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crystal explorer for rapid
polymorph identification

Edward C. Lee,† Daniel Salley,† Abhishek Sharma and Leroy Cronin *

Crystallisation is central to purification and to determining structure andmaterial properties, yet small changes

in conditions can produce many different polymorphs with distinct behaviours. Because crystallisation

depends on multiple variables including solvent, temperature, pressure, and atmosphere and often

proceeds unpredictably, mapping these outcomes is slow and expensive. Here we introduce a robotic

crystal search engine that explores crystallisation space efficiently and autonomously. The platform couples

high-throughput liquid handling with a closed-loop computer-vision system combined with human

supervision that uses machine learning to detect crystals, distinguish polymorphs, and identify previously

unseen forms. Using a benchmark polymorphic compound, we show that the robot can rapidly navigate

a high-dimensional solvent space, quantify relative polymorph yields directly from images, and build

a phase diagram without recourse to crystallography. This approach reveals the full set of polymorphs

accessible under given conditions and identifies the optimal conditions for producing each one.
Introduction

Crystal polymorphism occurs when a compound can form
multiple distinct crystal structures.1 Polymorphs exhibit
different physical,2 spectroscopic,3 surface,4 mechanical5 and
chemical properties,6 and as such, identication and reliable
separation of different crystal polymorphs is vital in many
elds.7 Additionally, for active pharmaceutical ingredients,
patenting laws protect the polymorph, not the molecule.3

Polymorphism arises due to the effects of specic crystallisation
conditions on inter- and intra-molecular interactions, such as
hydrogen bonding, pi-stacking, and van der Waals forces, which
affect the molecular orientation of and between nucleating
molecules.8–10 This gives rise to three possible features which
may or may not be desired: concomitant crystallisation of
different polymorphs, preferential crystallisation of polymorphs
with sub-optimal properties, and spontaneous conversion to
a more thermodynamically stable polymorph.9

For these reasons, a comprehensive knowledge of
a compound's polymorphs and polymorph formation condi-
tions is important for reproducibility, scaling, and yield opti-
misation. However, any exhaustive search to obtain all of
a compound's polymorphs is both resource and time-expensive
due to the high dimensionality of parameters that affect crys-
tallisation that must be explored. Previously, there have been
studies of crystallisation using automated platforms such as
robotic handling of crystals such as sample scraping,11 RAPID
niversity Avenue, Glasgow G12 8QQ, UK.

y the Royal Society of Chemistry
platform for perovskites,12 solid state chemistry including
PXRD,13 protein crystallisation,14 exploring polymorphic land-
scape of organic cage.15

While high-throughput automation has helped, inefficient
strategies such as Grid Search (GS)16 are oen applied with the
aim of checking all conditions to a nite resolution, which is
determined by available resources. GS is a sub-optimal strategy
due to an excess of sampling points in regions where there is
high outcome certainty, and a decit of sampling points where
outcome uncertainty is low, and this results in an inefficient use
of any experimental budget. A better approach is to use an
exploration/optimisation strategy combined with active
learning, where sampling points are determined by a function
operating on some measurable feature of the system being
investigated, a method that has shown promise in many areas
of chemistry.17–19 However, applying this strategy to polymorph
exploration presents two main challenges. Firstly, the only
relevant observable feature is the relative yield of each poly-
morph, which is hard to quantify without expensive manual
methods such as crystallography, and secondly, the response
surfaces for polymorph yields are typically at, making explo-
ration and optimisation by yield alone impossible.

