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This research investigates predicting the Highest Occupied Molecular Orbital and the Lowest Unoccupied

Molecular Orbital (HOMO-LUMO; short HL) gap of natural compounds, a crucial property for

understanding molecular electronic behavior relevant to cheminformatics and materials science. To

address the high computational cost of traditional methods, this study develops a high-throughput,
machine learning (ML)-based approach. Using 407 000 molecules from the COCONUT database, RDKit
was employed to calculate and select molecular descriptors. The computational workflow, managed by
Toil and CWL on a high-performance computing (HPC) Slurm cluster, utilized Geometry — Frequency —
Noncovalent — eXtended Tight Binding (GFN2-xTB) for electronic structure calculations with Boltzmann

weighting across multiple conformational states. Three ensemble methods, namely Gradient Boosting

Regression (GBR), eXtreme Gradient Boosting Regression (XGBR), Random Forrest Regression (RFR) and

a Multi-layer Perceptron Regressor (MLPR) were compared based on their ability to accurately predict

HL-gaps in this chemical space. Key findings reveal molecular polarizability, particularly SMR_VSA

descriptors, as crucial for HL-gap determination in all models. Aromatic rings and functional groups,

such as ketones, also significantly influence the HL-gap prediction. While the MLPR model demonstrated

good overall predictive performance, accuracy varied across molecular subsets. Challenges were

observed in predicting HL-gaps for molecules containing aliphatic carboxylic acids, alcohols, and amines

Received 8th May 2025
Accepted 30th October 2025

in molecular systems with complex electronic structure. This work emphasizes the importance of

polarizability and structural features in HL-gap predictive modeling, showcasing the potential of machine
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1 Introduction

The HL-gap, a fundamental electronic property of molecules,
plays a crucial role in understanding and predicting their
reactivity, stability, and optical properties. Accurate prediction
of the HL-gap is essential in diverse fields such as materials
science, drug discovery, organic electronics and energy storage,
among others. The design and development of novel functional
materials and pharmaceuticals often rely on the ability to fine-
tune the electronic properties of molecules, including the HL-
gap. However, accurate HL-gap calculation is challenging due
to the inherent complexities of electronic structure theory, as it
requires careful selection of theoretical methods (e.g., density
functional theory (DFT) functionals, basis sets), exploration of
molecular conformational space (i.e., sampling) and consider-
ation of environmental influences attributable to a solvent, all
of which introduce approximations and computational
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learning while also highlighting limitations in handling specific structural motifs. These limitations point
towards promising perspectives for further model improvements.

expense. Especially for large datasets of complex molecules like
natural products, this bottleneck hinders the rapid exploration
of chemical space and the identification of promising
candidates.

While machine learning models have shown promise in
predicting molecular properties, their application to HL-gap
prediction in large and diverse datasets of natural products
remains unexplored. Furthermore, an accurate prediction of the
HL-gap for natural products is particularly challenging due to
their structural complexity and diversity.

Several studies have demonstrated the potential of ML
models to accurately and efficiently estimate various molecular
characteristics, including electronic properties crucial for
understanding chemical behavior.'** The application of ML in
this domain has ranged from traditional models using curated
feature sets>**'** to sophisticated deep learning architec-
tures that learn directly from molecular structures.">'**¢ Early
and contemporary studies have successfully used models like
Random Forests,"®**''” Support Vector Machines,** and
Gradient Boosting Regressors®'’"** with pre-calculated molec-
ular descriptors and fingerprints>****'” to achieve strong
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predictive performance on diverse datasets.>”*'>'7182021 Those
linear models have shown success in specific chemical spaces
like polycyclic aromatic hydrocarbons.?*** While powerful,
these methods' performance is intrinsically tied to the quality
and relevance of the features. For instance, Pereira et al.’
explored random forest models for predicting HOMO and
LUMO energies, achieving good accuracy with molecular
descriptors combined with semi-empirical orbital energies.
Schmidt et al.** explored various ML algorithms, including
linear and kernel-based regression, decision trees, and neural
networks, for predicting properties like crystal structure and
thermal conductivity, emphasizing the trade-off between
accelerated research and the challenges of interpretability and
data quality.

Reiser et al.®® reviewed the application of graph neural
networks (GNNs) in materials science. The field has seen
a significant shift towards deep learning, particularly with the
advent of GNNs that can leverage complete atomic-level repre-
sentations. These end-to-end models learn relevant features
directly from the molecular graph, mitigating the need for
manual feature engineering.""**'¢192%2¢ Seminal works on the
QM9 benchmark dataset established the high performance of
these following methods:

M Schrodinger Convolutional Neural Network (SchNet),'
which operates on atomic types and Cartesian coordinates and
has been successfully applied not only to QM9 (ref. 16) but also
to complex systems like oligothiophenes,"*® with SchNet
achieving the best performance among other GNNs, particularly
for larger molecules.

B Message Passing Neural Networks (MPNNs),” a general
framework for learning on graphs, with variants like deep (D)
MPNN?® also showing excellent performance.

