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The accurate prediction of reaction rates is an integral step in elucidating reaction mechanisms and
designing synthetic pathways. Traditionally, kinetic parameters have been derived from activation
energies obtained from quantum mechanical (QM) methods and, more recently, machine learning (ML)
approaches. Among ML methods, Bidirectional Encoder Representations from Transformers (BERT),
a type of transformer-based model, is the state-of-the-art method for both reaction classification and
yield prediction. Despite its success, it has yet to be applied to kinetic prediction. In this work, we
developed a BERT model to predict experimental logk values of bimolecular nucleophilic substitution
(Sn2) reactions and compared its performance to the top-performing Random Forest (RF) literature
model in terms of accuracy, training time, and interpretability. Both BERT and RF models exhibit near-
experimental accuracy (RMSE = 1.1logk) on similarity-split test data. Interpretation of the predictions
from both models reveals that they successfully identify key reaction centres and reproduce known
electronic and steric trends. This analysis also highlights the distinct limitations of each; RF outperformed

rsc.li/digitaldiscovery

Introduction

Reaction rate prediction is crucial for understanding reaction
mechanisms and optimising synthetic pathways towards
desired target compounds. Transition state theory (TST)
connects the experimental rate constant (k) to the Gibbs free
energy of activation (AG*) through the Eyring equation,

kT _act
k= e (1)

While quantum mechanical (QM) methods, such as Density
Functional Theory (DFT), are commonly used to estimate AG*,
they often fail to provide the required chemical accuracy of
1 keal mol ™~ *, which roughly corresponds to a change in k of one
order of magnitude.*” This failure has been associated with the
use of low-level electronic structure methods,*® inaccurate
description of entropic contributions,*® and poor description of
solvent effects by implicit solvent models.*>” Reactive Force
Fields, such as ReaxFF® and the empirical valence bond (EVB)®
method, can, in principle, address the challenge of describing
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BERT in identifying aromatic allylic effects, while BERT showed stronger extrapolation capabilities.

reactivity in explicit solvent; however, their parameterisation
remains time-consuming.

In recent years, machine learning (ML) has emerged as
a promising alternative for efficiently computing reaction
kinetics. This includes the use of machine-learned interatomic
potentials (MLIPs) that reduce the cost of modelling solvent
explicitly,'® as well as ML models that predict QM-computed
activation barriers or experimental log k values."? Given the
limited availability of experimental kinetic data, DFT has often
been used for training these models despite its inherent limi-
tations. Prominent QM-based ML models developed for acti-
vation energy predictions include the work of Green et al.,** who
developed a graph-based deep learning model (directed
message passing neural network: D-MPNN) to predict gas-phase
activation energies for various reaction types. Grayson et al.
employed transfer learning (TL) to adapt a pre-trained NN
initially trained on Diels-Alder reactions to predict barriers for
other pericyclic reactions, thus reducing the need for extensive
datasets.*” Recently, Li et al. systematically explored the use of
TL, delta learning (aligning low-level QM data with CCSD(T)-
F12a targets), and feature engineering (incorporating
computed molecular properties) to improve activation energy
predictions using the D-MPNN model, finding delta learning to
be the most effective approach.*®

Models trained on experimental log k values have been pio-
neered by Madzhidov et al.** However, due to the scarcity of
experimental data, they have been limited to a handful of
reaction types, including Sn2,M71 E2,'418 and
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cycloadditions.***?* To predict the reaction rates for these
types, the authors developed Random Forest (RF) models that
use in silico Design and Data Analysis (ISIDA) fragments,* along
with information about reaction conditions, including the
solvent dielectric constant and temperature. The models ach-
ieved an RMSE = 1.0logk on validation data, with the Sy2
model further evaluated on an external test set."* For cycload-
dition reactions, they demonstrated that conjugated quantita-
tive structure-property relationships (conjugated QSPR), which
embed the Arrhenius equation into the ML architecture (in this
case, a Ridge Regressor and a Neural Network), accurately pre-
dicted experimental values of log k, pre-exponential factor log 4,
and activation energy (E,). On the validation data, R* values of
0.75, 0.57, and 0.90 for log k, log 4, and E,, respectively, were
achieved (RMSE not provided).*

In addition to reaching high accuracy, interpretability in ML
models has become increasingly important.> Interpretability
can help identify sources of prediction error,**** identify influ-
ential features,'>***” and verify whether predictions are chemi-
cally meaningful.***>**3° For example, in kinetics predictions,
Green et al.™ demonstrated how learned reaction representa-
tions from their D-MPNN model clustered in terms of reaction
type and reactivity. Similarly, von Lilienfeld et al.*® interpreted
their Reactant-To-Barrier (R2B) model by plotting the difference
between the predicted E2 and Sy2 barriers based on LG,
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nucleophile, and R groups, demonstrating its predictions
aligned with heuristic reactivity rules. Furthermore, Persson
et al.** developed an equivariant graph neural network (GNN)
that uses frontier molecular orbital coefficients of reactants and
products as node features to predict QM activation barriers of
Sn2 reactions, as well as molecular orbital coefficients of the
transition state, allowing for chemically intuitive interpreta-
tions. Madzhidov et al.** also analysed the importance of solvent
descriptors in predicting reaction rates and showed that their
conjugated QSPR model successfully replicated the Arrhenius
relationship between log k and temperature.” Here, we inter-
pret Madzhidov's RF in the context of known reactivity rules and
compare its performance to a Bidirectional Encoder Represen-
tations from Transformers (BERT) model.