To resolve both of these problems, we have developed
a method that uses an automated high-throughput closed-loop
with human-in-the-loop control approach to automatically
quantify relative polymorphic yields using computer vision, and
optimise the search strategy to prioritise regions of crystal-
lisation space with the highest uncertainty using Bayesian
exploration, see Fig. 1. In addition to being able to quantify the
amount of each known polymorph in a sample, this approach is
able to identify the presence of any new polymorph discovered,
Digital Discovery
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Fig. 1 Polymorph exploration discovery loop. (A) A workflow of generalised closed-loop for the exploration of large combinatorial space. (B)
Closed loop experimental platform together with human-in-the-loop supervision. Top left: crystallisation conditions are chosen from
a parameter space initially at random and subsequently based on previous findings. Top right: the automated platform then prepares the
crystallisation solutions as specified. Bottom right: experimental samples of crystallised material are imaged using a high-definition camera.
Images are segmented into crystal/non-crystal using computer vision, as well as into different polymorph classes. New polymorphs are identified
as the areas where the difference between the set of “crystal” pixels and the union of all “polymorph” pixels is greater than 0. Bottom left: these
data are then used to create a Bayesian surrogate model from which the points with the highest uncertainty are selected in subsequent
generations.
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which may be characterised outside of the closed loop. Once
characterised, the conditions required to form new discovery
undergo Bayesian optimisation, whereby, the relative amount
(as determined by computer vision) of the new polymorph is
optimised. It is important to note that exploration and exploi-
tation strategy is closed loop, however, once an unknown or
novel polymorph is identied, it does require human inter-
vention for offline XRD characterisation for phase conrmation
and to introduce it in the algorithmic framework. Hence, the
identication of new polymorph requires human-in-the-loop,
but in principle, the crystallographic identication can be per-
formed at later stage, and a new label can be assigned for
a novel polymorph during a closed-loop process.
Digital Discovery
Here, we show how the combination of polymorph identi-
cation and quantication computer vision can be used together
with a Bayesian exploration/optimisation strategy can efficiently
explore a crystallisation space comprised of the relative
amounts of four solvents for the compound 5-methyl-2-[(2-
nitrophenyl)amino]thiophene-3-carbonitrile, build a phase
diagram and discover the conditions to form a rare polymorph
in the crystallisation space.
Results and discussion
Platform

The automated platform was inspired by previous designs20 and
consisted of a liquid handling and crystallisation robot with
© 2026 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5dd00203f


Paper Digital Discovery

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

2 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

4/
20

26
 1

2:
46

:4
9 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
a capacity of 72 parallel crystallisations from a total solvent
volume of 2.5 ml, as well as automated imaging using a camera
positioned below the crystallisation vials. The platform itself
and its signicant components/assemblies can be seen in Fig. 2
and details of its construction and operation are described in SI
Section 2.
Crystal-vision

A computer-vision based library, named crystal-vision, was
developed for automated detection, classication, and
segmentation of in situ crystal images based on Mask RCNN21

computer vision by loading a pre-trained image classication
model and retraining the nal layers on images of crystals. This
enabled the creation of image analysers which could be used to
infer the presence, type, location, and size of crystals in
a sample vial. The detection capability was used to distinguish
between crystal presence and absence, whereas classication
was used to identify what subclass of crystal had been identi-
ed. The classier was trained with two subclasses: morphology
and identity. The morphology classier could distinguish
between amorphous/non-crystalline material, powder crystal-
line samples, overlapping crystals/crystal clusters, single/
isolated crystals, and particular features of crystals such as
tracht. The identity classier could identify the compound of
Fig. 2 Fully automated robotic platform. (A) Shows a brief overview of th
including dispensing, stirring, vial transfer, storage, and imaging. (B) Exper
(a) Shows the position of the overhead stirring assembly, (b) 24 vial sample
gripping assembly, (e) vial storage area, (f) complete platform as built (w
transfer gripper. (h) imaging set-up with C-mount raspberry Pi camera l

© 2026 The Author(s). Published by the Royal Society of Chemistry
the crystal, provided that it had been previously incorporated
into the classier training database. A limitation to this method
is the possibility of type I and type II errors. A type I error can
quickly be rectied by performing X-ray analysis on the crystal,
and the dataset being updated. However, a type II error would
result in a new polymorph being missed. While this method
cannot self-correct this type of error, it should be noted that this
is also a problem faced by manually examining samples.
Training details are provided in SI Section 3.1 and 3.2 together,
these capabilities allowed the detection of crystallisation onset
time, and crystalline quality of a specic compound or
polymorph.