B MatErials Graph Network (MEGNet),>** a universal GNN
framework for predicting properties of both molecules and
crystals, incorporating global state variables and demonstrating
transfer learning capabilities.

B Other advanced architectures like Deep Tensor Neural
Networks (DTNNs)"**?"?% have also proven effective for pre-
dicting electronic properties and designing novel molecules.

B Generative models as the Recurrent Neural Network
(RNN) with transfer learning specifically employed by Yuan
et al.*® on electronic properties, to generate novel oligomers
with targeted HL-gaps, demonstrating the potential of deep
generative models but also the inherent trade-off between
chemical space exploration and property optimization.

B Finally, Montavon et al.® introduced a deep multi-task
neural network for predicting multiple electronic properties.

A key challenge in applying these data-hungry models is the
scarcity of high-quality data for specific or complex chemical
systems. To address this, transfer learning has emerged as
a powerful strategy. By pre-training a model on a large, general
dataset (e.g., PubChemQC) and then fine-tuning it on a smaller,
specific dataset, researchers have successfully predicted prop-
erties for conjugated oligomers,® porphyrins® and organic
photovoltaics.**

While these studies highlight the remarkable potential of
ML for predicting electronic properties, challenges remain in
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addressing data requirements, interpretability, and the accu-
rate prediction of properties across vast and highly diverse
chemical spaces, such as the natural products domain beyond
the limited complexity of the QM9 dataset. This work aims to
address this latter challenge by developing a high-throughput
workflow and robust ML model for predicting the HOMO-
LUMO gaps of over 400 000 natural products. This study aims to
not only develop predictive models but also to gain insights into
the key molecular features that influence the HL-gap, contrib-
uting to a deeper understanding of structure-property
relationships.

2 Computational methods
2.1 Data and code preparation

The molecular structures for this study were sourced from the
Collection of Open Natural Products (COCONUT) database.*®
This database was chosen as it represents one of the largest, pre-
compiled, and open-access resources for natural products.
COCONUT aggregates molecular collections from a multitude
of sources, including subsets from other well-known reposito-
ries like the ZINC Natural Products database and the Universal
Natural Products Database (UNPD). By providing a single,
comprehensive, and curated collection, it eliminates the need
to gather and harmonize data from various individual reposi-
tories, making it an ideal starting point for a large-scale analysis
and for training a robust machine learning model. The database
provides molecular data in the Structure-Data File (SDF) format,
which was parsed for this work. From these initial structures,
SMILES (Simplified Molecular-Input Line-Entry System) strings
were generated for use in subsequent descriptor calculations.
Beyond structural information, COCONUT collects and curates
a variety of data on natural products, including calculated
properties and descriptors. The provided structures do not
contain explicit solvent information; therefore, all subsequent
electronic structure calculations were performed assuming gas-
phase conditions.

The Common Workflow Language®** (CWL) is a highly
flexible language widely used in the field of bioinformatics to
create computational workflows in contrast to others**
utilized in the field of computational chemistry. The only
prerequisite for workflow integration is that the computational
task must be executable on the command line. To ensure
consistency and package isolation, the software packages were
installed using python package managers into a virtual envi-
ronment with a python-click interface. Specifically, the
following essential packages were installed in this way: RDKit,**
pandas,®” Atomic Simulation Environment (ASE)*® and xTB.*

In addition, a modest effort was required to integrate func-
tions for the conformer generation, the Boltzmann weighting,
the xTB-wrapper, I/O handling as well as the click interface into
the virtual environment as a python package on https://
github.com/sthinius87/HL-gaps-pub. The CWL-Input files are
written YAML-format. All code developed is published at Zen-
odo (https://zenodo.org/records/15113790) via GitHub (https://
github.com/sthinius87/HL-gaps-pub).*’

© 2026 The Author(s). Published by the Royal Society of Chemistry


https://github.com/sthinius87/HL-gaps-pub
https://github.com/sthinius87/HL-gaps-pub
https://zenodo.org/records/15113790
https://github.com/sthinius87/HL-gaps-pub
https://github.com/sthinius87/HL-gaps-pub
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00186b

Open Access Article. Published on 17 November 2025. Downloaded on 2/11/2026 10:46:17 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

2.2 Workflow and computational details

The provided flowchart in Fig. 1 outlines a computational
workflow managed by the Toil workflow engine and orches-
trated using the CWL. The workflow, designated by unique
Database Identifiers (DB-IDs) within the COCONUT project, is
executed on a high-performance computing cluster, with
resource allocation optimized by the Slurm workload manager.