Transformer-based models, particularly BERT, have gained
popularity in chemistry as an alternative to shallow ML models,
treating chemistry as a language task. These models have been
applied to a range of (bio)chemical applications, including
molecular discovery,*** reaction classification,® and yield
prediction.** We refer the reader to relevant reviews illustrating
the use and extension of transformer models for chemical
applications.***” In kinetic prediction, learned reaction repre-
sentations from a pretrained BERT model have been used as
a descriptor for predicting activation free energies of SyAr
reactions using Gaussian Process Regression (GPR), achieving
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Fig. 1 Overview of the reaction under study and feature representation. (a) Pictorial representation of an Sy2 reaction, highlighting the

nucleophile (red), leaving group (LG, orange), electrophilic C (purple),

and substituting R groups (grey). (b) In the RF model, features are rep-

resented using ISIDA fragments, reciprocal temperature, and solvent properties. In the BERT model, features are encoded from SMILES strings.
Although not shown, ionic strength and mole fractions of each solvent component were appended to the SMILES, as shown here for reciprocal
temperature. (c) The influence of a given feature on the predicted log k is computed using Kuz'min prediction contributions®® for RF and |Gs>+5°
for BERT; Q, K, V, and d; denote queries, keys, values, and feature dimension respectively, used to calculate self-attention scores in the BERT
model, £ denotes BERT token embeddings, and H|c sy denotes the hidden representation of the [CLS] token prepended to the SMILES input.
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an RMSE of 1.4 + 0.2 kcal mol™' (1.0logk) on validation
data.>**®* However, to our knowledge, no transformer-based
models have been trained directly for kinetic prediction.

Here, we train a BERT model to predict rates for Sy2 reac-
tions and compare its performance against the RF model orig-
inally reported by Madzhidov et al.** To evaluate the ability of
the models to learn the underlying reactivity rules, we con-
ducted a feature importance analysis using Kuz'min prediction
contributions® for RF and Integrated Gradients (IGs)'**' for
BERT (Fig. 1). Our results show that both models achieve near-
experimental accuracy on similarity-split test data (RMSE = 1.1
log k) and identify key reaction centres, as well as known elec-
tronic and steric effects. However, limitations were also iden-
tified: RF struggled with log k extrapolation, while the BERT
model had difficulty recognising aromatic effects.

Results and discussion
Dataset analysis

Before training the BERT model on the Sy2 data compiled by
Madzhidov et al.,"” which was used to train their rate prediction
RF model," we performed a detailed analysis of this data set.
This dataset initially comprised 4830 Sy2 reactions and their
corresponding experimental logk values. After removing
unbalanced reactions and duplicates, we reduced the dataset to
4666 entries. We then added 196 new Sy2 reactions with
experimental log k values, bringing the total to 4862 reactions
(Fig. 2). These additional reactions included phosphine nucle-
ophiles (36 reactions), azide leaving groups (4 reactions), and
electrolyte solutions (16 reactions), thus increasing chemical
diversity. Reinforcing this idea, 83% of the new reactions had
a Tanimoto similarity (Sy) < 0.4 to the initial 4666 reactions
(Fig. S2b). The range of log k also expanded from 1.6 to —7.7
(AG* =16.1-29.5) to 1.6 to —12.3 (AG* = 16.1-36.1). Throughout
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this work, log k.., refers to the experimental log k and log kpreq
refers to the values predicted by the RF and BERT models.

Despite diversifying the training data, the model's Root
Mean Square Error (RMSE) on the test data from ref. 14 (referred
to here as Test 1 = 73 reactions), remained at 1.0log k.
However, for out-of-domain reactions (Test 2 = 56 reactions,
including phosphine nucleophiles (4 reactions), azide leaving
groups (5 reactions), and electrolyte solutions (12 reactions), see
Methods), the test RMSE improved from 2.0 + 0.0logk (the
baseline RMSE predicting the mean log k., of the training data)
to 1.4 + 0.2logk (Fig. 3a). The greatest contribution to this
improved RMSE came from the electrolyte-containing reactions,
with a complete breakdown provided in Fig. S3. Consequently,
this revised RF model was employed in this study. To ensure
generalisability, reactions with Sy > 0.4 to the diversified data
set were excluded from all test sets (Fig. S2a).

