZSP and the first and second
sintering temperatures, along with their interaction terms
(products). To ensure stable learning within the neural network,
these 33 descriptors were standardized to align their scales.
Fig. 3(d) shows the diagnostic plots of the “Baseline with
descriptors” model. It achieved relatively high prediction accu-
racy even in the previously challenging low ionic conductivity
region, attaining a significant improvement of an R® score =
0.871. This indicates that while features such as sintered struc-
ture and particle morphology captured in SEM images do contain
some information relevant to ionic conductivity, it is essential to
also include information not directly visible in SEM images, such
as material composition, for accurate prediction of material
properties. Although the dataset size (52 samples, 130 images)
may appear relatively small compared to typical machine
learning benchmarks, it should be noted that in the context of
experimental solid electrolyte research this represents
a substantial collection effort. Each sample requires careful
synthesis, sintering, and characterization, and thus assembling
a dataset of this scale is non-trivial. Our results demonstrate that
even with such a dataset size, the CNN models are able to achieve
reliable predictive performance (R*> = 0.871), highlighting the
practical utility of deep learning approaches for small-data
regimes that are common in materials science. Consequently,
the “Baseline + descriptors” model was found to be the most
accurate among all evaluated models. In addition, we trained
a model using only composition- and sintering-related descrip-
tors, without SEM images (SI Fig. S4(a and b)). The resulting R
score of 0.38 indicates that such descriptors alone can explain the
overall trend but are insufficient for precise predictions.
Comparing the three models—(i) descriptors only, (ii) SEM
images only, and (iii) descriptors + SEM images—clearly
demonstrates that SEM image features provide complementary
information to composition and sintering descriptors, leading to
the best performance in the combined model. Similar trends
were reported by Zhang et al.,*” who used traditional machine
learning to correlate microstructural features (grain size,
porosity, and grain-boundary fraction) with ionic conductivity in
oxide solid electrolytes. Our CNN-based approach builds upon
this concept by automatically learning such microstructural
features from SEM images while integrating compositional and
processing descriptors. To further evaluate the contribution of

© 2025 The Author(s). Published by the Royal Society of Chemistry

each descriptor, a feature importance analysis using SHapley
Additive exPlanations (SHAP)*™ was conducted. Fig. S4(c) shows
the SHAP summary plot for the “descriptors only” model. The
results indicate that the first heating temperature (T1) and Si
content are the most influential features, followed by their
interaction terms (e.g., Si x T1, Zr x T1). These factors are
physically meaningful, as excessive Si is known to promote the
formation of low-conductivity secondary phases, while a lower
first heating temperature reduces sintering density and connec-
tivity of the ion-conducting network. Therefore, the addition of
composition- and process-related descriptors to the CNN frame-
work effectively complements the SEM image features and
enhances the model's ability to capture the influence of pro-
cessing and composition on ionic conductivity.

Correlation between SEM images and ionic conductivity

Among the methods for evaluating the interpretability of CNNs,
mapping techniques such as Grad-CAM®* and Score-CAM>* are
widely known. In this study, we adopted the method proposed
by Kondo et al.** to visually assess which features in SEM images
contribute to ionic conductivity. This method is only applicable
to CNN structures that incorporate Global Average Pooling
(GAP). A conceptual diagram of this method is shown in
Fig. 4(a).

The GAP layer represents a comprehensive value obtained by
learning various features through multiple convolution and
pooling layers. Therefore, it can be assumed that the one-
dimensional values obtained after GAP have either positive or
negative correlations with the ionic conductivity of the input
images. By averaging the information in each correlation group,
we can visualize their contributions. The visualization process
from CNN training is outlined below:

(i) Using the trained CNN model, divide the feature channels
into groups that show positive and negative correlations with
ionic conductivity.

(ii) For each group, average the feature maps obtained after
the final convolution layer (GAP). This means aggregating the
information into a single feature map by averaging the pixel
values across all channels in the group.

(iii) Since the feature maps generated in (ii) are down-
sampled compared to the original input image, resize them
back to the original image size.

(iv) In the resulting resized feature map, the pixel locations
with values higher than the overall median are identified as
important regions contributing to ionic conductivity. A masking
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(a) Schematic image of correlation between each channel and ionic conductivity. (b) A histogram of the correlation coefficients between

the GAP feature channels and the ionic conductivity. Yellow and light blue bars correspond to positive and negative correlations, respectively.

operation is then applied to the original SEM image, displaying
only these regions.

This series of operations, from (i) to (iv), is referred to as
segmentation. In this study, segmentation was performed using
the trained “Baseline with descriptors” model, which had ach-
ieved the highest regression accuracy, to visualize the relation-
ship between SEM images and ionic conductivity.