The workflow's core functionality is encapsulated within
a virtual environment. This environment houses Python code
that, triggered via a click interface, initiates a series of compu-
tational tasks to finally evaluate the molecule's HL-gap. These
tasks involve: employing the RDKit cheminformatics toolkit,
the workflow generates diverse molecular conformations,
exploring the potential spatial arrangements of atoms within
a molecule. To account for conformational flexibility, a set of 10
conformers was chosen to balance the need for adequate
conformational space sampling with the computational cost
inherent in a high-throughput study of this scale. This
approach, combined with Boltzmann weighting, provides
a thermodynamically averaged property that is often more
representative than relying on a single lowest-energy conformer,
whose ranking might be inaccurate or which may not be the
sole contributor to the molecule's properties at room tempera-
ture. Following the initial generation of conformers with RDKit,
each conformation was subjected to a geometry optimization to
find its nearest local energy minimum. This optimization was
performed at the GFN2-XTB level of theory, employing the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer. After
optimization, the electronic properties for each of these now
stable conformations were computed at the same GFN2-xTB
level through self-consistent charges (SCC) to determine the
HOMO-LUMO gap. More advanced methods, like DFT, would
also be conceivable, but would go beyond the limit of our
computational resources. The accuracy of the calculated HL-
gaps with GFN2-xTB method against higher-level theoretical
benchmarks (e.g., DFT) or experimental data was not assessed
in this study. Finally, a Boltzmann weighting scheme is applied
to assess the relative stability and population of each confor-
mation at a given temperature. The parameters for each task are
transferred to the code via the click interface, which are as
follows:

virtual environment
workflow engine

= m $ diﬂ_l}‘merﬁce

python code

aecrmccaeancen (30 QIE)

Boltzmann weighting

g VL [1/0 calculation
tool

Fig. 1 This flowchart illustrates a Toil-CWL workflow for automated
molecular electronic structure simulations. The workflow leverages
RDKit for conformer generation, XTB for electronic structure calcu-
lations, and Slurm for efficient resource allocation on HPC clusters.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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B Number of conformers (RDKit)

B Accuracy (XTB: SCC convergence criteria)

B Electronic temperature (XTB: fermi smearing)

B Calculation method (XTB: current code flavors).

This workflow finally was applied to ~407k SMILES strings,
resulting in ~406k results after curation of the dataset.

2.3 Descriptor calculation and machine learning model

For developing the machine learning model, a dataset was
constructed, comprising the molecules COCONUT-ID, the
calculated HL-gap, and its SMILES string. It is essential to
clarify that the L-gap is not a property provided by the
COCONUT database. The HL-gaps used in this work were
explicitly calculated for each molecule using the GFN2-xTB
method as described in Section 2.2. These xTB-calculated HL-
gaps served as the target property (or ground truth) for the
machine learning models. Consequently, all reported predic-
tion errors are calculated by comparing the models’ predictions
against these xTB-calculated values. Based on the molecule's
SMILES string, 210 molecular descriptors were calculated for
each molecule using RDKit. The number of descriptors was
further reduced by the feature correlation with a threshold
=0.75 in the correlation matrix and as a second condition
descriptors with a threshold =0.15 in the variance were
removed. This results in a set of 56 features for the machine
learning model that can be accessed in the SI.

Four regression algorithms were selected for this study: three
powerful tree-based ensembles—GBR, RFR, and XGB—and
a MLPR. This selection allows for a robust comparison between
two distinct and widely used classes of machine learning algo-
rithms: tree-based ensembles and artificial neural networks
(ANN). The literature confirms that both algorithmic classes are
frequently employed and serve as strong baselines for predict-
ing molecular properties. For example, GBR has been success-
fully applied, and found to be the best-performing model, for
predicting properties of non-fullerene acceptors.’® Similarly,
MLPR and other neural network architectures are a common
choice for modeling electronic properties in large molecular
datasets, from early deep learning®”*'* demonstrations to more
recent ANN studies.”® This choice allows for a valuable
comparison between these two established algorithmic
approaches on a large-scale natural product dataset using pre-
calculated molecular descriptors.

For the hyperparameter optimization a randomized search
with 2000 iterations and cross-validation with a fold of 3 has
been applied. Multiple parameters were involved in the
randomized search. For the GBR the most critical parameters
are the learning rate (learning_rate), the number of boosting
stages (n_estimators), the fraction of samples to be used for
fitting the individual base learners (subsample) and the number
of nodes in the tree (max_depth) whereas for the MLPR the
number neurons and layers (hidden_layer sizes), the L2-
regularization term (alpha) and the exponential decay rate for
estimates of first moment vector in the Adam** solver (beta_1)
parameters were considered in the optimization. For the RFR,
the most critical parameters are n_estimators, max_depth, the

Digital Discovery, 2026, 5, 203-213 | 205


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00186b

Open Access Article. Published on 17 November 2025. Downloaded on 2/11/2026 10:46:17 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

minimum samples required to split a node (min_samples_s-
plit), and the number of features to consider for a split (max_-
features), whereas for the XGB model, the learning rate,
n_estimators, max_depth, and the L1 (reg alpha) and L2
(reg_lambda) regularization terms were considered in the
optimization. The optimized set of parameters can be found in
the SI. Further the train-test split was set to a ratio of 0.7 to 0.3,
respectively. For initial transformation of the data the Stand-
ardScaler was applied.