Comparison of RF and BERT

We evaluated the performance of the RF and BERT models
based on accuracy and training time using a test set of 129
reactions, which included 41 unique nucleophiles, 43 unique
substrates, 10 unique solvents, and a log k range of —8.2-1.2
(see Methods). Importantly, all test data had Sy < 0.4 to the
training data, so prediction accuracy reflects model perfor-
mance on novel reactions (Fig. S2a).

Both models showed comparable accuracy (RMSE/log k: 1.2
+ 0.1 for RF and 1.1 + 0.1 for BERT) on the combined test data
(129 reactions, Fig. S1b, with learning curves in Fig. S4a).
However, the RF model significantly outperformed BERT in
training speed, taking 256 seconds compared to BERT's 52.9
hours on CPUs. Although BERT's training time could be accel-
erated on GPUs, which are better suited for deep learning tasks
(see Methods for details).
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Fig.2 TMAP of the total training set of 4862 S\2 reactions. 4666 of these were compiled by ref. 26 (shown in grey), and 196 were added in the
current work to increase the chemical diversity of the training data (shown in black).
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Fig. 3 Evaluation of prediction accuracy and interpretability in RF and
BERT models. (a) Learning curve showing the change in RMSE of the RF
model from ref. 14 upon increasing the chemical diversity of the
training data (evaluated using 56 out-of-domain reactions). (b) RMSE
comparison between the RF and BERT models (evaluated using 129
external test reactions) and 30 DFT calculations carried out at the
CPCM(solvent)CCSD(T)/def2-TZVP//PBEO-D3BJ/def2-SVP level of
theory. (c) Percentage of accurate predictions where the nucleophilic
(Nu), leaving group (LG) and electrophilic carbon (C) atoms were high
impact features in the RF and BERT models. (d) Percentage of accurate
predictions where temperature and solvent were high impact features
in the RF and BERT models. A detailed breakdown of solvent property
impact in RF is provided in Fig. S9a.

We also compared both models to a dummy model that
always predicted the mean log ke, of the training data, which
resulted in an RMSE of 2.0 £ 0.0 log k. Additionally, we bench-
marked both models against log k values calculated using DFT
at the CPCM(solvent)CCSD(T)/def2-TZVP//PBE0-D3B]J/def2-SVP
level of theory. The DFT predictions yielded an RMSE of
2.5 kecal mol™* = 1.9logk (Fig. 3b) and required 6.8 hours
(using 4 CPU cores and allocated up to 4 GB each) for 30 reac-
tant complexes and TS geometry optimisation and frequency
calculations, contrasting with the prediction time of less than 1
second for both RF and BERT models.

In our analysis of test reactions, we categorised predictions
into accurate (upper quartile = 32 reactions) and inaccurate
(lower quartile = 32 reactions, Fig. 4a and S5). Of the accurate
predictions made by RF, 44% were also accurately predicted by
BERT. Conversely, 56% of RF's inaccurate predictions overlap
with those from BERT.

This analysis highlights that while both models achieved
similar overall accuracy, they differed in the specific reactions they
accurately or inaccurately predicted, suggesting they have learned
different underlying relationships. RF offers a more practical
solution for rapid deployment and retraining, while BERT may be
better suited for large datasets, where its richer representations
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Fig. 4 Pictorial representation of (a) accurate and inaccurate predic-
tions and (b) high impact features. (a) Accurate and inaccurate
predictions are defined as those with the 25% lowest and highest
prediction error, respectively. (b) High impact features are defined as
those with an importance >75% of test features.

and interpretability tools can be fully leveraged. Further improve-
ments in predictive performance are likely to depend more on data
quality than on the choice of the model architectures.

Interpreting the models

We then examined the ability of RF and BERT models to identify
key features influencing reactivity. Our analysis included eval-
uating the contributions from each reaction centre: nucleo-
philic (Nu) atom, leaving group (LG) atom, and electrophilic
carbon (C) atoms (Fig. 1a), as well as temperature (represented
as T "), solvent polarity and proticity. To quantify feature
importances, values were calculated relative to a dummy model
that predicts the mean log k., of the training data for each test
reaction, where the feature importance is thus set to zero.
Features considered high impact were defined as those falling
within the upper quartile of importance in the test data
(Fig. 4b).

Both the RF and BERT models agreed on the importance of
reaction centres and conditions. For example, in accurate
predictions, the LG atom emerged as a high impact feature in
over 90% of cases, while the Nu atom was significant in 75% of
accurate predictions for both RF and BERT (Fig. 3c); however,
BERT occasionally underestimated the importance of the Nu
atom for inaccurate predictions (SI 5.3). In contrast, the elec-
trophilic C atom was consistently identified as high impact in
all of RF's accurate predictions, but only in 38% of those made
by BERT. This discrepancy arises from the differences in how
features are represented. RF considers the electrophilic carbon
as part of a larger molecular fragment that includes its
surrounding environment, allowing it to directly capture steric
effects. In contrast, BERT represents the electrophilic carbon as
a single token representation, which may overlook these envi-
ronmental influences.