With the inclusion of image segmentation, the size and
location of each crystal could be detected, and thus growth rates
could be monitored for multiple single crystals simultaneously
in one reaction vial. Alternatively, the system could be used to
identify the presence of a previously unobserved crystal. This
method involved using a classier which had been trained on
many types of crystals (classier A) to recognise whether
something is or is not a crystal. Another classier which had
been trained to recognise the specic identity of a crystal
(classier B) could then be applied to attain the identity of
crystals in the sample. A positive response in a region from
classier A but a negative response in the same region from
classier B implies that the region corresponds to a crystal
e significant steps the platform performs for each sample generation,
imental details of the platform including CAD design and built assembly.
wheel, (c) location of the imaging setup, (d) X and Y-axis motors for the
ith a rendered CAD image), (g) rendered CAD and actual image of vial
ens on a HQ raspberry Pi camera.
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Fig. 3 Simulation of polymorph crystallization experiment. (Left) Simulated ground truth likelihood heatmap for each polymorph in different
solvent conditions (e.g. OP is much more likely to crystallize in THF than EtOH. MeCN is intermediate). (Right) Simulated likelihood heatmap for
each polymorph under different solvent conditions across generations. Three generations are shown here, 2, 6, and 9. Over multiple generations,
the likelihood approximates the ground truth for each polymorph shown in (left). For additional plots including scores, uncertainties, and error,
see SI Section 3.
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whose identity is unknown, and therefore potentially a new
discovery. Initially, classier B would suffer from overtting due
to the lack of data at the start of the experiment. However, this
problem could be mitigated by incorporating more data as they
were collected (see SI Section 3).
Exploration

The strategy for polymorph search and discovery involved
a Bayesian methodology, where data from previous experiments
were used to construct a model of the polymorphic system from
Gaussian processes. The investigated parameters were the
proportions of each solvent in the crystallising system, and the
Digital Discovery
observed parameters were the proportions of each polymorph
detected by the crystal-vision detector. In this way, separate
surrogate models could be constructed for each polymorph to
predict the likelihood of each polymorph's formation at any
point, as well as the uncertainty (variance) associated with this.
The aim of exploration was to obtain as accurate a model as
possible across all investigated parameters in as few experi-
ments as possible, increasing the likelihood that evaluation
points which result in novel or rare outcomes are located faster
than by methods such as grid search.

Specically, crystallisation conditions over multiple genera-
tions were to maximise the negative integrated posterior
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Crystal polymorphs of ROY detected, segmented, and labelled using mask RCNN image detection using two detectors. (1) Identified the
presence of crystalline material and (2) identified the presence of each type of crystal from the set [ON, YN, OP, Y, R] times. (A) Detection of ON
polymorph only, (B) detection of OP + Y polymorphs, (C) detection of ON + OP + R polymorphs, and (D) detection of YN polymorph only.
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variance of the surrogate model. This was undertaken in an
automated semi-closed loop process using an automated plat-
form and an active learning search algorithm using the BoTorch
package22 (See Fig. 1). A set of simultaneous crystallisations
were performed on the automated platform by mixing samples
of the dissolved compound with other solvents at 25 °C and 1
atm pressure, then waiting 12 hours for slow evaporation and
crystallisation to occur.

At this point, the vials were robotically transferred to an
imaging platform, and the images were analysed using two
classiers created using the crystal-vision library to detect and
identify known crystals and to alert the user to any unknown
crystals, as described above. This process was simulated in silico
(SI Section 3.3) with a random acquisition function being
compared to NIPV.
Fig. 5 Model state from experimental observations from generations of
model over each generation. A model mean value of 1 expresses that them
a particular polymorph is 100%. This can increase or decrease over ge
values are initially noisy, but are updated each generation and eventua
maximum value obtained in a single experiment for each polymorph ac
which is updated each generation. Initially the results are noisy due to the
point can result in a different outcome. However, over subsequent gene
uncertainties stabilise.