To ensure the random data partitioning was representative,
the statistical distributions of key molecular descriptors and the
target property were analyzed across multiple splits and found
to be virtually indistinguishable between the training and test
sets (see SI, Fig. S3). This confirms the absence of systematic
bias in the data split. However, this high-level statistical simi-
larity masks the underlying structural novelty of the test set,
which serves as the true measure of the model's generalization
ability. The test set is composed of over 120000 unique
molecular structures that the model has not encountered
during training. The critical test is whether the model can
generalize beyond the specific examples it has seen to accurately
predict properties for these new chemical entities. Additionally,
the analysis of the MLPR model's performance on distinct
structural subgroups, presented later in Section 2.4.3, provides
strong evidence for this robust generalization. The model
maintains high predictive accuracy across various challenging
structural elements, including different numbers of aromatic
rings and complex functional groups. This demonstrates that
the model is not merely interpolating based on overall statis-
tical similarity but has learned the fundamental relationships
between molecular structure and the HOMO-LUMO gap.

When evaluating the GBR and the MLPR model, the metrics
of both models were calculated using a 10-fold shuffle-split
cross-validation strategy with a 0.7 to 0.3 train-test ratio as
shown in Table 1. Comparing the models reveals a nuanced
picture. A fair comparison requires establishing a baseline of
predictive accuracy. All four models demonstrate strong abso-
lute performance on the unseen test data, achieving R”> scores
above 0.94 and MAE values below 0.21 eV. This confirms their
validity as powerful predictive tools for this chemical space.
Notably, the XGB model emerged as the top-performing model
in terms of absolute accuracy, yielding the highest test R
(0.958) and the lowest MAE (0.180 eV). The model's robustness
was evaluated by analyzing the generalization gap—the
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difference in performance between the training and test sets. A
comparison across all four models reveals significant differ-
ences, as detailed in Table 1. While all three tree-based
ensemble models show a large performance drop from the
training data to the test data, the Random Forest model shows
the most substantial gap in the R> score (AR*> = 0.048). In
contrast, the MLPR model displays the greatest generalization
stability, with the smallest performance gap in its R* score (AR’
= 0.022). This conclusion is strongly corroborated when
analyzing the absolute error metrics. The tree-based models
exhibit a pronounced increase in error on the test set. For
instance, the XGB model's MAE increases by over 150% (from
0.069 eV to 0.180 eV), and the Random Forest model's MAE
shows a more than six-fold increase (from 0.030 eV to 0.194 eV).
The MLPR model, however, shows a much smaller and more
controlled relative increase in its MAE of only 24% (from
0.169 eV to 0.210 eV). A similar trend is observed for the MSE
and RMSE. This expanded analysis reveals a clear trade-off. For
applications where achieving the lowest possible prediction
error is the sole priority, the XGB model is the superior choice
based on its test set MAE. However, for the goal of this study—
developing a reliable and robustly generalizable model—the
MLPR's demonstrated stability across multiple metrics makes it
the most suitable candidate for the subsequent in-depth feature
importance and error analyses.

2.4 Learning outcomes

In this section, the learning outcomes derived from analyzing
both the GBR and MLPR models are presented, focusing on
feature importance, overall performance, subset analysis and
an in-depth analysis of prediction errors. This final step aims to
identify molecular features and subgroups that pose a challenge
to the model, providing insights into its limitations and
potential avenues for improvement.

2.4.1 Feature importance analysis. To understand the key
molecular properties driving HL-gap predictions and to
compare the learning strategies of the different models,
a feature importance analysis was conducted. For the MLPR
model, which was selected for in-depth analysis due to its
superior generalization, permutation importance on the test set
was used to identify features crucial for predicting on unseen
data. For the tree-based models (GBR, RFR, and XGB), the built-
in Gini importance was calculated.

Table1 Metrics and standard deviation (+) of the GBR and MLPR models for train and test sets evaluated using a 10-fold shuffle split of the data

MAE [eV]

RMSE [eV]

set

Metrics R>-score MSE [eV?]
MLPR-train 0.9688 + 0.0009 0.0519 + 0.0017
MLPR-test 0.9470 + 0.0008 0.0886 + 0.0010
GBR-train 0.9917 + 0.0001 0.0138 + 0.0001
GBR-test 0.9562 + 0.0006 0.0732 + 0.0007
XGB-train 0.9943 + 0.0001 0.0094 + 0.0001
XGB-test 0.9580 + 0.0005 0.0702 + 0.0005
RFR-train 0.9989 + 0.0001 0.0019 + 0.0001
RFR-test 0.9505 + 0.0006 0.0828 + 0.0005
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0.1686 £ 0.0025
0.2099 + 0.0012
0.0905 £ 0.0002
0.1865 4 0.0005
0.0694 £ 0.0003
0.1799 £ 0.0005
0.0295 £ 0.0001
0.1940 & 0.0006

0.2279 £+ 0.0037
0.2976 + 0.0016
0.1173 £ 0.0003
0.2706 + 0.0013
0.0972 £+ 0.0004
0.2650 + 0.0010
0.0432 £ 0.0001
0.2878 + 0.0009
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Permutation Importances (test set)
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Fig. 2 Permutation importance of the 10 most important features on test set performance of MLPR model for HL-gap prediction. NumAr-
omaticCarbocycles, SMR_VSA7, SMR_VSA10, and HallKierAlpha exhibit the greatest impact on model performance on the test set, as revealed by

their high permutation importance scores.