Temperature also emerged as a high-impact feature in 97%
of accurate predictions for both models, demonstrating their
ability to recognise key physical features (Fig. 3d). In the RF
model, the solvent is represented by 13 distinct properties,*”
with each property being high impact in 90-100% of accurate

© 2026 The Author(s). Published by the Royal Society of Chemistry
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predictions (full breakdown provided in Fig. S9a), in line with
the original analysis using RF in ref. 14 Conversely, in BERT,
where solvent is represented by SMILES strings, its importance
as a high impact feature was found in 72% of accurate predic-
tions; however, its importance was not observed for inaccurate
predictions (SI 5.3). These results show that both models
identify chemically meaningful features as relevant for the
prediction task, particularly RF.

To further assess whether RF and BERT effectively learned
key structural and physical effects, we evaluate the feature
importance of high impact features, including LG, steric, allylic,
temperature, and solvent effects, on either increasing (positive
sign) or decreasing (negative sign) log kpreq (Fig. 5).

LG effects. The effects of leaving groups (LGs) on reactivity
was evaluated in the test set, which included 53 instances of
iodide (I), 18 of bromide (Br), 16 of chloride (Cl), and 4 of
fluoride (F). For accurate predictions, this distribution is: 16 x
I, 6 x Br,3 x Cland 0 x F for the RF model; and 17 x I, 8 x Br,
2 x Cl and 0 x F for the BERT model (Fig. 5a).

Key @ Increases logkpeq Decreases logk,eq

(a) LG effects

® |ow impact

View Article Online
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Both models show a positive correlation between halide size
and reactivity (rates: Cl < Br < I). In the RF model, where LG
atoms were represented by C-I, C-Br, C-Cl and C-F fragments,
C-I increased log kpeq across all examples. The presence of Br
showed mixed effects on log k,req, while Cl had no significant
effect in two reactions and decreased log kpreq in one reaction.
In the BERT model, where LG was represented by I, Br, Cl and F
tokens, I and Br increased log kprcq in all cases where they were
high impact (12 and 5 reactions, respectively), while Cl
decreased log kpreq in the two examples involving this LG. These
results show that both models recognise the importance of LG
size in determining reactivity, with iodide demonstrating the
most pronounced positive effect across both models.

Steric effects. The influence of steric effects on the predicted
rates was evaluated by considering the distribution of alkyl-
substituted and unsubstituted centres in the test set, which
comprised 41 alkyl-substituted and 24 unsubstituted. For
accurate predictions, this distribution is 4 alkyl-substituted and
13 unsubstituted centres for the RF model and 13 alkyl-

N/A No accurate predictions with this feature

(c) Allylic effects
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(a—c and e) Feature importances for RF and BERT models of accurate predictions, defined as the upper quartile of the test data. Red and

blue circles denote predictions where the feature increased (positive feature importance) or decreased (negative feature importance) log Kpreq.
Grey circles denote predictions where the feature was low impact, or the feature importance was zero within error. N/A denotes that no accurate
predictions contained this feature. Ceec and Cgyp, in (b) correspond to electrophilic and substituent carbons, respectively. One representative
example is given for each of LG, steric and allylic effects. (d) Log kexp and log kpreq (by RF and BERT) for the given example reaction observed at
multiple temperatures.
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substituted and 7 unsubstituted for the BERT model (Fig. 5b).
In the RF model, alkyl-substituted centres are represented by C—
C, C-C-C, and C-C-C-C fragments, where, e.g., C-C-C-C could
represent one propyl substitution or one methyl and one ethyl
substitution. We also considered similar fragments located
away from electrophilic centres as a control. In the BERT model,
alkyl-substituted centres are represented by the electrophilic
carbon centre and its substituents.

Our analysis shows that both models recognised that steric
hindrance decreases Sy2 reactivity. In the RF model, substituted
centres consistently decreased log kyeq in the four reactions
where they were high impact, while these features increased log
kprea in 10 reactions with unsubstituted centres. For the two
reactions where C-C and C-C-C fragments decreased log kpred,
this was attributed to a spurious correlation (see discussion in
SI. 5.2.1). Similarly, a spurious correlation was observed in three
reactions with unsubstituted centres where the C-C-C-C frag-
ment decreased log kpreq (see discussion in SI. 5.2.1). In the
BERT model, we found that substituted centres decreased log
Kprea in all reactions where they were high impact (6 reactions),
while unsubstituted centres increased it.