© 2026 The Author(s). Published by the Royal Society of Chemistry
Upon detection of an unknown crystal, the closed loop would
be interrupted to allow for verication of the new polymorph by
X-ray diffractometry (XRD). This introduces human-in-the-loop
supervision for detailed analysis using XRD. On conrmation
of a new polymorph, the producing conditions were repeated
multiple times in order to obtain a larger training dataset of the
polymorph, and the classier was retrained incorporating
these.

Once scores for each polymorph in each reaction had been
calculated, they were incorporated into a Bayesian network and
a surrogate model was built from the posterior probabilities
using Gaussian processes. Since we were interested in priori-
tising exploration of uncertain regions in the reaction space,
subsequent reaction conditions were then chosen to minimise
the uncertainty in the surrogate models of each polymorph,
crystallisation experiments. (A) The highest likelihood predicted by the
odel has found a location where it believes the likelihood of observing

nerations as new observations update the model's predictions. These
lly converge as the model is exposed to more observations. (B) The
ross each generation. (C) The model uncertainty for each polymorph
probabilistic nature of crystallisation, where sampling of the same data
rations, the model uncertainty decreases for each polymorph until the
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Fig. 6 Generation 7 experiments and observations. Top left-stacked bar chart showing the ratios solvent composition for each reaction. Top
right-compositional scatter plot of solvents used in each reaction. Vertices correspond to 100% of one solvent, opposite faces correspond to 0%
of that solvent. Middle left-stacked bar chart showing the polymorph proportions observed for each reaction. Middle right-polymorph
proportions represented as pie charts located appropriately in a compositional scatter plot of solvents. Bottom-Plots showing four ternary
heatmaps of the surrogate model where the sum of 3 components = 1, and the fourth is 0. Each heatmap corresponds to one surface of the
tetrahedron above, and the whole can be viewed as a flattening out of the tetrahedron.
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specically by applying an algorithm which would choose
a reaction that would minimise negative integrated posterior
variance (NIPV). This allowed an efficient reaction selection
routine to maximise exploration away from known/expected
outcomes in a system with high input and output dimension-
ality. Once solvent mixtures were selected, the automated plat-
form was able to perform a subsequent generation of
crystallisations and continue the loop.

The compound 5-methyl-2-[(2-nitrophenyl)amino]
thiophene-3-carbonitrile (also known as ROY) is one of the
most polymorphic compounds known (12 forms reported to
date)23 was selected as a potential candidate for the discovery of
further polymorphic forms. It also has the property that several
of its differently coloured polymorphs can form under similar
conditions, resulting in concurrent polymorph crystallisation
and intrinsically noisy data. As such, nding trends in high
dimensional spaces, and therefore rational search and puri-
cation strategies is difficult. Because of this, performing a grid
search in a large crystallisation space is an inefficient strategy,
making this a good system on which to apply Bayesian
exploration.
Simulated experiments

Simulations (see methods) were performed in order to dene
expected behaviour of the system over successive reaction
generations and determine what the consequence of searching
Digital Discovery
in space with high dimensionality of both deterministic inputs
and stochastic outputs. The simulations show that there is
initially a large degree of uncertainty in the models, and like-
lihood is not consistent with the ground truth data. However,
over successive generations the predicted likelihood closely
resembles that of the ground truth data, indicating that the
model had found the correct crystallisation parameters.
Crystal detection

Every generation resulted in 72 images of crystals which needed
to be classied and scored according to the relative amounts of
each polymorph present in the sample. A general crystal clas-
sier had been trained on data from the MARCO dataset,
together with a set of samples of ROY crystals obtained from
initial screening and was not retrained for the duration of the
experiment. This could only classify one object, labelled as
“crystal”. For the identication and scoring of each polymorph,
we began by assuming no knowledge a priori about polymorph
appearance, abundance or identity. As such, images obtained in
the rst generation had to be manually labelled and the crystals
undergo diffractometry where the polymorph identity aer
microscopic visual inspection was uncertain. Due to growth
specic conditions, visually dissimilar crystals were occasion-
ally found aer XRD analysis to be the same polymorph, visually
similar could be mislabelled as another polymorph, (e.g. some
instances of R and OP). However, incorporating these disparate
© 2026 The Author(s). Published by the Royal Society of Chemistry
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samples into the training data allowed the model to generalise
and correctly classify similar samples, see Fig. 4.