Table 2 Top 5 most important features for each model, sorted by importance

Rank MLPR (permutation) GBR (Gini) RFR (Gini) XGB (Gini)

1 NumAromaticCarbocycles SMR_VSA7 SMR_VSA7 SMR_VSA7

2 SMR_VSA7 SMR_VSA10 HallKierAlpha NumRadicalElectrons

3 SMR_VSA10 fr_ketone SMR_VSA10 fr_ketone

4 HallKierAlpha SlogP_VSAS (ref. 42 and 45) MinAbsEStateIndex SMR_VSA10

5 MinAbsEStateIndex MinAbsEStateIndex MaxAbsEStateIndex SlogP_VSA12 (ref. 42 and 45)

The permutation importance of the MLPR model, shown in
Fig. 2, reveals that a combination of structural, polarizability,
and electronic descriptors governs the HL-gap prediction. By
a significant margin, the most influential feature is NumAr-
omaticCarbocycles, indicating that the presence and number of
aromatic rings is a primary determinant. This is followed by
descriptors related to molecular polarizability** (SMR_VSA7 and
SMR_VSA10) and shape (HallKierAlpha**). MinAbsEStateIndex
and MaxAbsEStateIndex, and the presence of specific frag-
ments** like amides (fr_NHO), ketones (fr_ketone), and esters
(fr_ester) also play a significant role. A clear consensus emerges
across all models: molecular polarizability is a fundamental
driver of the HL-gap (see Table 2). The SMR_VSA7 and
SMR_VSA10 descriptors appear in the top features for every
model. Similarly, molecular shape (HallKierAlpha) and the
presence of specific functional groups like ketones (fr_ketone)
are consistently identified as significant contributors. This
agreement between methodologically distinct models provides
strong confidence that these features have a true physical rela-
tionship with the HOMO-LUMO gap.

However, the models exhibit highly divergent strategies in
how they weigh these features. The GBR model shows an
extreme reliance on its top two polarizability descriptors, which
together account for over 67% of its total feature importance. In
contrast, the Random Forest model displays a more balanced
approach, giving high importance to both polarizability and
molecular shape. The top-performing XGBoost model reveals
another unique strategy, identifying NumRadicalElectrons as
its second most important feature—a descriptor not ranked
highly by any other model. This suggests XGBoost successfully
leveraged a feature that is critical for a specific, yet impactful,
subset of molecules. In conclusion, this comparative analysis

© 2026 The Author(s). Published by the Royal Society of Chemistry

highlights that while all models correctly identify polarizability
and shape as critical, their varied performance stems from
different learning strategies. The tree models, particularly GBR,
fixated on the strongest individual signals, while the MLPR
learned a more holistic representation by balancing structural
counts with electronic properties, which is key to its superior
generalization stability.

2.4.2 General performance of the MLPR model. The
trained model comes with strong correlation and reasonable
accuracy. The heatmap plot in Fig. 3 shows a clear positive
correlation between the predicted and actual HL-gap values.
The bins are clustered relatively closely around the ideal
prediction line, demonstrating that the model is generally
capturing the trend well. The high R value of 0.961 confirms
this strong correlation, indicating that the model explains
96.1% of the variance in the true HL-gaps. The MSE (0.089 eV?),

Actual vs. Predicted Values

Residuals vs. Predicted Values

GAP [eV]
Residuals [eV]
” Number of Molecules

109

3 3 5
GAP_pred [eV]

3 3 ]
GAP_pred [eV]

Fig. 3 The 2D histogram shows the correlation between predicted vs.
actual HL-gaps (left) and residual plot (right) for the test set of the
MLPR model. The residual plot appears to reveal heteroscedasticity,
with larger errors observed for lower predicted gap values.
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MAE (0.210 eV), and RMSE (0.298 eV) values are relatively low,
suggesting that the model's predictions are reasonably accu-
rate. The MAE indicates that, on average, the model's predic-
tions are off by about 0.210 eV. The RMSE, being more sensitive
to larger errors, is slightly higher at 0.298 eV, but still within
a reasonable range.