Allylic effects. The rates of Sy2 reactions are often enhanced
when an allylic group is present at the B position adjacent to the
reaction centre, with the origin of this effect still being actively
debated.*>** We analysed this effect on our test set where the
distribution of allyl-substituted centres was 2 alkene, 4 alkyne
and 42 aromatic-substituted centres. For accurate predictions,
this distribution was 0 alkene, 2 alkynes and 6 aromatics for the
RF model, while for the BERT model, it was 2 alkene, 3 alkynes
and 4 aromatics (Fig. 5¢). In the RF model, alkene, alkyne, and
aromatic bonds at the electrophilic centre were represented by
C-C=C, C-C=C, and C-C:C fragments, respectively (where ‘’ is
an aromatic bond), while in the BERT model, these groups were
described using tokens ‘=’, ‘=’, and ‘c’, with ‘¢’ representing an
aromatic carbon bonded to the centre.

Overall, both models recognised that allylic groups increase
Sn2 reactivity. However, BERT was limited in identifying this effect
on reactivity with aromatic groups. In the RF model, alkyne bonds
increased log kpreq in both instances where they appeared in the
accurate predictions subset. Furthermore, aromatic groups also
increased log kpreq in 4 out of 6 reactions; the two reactions where
aromatic groups decreased log k;,r.q were attributed to their pres-
ence in the nucleophile (see Fig. S8). In the BERT model, alkenes
increased log k,r.q in one reaction and were low impact in the
other, while alkynes increased log kpreq in the 4 reactions consid-
ered. Aromatic groups, however, had a negligible effect in the
BERT model. Feature engineering by adding physical descriptors
may improve the learning of these effects.*

Temperature effects. In our BERT model, we introduced
reciprocal temperature as a feature by appending it to the end of
the reaction SMILES. This feature was also treated as a contin-
uous-valued feature in the RF model. We analysed four reactions
from the test data that have rates reported at multiple tempera-
tures (each at nine temperatures ranging from 293.15-333.15 K).
Note that these reactions were selected from the total test data and
weren't necessarily predicted accurately or inaccurately. Both the
RF and BERT models correctly predicted the linear decrease in log
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kwith increasing 7' (Pearson's correlation coefficient r, = —0.97
for both models). The correlation was seen for both the predicted
log k values and feature importances of 7' (Fig. S6, predictions
shown for one representative example in Fig. 5d). Hence, both
models successfully captured the mathematical relationship
between log k and temperature.

Solvent effects. To account for solvent effects in our BERT
model, we included solvent SMILES in the input. Meanwhile,
solvent was described using 13 properties that characterised
polarity and proticity in RF. As no correlation was observed
between these solvent properties and the experimental log &,
solvent effects were not analysed for the RF model (Fig. S10). In
the BERT model, solvent effects were evaluated by analysing the
contribution of polar (¢ > 15) protic and aprotic solvent SMILES
in accurate predictions with anionic and neutral nucleophiles.
The distribution of solvents was as follows: 3 polar protic and 6
polar aprotic for anionic nucleophiles, and 15 polar protic and 8
polar aprotic for neutral nucleophiles (Fig. 5e). No accurate
predictions with non-polar solvent (¢ < 15) were obtained.

The BERT model consistently predicted that polar protic
solvents decrease log k, while polar aprotic solvents increase log
k with anionic nucleophiles (two reactions for protic and six
reactions for aprotic solvent). For neutral nucleophiles, polar
solvents generally increased log k,req where solvent was high
impact (five reactions for protic, four for aprotic). An exception
was 2-amino-1-methylbenzimidazole reacting with ethyl iodide
in methanol (5 reactions), which displayed a spurious
correlation.

In summary, both BERT and RF models recognised LG,
temperature, steric, and allylic effects to varying extents. Anal-
ysis of inaccurate predictions showed similar trends to accurate
ones, reinforcing the reliability of these assessments. This
consistency indicates that inaccurate predictions were not due
to the inability of the models to capture key effects.

Exploring model limitations (log k extrapolation)

To evaluate the ability of each model to extrapolate to log k values
outside the range of the training data, we analysed the relationship
between distance in log key, from the training median (training
median = —3.4 log k), and prediction error for each reaction in the
test data (Fig. 6). Here, the x-axes were divided into positive and
negative distance to capture extrapolation to log k values greater
than the training median and those less than the training median.
For the BERT model, a low correlation between distance from the
training median and prediction error was observed (Spearman's
correlation coefficient r; = 0.29). This result suggests that BERT
extrapolates well to log k values far from the training median.
Contrarily, the RF model exhibited a modest correlation (r; = 0.40)
between distance from the training median and prediction error
for log k > the training median and a strong positive correlation (7
= 0.65) for log k < the training median. This implies that RF is
limited in its ability to extrapolate to logk below the training
median.