The rst generation was trained on 50 images of the poly-
morphs OP, ON, R, Y and YN. The classier was retrained aer
generation 2 on a further 30 images in order to increase its g-
eneralisability and aer generation 5 when polymorph ORP was
conrmed by XRD. To assign a score for each polymorph in
a reaction, the fractional area of each polymorph was calculated
from the size of its pixel mask.
Physical experiments

In the experiments, 7 generations of 24 triplicate crystallisations
were performed. Each consisted of a 1 ml solution of ROY in
acetone (3.85 mmol L−1) being mixed with a 1.5 ml mixture of
four other solvents (a: ethanol, b: methanol, c: acetonitrile, and
d: tetrahydrofuran) in different ratios, where a + b + c + d = 1.
The values of each of the solvent variables were chosen at
random for the rst generation from a Dirichlet distribution.
The image classiers were those as described in the section on
crystal detection, and the generation acquisition function used
those as described in the simulation section, except that 4
solvent dimensions were investigated, and the simulated scores
for each polymorph were replaced by the scores obtained from
the image detection procedure outlined above.

Initially there was a large uncertainty in the models for each
polymorph due to the large volume of unexplored space, but
this decreased over successive generations. The veracity of the
model can be checked when comparing the expected error
between evaluated points and the model prediction at each of
those points as seen in Fig. 5a. However, the mean error
difference between subsequent generations decreased over
time, indicating that the model was converging on an overall
solution. Fig. 5b shows the largest abundance of each poly-
morph detected across the entirety of all generation, which can
be used as an expected baseline yield for optimisation experi-
ments: a region with 100% polymorph does not need optimised.
Fig. 5c shows the uncertainty of each prediction reported by the
model. This trends down over time due to successive additional
data points. The data is noisy due to the probabilistic nature of
crystallisation, which may cause in an increase in uncertainty if
the initial dataset of low chance observations occur in early
generations.

This process was repeated for 7 generations, and the nal
surrogate models are shown in Fig. 6. The rst 5 generations
saw only the rst 5 initial polymorphs (ON, YN, OP, Y and R),
however, in generation 6, a sample was classied as containing
crystals but not as containing any known polymorph. The
crystals in the sample were identied by X-ray crystallography as
another polymorphic form of ROY, ORP, and the polymorph
classier was retrained to incorporate this, with the inclusion of
an additional class. One crystallisation generation could be
performed per day, accounting for manual instantiation, auto-
mated addition, evaporation and clean-up processes.

However, since the number of instances of this polymorph
was only one, a generation was then created to conrm and
establish the conditions required to produce ORP, as well as to
© 2026 The Author(s). Published by the Royal Society of Chemistry
gain additional training data for image detection. This was
done by optimising for increased Expected Improvement (EI) of
ORP over all the input parameters instead of decreased NIPV.
Each of the Bayesianmodels was then updated to accommodate
the new polymorph and the experiment was continued.
Conclusions

We have shown that by using a combination of robotic auto-
mation, computer vision and articial intelligence it is possible
to run open-ended search and exploration loops for new poly-
morph forms in a complex polymorphic system. Our system was
able to perform fully automated crystallisation cycles of
a solvent space in triplicate to produce high-resolution images
of multiple polymorphs of 5-methyl-2-[(2-nitrophenyl)amino]
thiophene-3-carbonitrile (ROY). By employing two image clas-
siers trained on different features, rst to determine the
presence of crystals and second to classify the crystal form, we
have shown that by using computer vision, different poly-
morphs can be automatically distinguished, with minimal
human intervention. We have been able to discover the crys-
tallisation conditions that lead to the rapid localisation and
formation of a polymorph that had not previously been reported
when using this combination of crystallisation solvents. As
such, we believe this method is a viable strategy for the
discovery of novel polymorphs for less well-explored
compounds.
Methods
Chemical reagents