Nevertheless, the model inherits weaknesses due to hetero-
scedasticity and potential for improvement in the lower gap
region. The residual plot shows some evidence of hetero-
scedasticity, particularly at lower predicted values. This means
that the variance of the errors is not constant across the range of
predictions. The model tends to have larger errors for molecules
with smaller HL-gaps. The points are more scattered in this
region, indicating lower accuracy. To prove this, the metrics
were re-evaluated for the HL-gap range below and above 6 eV, as
it is possible the heteroscedasticity arises from the data distri-
bution itself with 98% of the molecules having HL-gaps <6 eV.
Even if the underlying error distribution is homoscedastic
(constant variance), the sheer number of points in a dense
region makes it more likely to observe larger errors. Table 3
clearly proves that the absolute errors (MSE, MAE, RMSE) are
larger for the =6 eV subset. This directly contradicts the initial
interpretation of the heatmap where we observed higher
precision at higher HL-gaps.

This reinforces the point that was discussed above: the
apparent higher precision at higher gaps in the heatmap was
likely an artifact of the lower data density in that region. Even
though the model makes larger absolute errors for higher gaps,
there are fewer data points to show this spread, creating the
illusion of tighter clustering around the diagonal. The higher R>
for the =6 eV subset is misleading because R is sensitive to the
variance of the target variable. Since the =6 eV subset likely has
a larger variance, it can lead to a higher R* even with larger
absolute errors. This illustrates how R> does not directly reflect
the accuracy of predictions but rather their relative performance
in capturing the variance of the data. This analysis highlighted
the importance of considering multiple metrics, particularly
when interpreting visualizations like heatmaps and empha-
sized the need for caution when dealing with unbalanced data,
where smaller data clusters can disproportionately influence
visual trends.

2.4.3 MLPR performance by structural elements. In the
following the correlation of specific molecular features with the
prediction of HL-gaps is discussed. By creating subsets of
molecules based on the presence of these features and then
evaluating the metrics on those subsets, valuable insights are
revealed. The metrics of the subsets will be compared to the
metrics of the entire dataset (see Table 4). The associated plot
can be found in the SI.

Table 3 Metrics of the GBR model split by the HL-gap at 6 eV

Range  Count R MSE [eV’]  MAE [eV]  RMSE [eV]
<6eV 398003 0917  0.064 0.183 0.254
=6ev 8200 0.934  0.135 0.257 0.368
All 406203 0947  0.089 0.210 0.298
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All subsets perform worse than the full dataset, which is
expected. The full model is trained on all molecules and learns
to capture the combined effects of all features. Subsets, by
focusing on a single feature, lose this comprehensive perspec-
tive. Some subsets perform surprisingly well. This indicates that
those specific features are strong indicators of the HL-gap for
molecules possessing them. NumRadicalElectrons is a clear
outlier. It's very low R* (0.506) and high error metrics indicate
it's not a good predictor of the HL-gap on its own. This is also
expected as it is a very specific property not generally related to
the HL-gap. The NumAliphaticHeterocycles and fr_bicyclic
subsets show R? values very close to the full dataset (0.954 and
0.955 respectively). This suggests that the presence of aliphatic
heterocycles or bicyclic structures is strongly correlated with the
HL-gap, and the model captures this well. fr NH2, fr_allyl-
ic_oxid and fr_piperdine subsets also perform relatively well (R
> 0.93), indicating that these functional groups also have
a significant influence on the HL-gap. The subsets fr NH and
fr_esters have fair R> values (0.914), but the MSE, MAE, and
RMSE are somewhat higher than the full dataset, suggesting
that while the general trend is captured, the predictions are less
precise. NumAromaticCarbocycles, fr Al COO and fr_ketone
subsets show moderate performance (R*> around 0.88-0.90).
This indicates that while these features do influence the HL-
gap, their effect is less pronounced or more complex
compared to the features in the higher-performing subsets. The
subsets NumAromaticHeterocycles, fr Al OH_noTert, fr_Ar_N,
fr_para_hydroxylation, fr_aniline and fr_aryl_methyl, have the
lowest R* values among the fragment counts (around 0.85-0.87).
This suggests that these features have a weaker or more intri-
cate relationship with the HL-gap, or that their effect is more
context-dependent, meaning influenced by other parts of the
molecule.

2.4.4 Analysis of prediction errors. In the following, the
model's predictive accuracy is evaluated across different

Table 4 MLPR metrics of molecular subsets selected by structural
units

Subset R MSE [eV®] MAE [eV] RMSE [eV]
NumRadicalElectrons 0.506 0.319 0.434 0.565
NumAliphaticHeterocycles 0.954 0.068 0.190 0.262
NumAromaticCarbocycles  0.896 0.054 0.170 0.231
NumAromaticHeterocycles 0.868 0.051 0.166 0.227
fr_Al_COO 0.888 0.070 0.192 0.265
fr Al OH_noTert 0.852 0.101 0.229 0.318
fr_ Ar_ N 0.860 0.060 0.180 0.245
fr NHO 0.914 0.072 0.194 0.268
fr NH2 0.936 0.104 0.226 0.322
fr_allylic_oxid 0.934 0.068 0.189 0.260
fr_aniline 0.875 0.059 0.177 0.243
fr_aryl_methyl 0.868 0.046 0.156 0.214
fr_bicyclic 0.955 0.060 0.177 0.244
fr_ester 0.914 0.063 0.185 0.251
fr_ketone 0.885 0.063 0.185 0.251
fr_para_hydroxylation 0.871 0.057 0.175 0.238
fr_piperdine 0.941 0.089 0.213 0.298
Whole set 0.947 0.089 0.210 0.298
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molecular subgroups by analyzing the distribution of prediction
errors. The key question is to identify which molecules, partic-
ularly those containing certain functional groups, are predicted
with lower accuracy and should therefore be interpreted with
caution.