In conclusion, both models can extrapolate to logk > the
training median but BERT proved more reliable in extrapolating
to log k < the training median. However, this is to be expected

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Prediction error /logk
N

Fig.6 Prediction error vs. distance in log ke, from the training median
(Alog kexp) for each reaction in the test data, for the RF and BERT
models.

given that BERT has a linear prediction layer, while RF bases its
predictions on training averages.

Conclusions

In this work, we trained a BERT model to predict the experi-
mental log k values of Sy2 reactions and compared its perfor-
mance to the RF literature model* in terms of accuracy,
training time, and ability to capture known reactivity rules.

In addition, we diversified the dataset of Sy2 reactions curated
by Madzhidov et al.*” used to train their RF,* by introducing 196
new reactions curated from literature. We show that increasing the
chemical diversity of the training data broadens the applicability
of the model to new areas of chemical space, in particular for
reactions in electrolyte solutions.

When comparing both the RF and BERT models trained on
this diversified data, we observed that while both models achieved
similar prediction accuracy (RMSE = 1.1logk), the RF model
showed a clear advantage in training speed. Additionally, both
models identified key reaction centres as important for accurate
predictions, along with known factors that influence the reaction
rate, such as the nature of the LG, sterics, allylic groups, temper-
ature, and solvent (BERT only). However, each model exhibited
specific limitations: RF had difficulties with extrapolating log k
values, and BERT failed to recognise aromatic effects. Despite
these limitations, each model compensates for the other's weak-
nesses, confirming that both RF and BERT are effective models for
rate prediction and capable of capturing fundamental chemical
principles in their predictions.

Future work should focus on expanding the applicability of
these models to a wider range of chemical reactions via fine-
tuning. We recognise that a key challenge will be the availability
of experimental kinetic data beyond E2, Sy2, cycloadditions, and
SNAr reactions. Although promising initiatives such as the Open
Reaction Database* and data mining strategies offer potential
solutions to improve the generalisation of available models, these
could be used alongside QM-generated data through multi-fidelity
approaches. For success, diversity rather than quantity alone will
be essential to enhance model generalisation.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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The training and test data used in this work can be visualised in
the TMAPs shown in Fig. 2 and Sib, respectively (interactive
versions provided on Github, see Data availability). The training
data contained 4862 reactions with 449 unique nucleophiles, 298
unique substrates, 155 unique solvent systems, had a temperature
range of 232.15-425.15 K, and a log k range of —12.3-1.6. The test
data contained 129 reactions with 41 unique nucleophiles, 43
unique substrates, 10 unique solvent systems, had a temperature
range of 252.15-461.00 K, and log k range of —8.2-1.2. All test data
had a Tanimoto similarity (Sp) < 0.4 to the training data, so
prediction accuracy reflects model performance on novel reactions
(Fig. S2a). Here, reaction A was said to have an Sy > X to reaction B
if the nucleophile and substrate of A respectively had an St > X to
the nucleophile and substrate of B, otherwise, reaction A is said to
have an S; < X to reaction B. Note that 0.4 is a standard Sy
threshold** and imposed a similarity constraint effectively without
a significant reduction in test set size.

The training data utilised for this study builds upon the Sx2
data compiled by Madzhidov et al.,"” which they used to train
their rate prediction RF model.* The original dataset consists of
4830 SN2 reactions and their experimental log k values, which
were cleaned in the current work to remove unbalanced reac-
tions (109 reactions), duplicates (46 reactions), and known CV
outliers'” (9 reactions), resulting in 4666 reactions from ref. 14.
The SMILES used to generate the ISIDA fragments were also
canonicalised in the current work to improve interpretability
(i.e., so each molecular fragment is only represented by 1 ISIDA
fragment). The chemical diversity in the training data was
increased by including 196 Sy2 reactions manually curated in
the current work.*>*® Specifically, 83% of the reactions curated
in this work have an St < 0.4 to the reactions from ref. 14, and
therefore add structural diversity (Fig. S2b). Furthermore, the
reactions curated in this work introduce an additional nucleo-
phile type into the data: phosphines (36 reactions), as well as an
additional LG: azide (4 reactions), and an additional solvent
type: electrolyte solutions (16 reactions). The log k range was
also increased from —7.7-1.6 to —12.3-1.6.