Fig. 4(b) shows a histogram of the correlation coefficients
between feature channels and ionic conductivity. The model used
had 64 channels in its GAP layer. Fig. 4(b) presents a histogram of
the correlation coefficients between each channel and ionic
conductivity. In our model, the global average pooling (GAP) layer

Synthesis Logo
conditions at30°C
Ca/Si=0.15/0.10 -4.59
10001200
Ca/Si=0.15/0.15
10501250 -4.68
Ca/Si=0.1/0.15 -5.01
900->1250
Ca/Si=0.15/0.4 -6.83

1200->1200

processes 64 channels. As shown in Fig. 4(b), the channel-wise
correlation coefficients are relatively low ranging from —0.5 to
+0.3. Although the feature maps extracted by the CNN at the GAP
layer do not exhibit strong correlations individually, weak inter-
channel correlations are present. By aggregating these weak
signals, a high overall correlation as shown in Fig. 3 can be
derived. Fig. 5 presents segmentation results for four represen-
tative materials with high and low ionic conductivity. In the
positive examples, it was observed that regions with larger
particles were recognized as contributing to high conductivity.
Conversely, in the negative examples, grain boundaries were
identified as low-conductivity regions. Since grain boundaries

SEM and Segmentation results

negativ

=

positive

$

sitive

sitive

sitive

Fig. 5 Excerpts of the segmentation results. Ca/Si and 1st heating/2nd heating represent the molar ratio in the composition and heating
temperature (°C), respectively. Segmentation results for the other SEM images are provided in S| datasets.
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often disrupt crystal structures, leading to reduced conduc-
tivity,>>**** this negative judgment aligns with previous findings.
Large, isotropic grains likely represent the bulk of the high-
conductivity o-phase and were thus evaluated positively.
Notably, channels exhibiting relatively strong negative correla-
tions (i.e., <—0.25) are more prevalent than those with positive
correlations (i.e., >+0.25), as shown in Fig. 4(b). This trend
suggests increased sensitivity to microstructural features such as
grain boundaries and voids observed in the SEM images.

These segmentation results are consistent with established
knowledge. However, prior observations have indicated that
columnar-like small particles in LZP materials correspond to
the low-conductivity B-phase.”*?® Interestingly, in Fig. 5(c and
d), even the bulk of columnar-like crystals—presumed to be B-
phase—were evaluated positively, yielding results that differ
from known expectations. These results suggest that accurate
prediction of ionic conductivity requires the inclusion of
composition and structure information. In our “Baseline +
descriptors” model, explicitly providing composition and
sintering-temperature data enabled us to incorporate details
about the resulting o- and B-phases.

Nonetheless, this method demonstrates the ability to extract
valuable insights regarding material microstructures related to
ionic conductivity directly from SEM images. Typically, inter-
preting SEM images requires expert knowledge and experience
in materials research, but segmentation can help reduce the
effort required for such analyses and improve efficiency.

Conclusion

In this study, we used various CNN architectures to predict the
ionic conductivity of LCZSP materials based on SEM images that
contain complex structural information. Although SEM images
are manually acquired and thus difficult to obtain in large
quantities, we demonstrated that with appropriate CNN archi-
tecture design, high prediction accuracy can be achieved even
with a limited dataset of only 130 images. The “Baseline +
descriptors” model, which incorporates both compositional and
sintering condition information into the SEM image analysis,
achieved a high R® score of 0.871. The ability to integrate
synthesis conditions into the model is a key advantage of
leveraging raw data. By combining this with intuitive information
from SEM images, a more powerful predictive model can be
realized. Furthermore, we explored the interpretability of the
trained models by performing segmentation based on the
correlation between GAP layer channels and ionic conductivity.
By categorizing the channels into positively and negatively
correlated groups, we were able to clearly distinguish high-
conductivity and low-conductivity regions within SEM images.
The results showed that the presence of large particles tends to
correspond with higher ionic conductivity, whereas the presence
of small particles or grain boundaries is associated with lower
conductivity. This indicates that interfacial regions between
particles play a critical role in the ionic conductivity of solid
electrolytes. Interestingly, even relatively simple convolutional-
only architectures yielded good segmentation results, suggest-
ing that complex operations are not necessarily required to

© 2025 The Author(s). Published by the Royal Society of Chemistry
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capture material features effectively. In fact, excessive convolu-
tional stacking may obscure the original pixel-level location
information, potentially impairing accurate interpretation.
Moreover, while SEM image data alone cannot fully characterize
the ionic conductivity of solid electrolytes, we found that incor-
porating information such as composition and sintering
temperature into the GAP layer compensates for this deficiency.

Furthermore, transfer learning represents a promising
future direction. Our preliminary tests with EfficientNet-B3
pretrained on ImageNet already improved baseline accuracy,
suggesting that the availability of larger SEM datasets will
further enhance generalizability and emphasize the importance
of open data initiatives. This methodology is not only applicable
to the LCZSP materials studied here but can also be extended to
other systems, enabling the effective utilization of routinely
acquired SEM images.
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