The heatmap (Fig. 4) displays the HL-gap error distribution
mapped into ranges, providing a deeper insight into where and
why larger prediction errors occur. Based on the suggestion that
errors greater than 0.4 eV are likely unusable for rigorous
scientific work, range quality assignments might be defined as
follows.

B Excellent precision 0.0-0.1 - errors in this range are
exceptionally small and likely inconsequential for most
rigorous scientific applications.

B High precision (0.1-0.2) - errors in this range are still
quite small and should be suitable for most scientific studies.

H Acceptable precision (0.2-0.4) - errors in this range might
introduce some uncertainty but are likely tolerable for many
scientific investigations, particularly in complex systems and
high throughput screening applications.

B Marginal precision (0.4-0.8) - errors in this range are
becoming substantial and may limit the reliability of conclu-
sions drawn from the data. Careful consideration and poten-
tially additional validation are necessary.

B Low precision (0.8-1.2) - errors in this range are likely to
compromise the accuracy of scientific results. This range is
likely unsuitable for quantitative applications.

M Poor precision (1.2-2.0) - errors in this range are likely to
lead to unreliable or misleading results. Significant improve-
ments in model accuracy are needed for this range to be useful.

HL-gap absolute error ranges [eV]
2
o

fr_NHO
fr_NH2

fr_Al_COO
fr_Ar_N

NumAliphaticHeterocycles
NumAromaticCarbocycles

NumAromaticHeterocycles
fr_Al_OH_noTert
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M Negligible precision (2.0-10.0) - errors in this range are so
large that the data is essentially unusable for any scientific
purpose.

For most molecular groups, the majority of molecules fall
within the “Excellent Precision” and “High Precision” ranges.
This suggests that the model performs reasonably well overall. A
noticeable variation in the distribution of errors is observed
across different molecular groups. Some groups have a higher
proportion of molecules in the “Acceptable Precision” range
and beyond, indicating potential challenges for specific chem-
ical functionalities. The fr_Al_COO, fr_ NH2 and fr_Al_OH_no-
Tert groups appear to have a relatively higher proportion of
molecules in the “Marginal Precision” range and beyond,
signifying that predictions for molecules containing these
groups might be less reliable. Analysis of the HL-gap prediction
model revealed a notable trend. Molecular groups with smaller
representation in the dataset tended to exhibit poorer predictive
performance. This observation is not coincidental but rather
reflects the influence of sample size on model accuracy and
robustness. Smaller molecular groups suffer from reduced
statistical power, limiting the model's ability to discern true
relationships between specific chemical features and HL-gap
values. This limitation arises from the increased susceptibility
of smaller groups to noise, random variations, and the dispro-
portionate impact of outliers. The poorer performance observed
for smaller groups does not necessarily indicate a weaker or
more complex relationship between their chemical features and
HL-gap. Instead, it may reflect the model's inability to effectively
capture these relationships due to data scarcity.

The subsets consistently performing the best, with
combined percentages up to “Acceptable Precision” above 90%.
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Fig. 4 The heatmap displays the distribution of prediction errors for different molecular subsets, defined by the presence of specific structural
features (x-axis), across a range of absolute errors in the HL-gap (y-axis). The numbers within each cell represent the percentage of molecules
from a given subset that fall within a specific error range, providing a normalized measure of the model's predictive accuracy for that subset. The
color intensity reflects the total number of molecules in a certain range and subset.
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With 94.55% fr_aryl methyl is the best performing subgroup
overall followed by NumAromaticCarbocycles (93.08%),
implying excellent overall performance. Subsequently, NumAr-
omaticHeterocycles (91.31%), fr_aniline (91.08%), fr_bicyclic
(91.12%) and fr_para_hydroxylation (90.47%) demonstrate
strong predictive capabilities. Subsets with combined percent-
ages in the high 80 s, indicating good but slightly less precise
predictions. Those include NumAliphaticHeterocycles
(88.88%), fr_ Ar_N (89.32%), fr NHO (88.88%), fr_allylic_oxid
(88.84%), fr_ester (89.61%), fr ketone (89.21%) and fr_pi-
perdine (87.46%). While still a reasonable performance, with
84.69% fr Al COO it is noticeably lower than the top
performers. The subgroup fr NH2 (78.38%) shows a lower
combined percentage compared to most other groups, sug-
gesting potential challenges in accurate prediction. The fr_A-
1_OH_noTert (74.66%) group stands out as having the lowest
combined percentage, indicating that the model might struggle
with this specific functional group. However, the majority of
molecules that is in the range of low and poor precision refers to
molecules with a complicated electronic structure, like having
ionic or radical character or having multiple functional groups,
both donors and acceptors or multiple heteroatoms up 3™ and
4™ period non-metals or metalloids. Example images of mole-
cules can be found in the git repository.