The test data is comprised of 73 test reactions compiled by
Madzhidov et al' used to evaluate their rate prediction RF
model* (those with St < 0.4 to the training data, Test 1), and 56
reactions manually curated in the current work (Test 2).***”** The
latter represent an area of chemical space outside the applicability
domain of ref. 14's training data. Firstly, Test 2 has a low chemical
similarity to ref. 14's training data, in comparison to Test 1. This
was quantified by the percentage of reactions with St < 0.2 to ref.
14's training data: 46% and 12% for Test 2 and Test 1, respectively
(Fig. S2c and d). Sy < 0.2 is used here as all test data have an Sy <
0.4 to the training data. Secondly, Test 2 contains species not
included in ref. 14's training data: 12 reactions in electrolyte, 5
reactions with azide LGs, and 4 reactions with phosphine
nucleophiles.
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RF. The transformation-out RF model from ref. 14 was adapted
in this work to explicitly describe the secondary solvent compo-
nent (using the same properties as for the primary component), as
well as solvent ionic strength. This is to account for non-aqueous
solvent mixtures and electrolyte solutions in training reactions
added in this work. Additionally, model performance in this work
was calculated by taking the mean Root Mean Square Error
(RMSE) over the five transformation-out cross-validation (CV)
folds, allowing the standard error of the mean (o) to be used as
an uncertainty estimate. All other features and settings were kept
consistent with ref. 14.

BERT. The fine-tuned BERT model from ref. 34 was further
fine-tuned for rate prediction in this work. Five estimators were
trained, corresponding to the five transformation-out CV folds
used in the RF model. For each estimator, the learning rate and
hidden dropout probability were optimised between their usual
bounds of 107® and 107, and 0.05 and 0.8 (respectively) using
Bayesian optimisation implemented in BoTorch v.0.2.1 (ref. 57)
interfaced to Ax v.0.1.9 (ref. 58) (optimised values provided in
Table S1). Only the learning rate and hidden dropout proba-
bility were optimised during fine-tuning as BERT is typically
most sensitive to these two hyperparameters.** The number of
training epochs was fixed at 10 (consistent with ref. 34) as this
allowed the validation RMSE to converge without leading to
overfitting (Fig. S4b). The following tokens were added to the
model tokeniser to facilitate the description of reaction condi-
tions: [RecipTemp], [lonStr], [SolviR], [Solv2R], 0. The grammar
used to construct the SMILES input is depicted in Fig. 1b.

DFT. DFT calculations were carried out using ORCA v.4.2.1,>
interfaced to autodE v.1.1.,°° on 30 of the Sy2 reactions manu-
ally curated in the current work with a single solvent component
and total reactant molecular weight =235.9 Da (provided in
Table S2). Geometry optimisations and frequency calculations
were carried out at the CPCM(solvent)PBE0O-D3B]/def2-SVP level
of theory. Single point energies where then computed at the
CPCM(solvent)CCSD(T)/def2-TZVP level on the optimised
geometries. Free energies (Gocsp(r)) Were estimated using eqn
(2), where Eccsp(r is the high-level single point energy and the
term (Gppro — Epgpro) accounts for the thermal/entropic contri-
butions to the free energy evaluated at the lower level of theory.

Geespry = Eccspr) + Gpeeo — EpBeo (2)

To obtain the DFT RMSE in logk, the DFT AG* values
(in keal mol™") were converted to log k using the Eyring equa-
tion (eqn (1)). Further DFT details are provided in SI 3.

Calculation times

BERT and RF training times were estimated as the time taken
for RMSE convergence over five CV folds (optimisation curves
provided in Fig. S4). This corresponds to 256 s for RF and 190
305 s (52.9 h) for BERT on 8 vCPUs of Intel® x86-64 CPU (64 GiB
RAM). The BERT training time was 13 311 s (3.7 h) on GPU (1
NVIDIA V100 PCIe 16 GB GPU), which is incompatible with the
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Scikit-learn implementation of RF. Even on GPU, BERT is
significantly slower than RF.

BERT and RF prediction times were calculated for five
random samples of 30 test reactions (one sample per CV fold)
and averaged. DFT times correspond to 30 reactant complexes
and TS geometry optimisation and frequency calculations. The
averaging over samples for the ML prediction time is to account
for the fact that different samples were used to calculate the ML
and DFT prediction times, due to some of the lower-molecular
weight reactions required for DFT calculations failing to meet
the St < 0.4 requirement for the ML test data.

Accurate and inaccurate predictions

Accurate and inaccurate predictions are defined as those with
the 25% smallest and 25% largest prediction errors (averaged
over the five CV folds), respectively.

Uncertainty estimation

Predictions and feature importances in this work are quoted as
the mean over the five CV folds, with the standard error of the
mean (oy) providing an uncertainty estimate. When summing
over feature importances, the uncertainties were propagated
using eqn (3). Here, o, prop is the propagated uncertainty and N
is the total number of uncertainties being propagated over.