All solvents used for crystallisation solutions and cleaning were
HPLC grade from Sigma-Aldrich. 5-Methyl-2-[(2-nitrophenyl)
amino]thiophene-3-carbonitrile (>97%) (ROY) was obtained
from Tokyo Chemical Industry Ltd.
Platform

The platform was constructed in-house from a range of 3D
printed, laser-cut and commercially available components.
Further details of the platform and an overview of the subas-
semblies can be seen in SI Section 2, and a STEP le of
a complete experimental setup can be found on GitHub. The
soware control of the platform for basic operations was written
in Python 3. The soware for image analysis was written in
Python using Detectron2 and OpenCV packages.
Simulations

A system with 4 possible polymorphs was initialised, where the
likelihood of a single crystallisation event of a particular poly-
morph at a particular time point in an experiment followed
a Poisson distribution (eqn (1)), which is typical of crystallising
systems:24

Pðx;lÞ ¼ lxe�l

x!
(1)
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where x = 1 for a single crystallisation, and l is the polymorph
crystallisation rate, which is determined by eqn (2)

l = Ae−DG*/kT (2)

where A is a concentration independent pre-exponential factor
based on molecular attachment rates and DG* is the
(concentration-dependent) nucleation free energy barrier given
by

DG* ¼ K
g3nm

2

ln2ðs=s*Þ (3)

where K is a constant to represent temperature and the Boltz-
mann constant, g is the polymorph interfacial energy, nm is the
polymorph molar volume, s* is the polymorph solubility, and s

is the concentration of the solution phase, which is determined
by the number of moles, M, in solution divided by the solution
volume v. The polymorph solubility at a point, s* was simulated
as the magnitude of a probability function of a Gaussian
distribution, with randomly assigned mean and covariance, at
that point. From this, a heatmap can be created of the phase
likelihood at each point, (x) for each polymorph p by comparing
the nucleation free energy barrier of this phase versus other
polymorph phases:

Pðp; xÞf DG*
pP

k

DG*
k

(4)

Simulated crystallisation conditions were generated using
the same method as physical experiments, i.e. an initial set of
solvents whose proportions were chosen at random from by a 3-
dimensional Dirichlet distribution, as shown in Fig. 3. Each
simulated crystallisation experiment was initialised with
a volume, v0 and solution moles, M0, and then proceeded in
a series of timesteps, where at every point the volume of solvent
was reduced by a xed amount to simulate evaporation. This
caused an increase in the solution concentration, which altered
the crystallisation probability, P(x,l), of each polymorph at that
timestep and ratio of solvents. A crystallisation event for
a particular polymorph was then determined by comparison of
the crystallisation likelihood with a pseudorandom number
between 0 and 1 taken from a uniform distribution. On
a successful crystallisation event, a new polymorph crystal was
initialised with a number of moles of compound (dependent on
polymorph),Mc and this value was subtracted from the number
of moles of compound remaining in the solution phase. In each
subsequent timestep, every crystal then grew in number of
moles based on the equation:

Mc(t + 1) = Mc(t)(1 + Kpc(t)) (5)

Mc(t) is the number of moles of a crystal at timestep t, Kp is the
growth constant for polymorph p, and c(t) is the solution
concentration at timestep t.

The total number of timesteps was set so that the nal
solution volume would be 0, and the crystallisation parameters
of each polymorph were such that complete conversion of
Digital Discovery
solution compound moles to polymorph moles would be ach-
ieved in every experiment. These nal values could then be
compared against the theoretical proportions of each poly-
morph, which is determined by the ratio of initial likelihoods of
each polymorph at timestep t = 0. Four methods of generation
instantiation were simulated and compared: random, uncer-
tainty minimisation, and estimated improvement. 10 genera-
tions of 24 triplicate simulation crystallisations were
performed. It should noted that while in this system solvent
evaporation is constant for each solvent, a physical system
would exhibit variable evaporation rates of each solvent.
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