Calculating feature importances

Feature importances were calculated using the state-of-the-art
method for each model: Kuz'min prediction contributions®
for RF and Integrated Gradients (IGs)**** for BERT. Prediction
contributions were calculated using Treeinterpreter v.0.2.3,*
and IGs using LayerIntegratedGradients from Captum v.0.4.0.%
The magnitude of a feature's importance corresponds to the
feature's influence on log kpreq, while the sign corresponds to
whether the feature increased (positive) or decreased (negative)
log kprea-

High impact features

Features were defined as “high impact” for a prediction if their
mean feature importance over the five CV folds was >75% of
mean importances assigned to the test data, corresponding to
a prediction contribution with magnitude =0.001 in RF, and IG
with magnitude =0.03 in BERT. Features that were not high
impact are referred to as “low impact”. In RF, reaction centre
atoms (Nu, LG, electrophilic C) were considered important if
any ISIDA fragment with a substructure match to the atom was
high impact, while temperature and solvent properties were
said to be important if their numerical value was high impact.
Meanwhile in the BERT model, reaction centre atoms were said
to be important if the SMILES token representing the atom (or
any one of the tokens representing the atom for symmetrical

© 2026 The Author(s). Published by the Royal Society of Chemistry
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molecules with equivalent Nu, LG, or C atoms) was high impact,
while temperature was considered important if the [RecipTemp]
token or any token corresponding to significant figures of the
reciprocal temperature was high impact. Regarding solvent, this
was considered a high impact feature of the BERT model if
=50% of solvent tokens on the reactants side were high impact.
A threshold of =50% was employed (as opposed to 100%) to
account for the fact that some solvent moieties (such as
hydrogen bond donors) are expected to be more relevant to
reactivity prediction than others.

It is noted that each reaction centre atom also has a mapped
atom in the products. The importance of these mappings is
discussed in SI 5.4.

Analysing structural and physical effects

To assess whether RF and BERT effectively learned key struc-
tural and physical effects, we evaluated whether high impact
features align with known reactivity rules including LG, steric,
allylic, temperature, and solvent effects. To analyse structural
and physical effects, the feature importances (positive sign =
increase log kpreq, OF negative sign = decrease log kpyeq) Of key
reaction centre atoms (and bonds) were evaluated. Here,
features with an importance of zero within the associated error
were categorised as low impact. The importance of each feature
is relative to that of a dummy model that predicts the mean log
kexp Of the training data for each test reaction. By definition, all
features of the dummy model have an importance of zero.

To analyse LG effects, reactions with I, Br, Cl, and F LGs were
considered, represented by C-1, C-Br, C-Cl and C-F fragments
in RF and I, Br, Cl, and F tokens in BERT. Steric effects were
analysed using reactions with alkyl-substituted centres are
modelled by C-C, C-C-C, and C-C-C-C fragments in the RF
model, and tokens of electrophilic and substituting C atoms in
BERT. Here, the importance of these features in reactions with
unsubstituted centres was used as a control. Meanwhile, allylic
effects were assessed using reactions with alkene, alkyne, and
aromatic groups bound to the electrophilic centre, which were
represented by C-C=C, C-C=C, and C-C:C fragments in RF
(where ‘ is an aromatic bond), and =, = and c tokens in BERT
(where ¢ is an aromatic carbon bonded to the centre). For
centres with multiple substituents, the feature importances
were summed over the corresponding high impact C, =, =orc¢
tokens in the BERT model (this is not relevant to RF where
features are represented by counts of molecular fragments).

When evaluating temperature effects, feature importances
correspond to the importance of the reciprocal temperature
feature in RF, and the sum over importances of SMILES tokens
representing temperature (the “[RecipTemp]” token or any
token of the numerical value) in BERT. Regarding solvent effects
in the BERT model (solvent effects were not evaluated for RF,
see discussion in SI 5.2.3), the standard threshold of ¢ = 15 was
used to define polar (>15), and non-polar (<15) solvents,*® while
protic and aprotic solvents were defined as those with (protic) or
without (aprotic) a proton bonded to a heteroatom. The
importance of the solvent was taken as the sum over impor-
tances of high impact solvent tokens. Here, the solvent was said

© 2026 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Digital Discovery

to be low impact if none of its tokens were high impact. Note
that feature importances were summed over all temperature
tokens, but only high impact solvent tokens. This is because
solvent effects were analysed by categorising the feature
importances into positive (increase log kpreq), negative (decrease
log kprea), or low impact (negligible effect on log kyreq), while
temperature effects were evaluated by observing the correlation
between feature importance and temperature.

In RF, fragments containing I, Br, Cl or F LGs, or alkene,
alkyne, or aromatic groups that aren't mentioned above were
excluded from analysis to avoid confounding effects from other
atoms and bonds. Additionally, reactions where C-C, C-C-C, or
C-C-C-C fragments contain the product atom mapping of
a nucleophilic C™ atom were omitted from the analysis of steric
effects in RF, to avoid confounding nucleophilic effects, as were
reactions where the solvent acted as a nucleophile in the anal-
ysis of solvent effects in the BERT model. Similarly, reactions
containing substituent groups other than alkyl were excluded
from the analysis of steric effects in both models, as were
reactions containing substituent groups other than alkene/
alkyne/aromatic and alkyl in the analysis of allylic effects.
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