2.4.5 Performance in the context of published work. To
rigorously contextualize the contributions of this study, it is
essential to benchmark our model's performance against the
extensive body of published work in molecular property
prediction. Our MLPR model, trained on the COCONUT data-
base with GFN2-xTB calculated HOMO-LUMO gaps as the target
property, achieved a test set MAE of 0.210 £ 0.001 eV and RMSE
of 0.298 £ 0.002 eV. A systematic comparison of these results
with the literature, focusing on methodology, feature repre-
sentation, dataset characteristics, and target properties, reveals
the specific contributions and positioning of our work.

The performance of our model is highly consistent with
other studies that have utilized similar descriptor-based
machine learning approaches on large-scale molecular data-
sets.”»1»13194¢ Notably, Pereira et al.® reported a very similar
MAE of 0.21 eV and RMSE of 0.30 eV using Random Forest and
MLPR models on over 111 000 organic molecules with DFT-
calculated properties. Our MAE is also comparable to the
0.19 eV achieved by Xu et al.** using a linear model on Polycyclic
Aromatic Hydrocarbons (PAHs). Furthermore, our RMSE is
more favorable than the 0.36-0.43 eV range reported by Nakata
et al.’* using SVM and Ridge Regression on a subset of the
PubChemQC" database. These comparable error metrics
suggest that our model achieves a robust and expected level of
performance for its methodological class.

The current state-of-the-art in this field, however, is domi-
nated by deep learning models, particularly GNNs, that learn
features directly from molecular topology and 3D coordinates.
These models consistently achieve significantly lower predic-
tion errors. Seminal works on the QM9 benchmark dataset
established the high performance of these methods, with
models such as SchNet,***** MPNNs,*'*** MEGNet,>*® and other
Graph Convolutional Networks reporting MAEs for the HOMO-
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LUMO gap in the remarkably low range of 0.06-0.09 eV.>*81413
This superior accuracy has been replicated by advanced archi-
tectures like PaiNN, which reported an exceptional MAE of just
0.01 eV on the Harvard organic photovoltaic dataset’” (HOPV)
dataset.

The primary factors driving this performance disparity are
the feature representation and the dataset characteristics. Our
work employs traditional ML models that rely on pre-calculated
2D molecular descriptors. This methodological choice is shared
by several studies reporting similar error magnitudes.”*** In
contrast, the highest-performing models are overwhelmingly
GNNs that learn richer, tailored feature representations directly
from the 3D molecular graph, using atomic types and Cartesian
coordinates as inputs. This end-to-end learning allows the
model to capture more nuanced and relevant structural infor-
mation than is possible with predefined 2D descriptors.

Furthermore, our study tackles the COCONUT database,
a large-scale collection of over 400 000 structurally diverse and
complex natural products. This presents a significant learning
challenge compared to the benchmark QM9 dataset, which
consists of ~134 000 smaller, less complex organic molecules
and is the basis for many of the lowest reported
errors.>*>7141620 Many other high-performance models are
trained on smaller, chemically homogeneous datasets focused
on specific molecular classes.”*»*”** The structural complexity
and diversity inherent in our natural product dataset likely
establish a higher error floor. The challenges of complex data-
sets are highlighted by Deng et al.,* where a GNN approach on
conjugated oligomers still resulted in a high MAE of 0.54 eV.

2.4.6 Validation against public DFT benchmarks. To
rigorously address the need for validation and to test the trained
MLPR model's ability to generalize to unseen chemical struc-
tures, a comprehensive external validation was performed. The
model, which was trained exclusively on GFN2-xTB gaps from
the COCONUT dataset, was used to predict the HL-gaps for the
unseen part of the QM9 (ref. 55 and 56) dataset (~133 000
molecules). This dataset serves as a true “out-of-distribution”
test set, as its molecules were not part of the training data. The
model's predictions were then compared against two distinct,
higher-precision quantum chemical benchmarks provided by
the QM9 dataset. These benchmarks are: first, the DFT*® gaps,
calculated at the B3LYP/6-31G(2df,p) level of theory, and
second, the higher-accuracy Quasi-Particle (QP) GW™® gaps,
which are considered a more rigorous “gold standard” for
electronic gaps. The results of this external validation are pre-
sented in Fig. 5.

The comparison to the DFT reference (Fig. 5, left) demon-
strates the model's successful generalization. The model's
predictions show a strong correlation with the DFT values and,
crucially, reproduce the distinct two-cluster structure of the
data, which separates saturated (high-gap) from conjugated
(low-gap) systems. This confirms that the model, using only 2D
descriptors, has learned the fundamental structure-property
relationships governing the HL-gap. As the MLPR model was
trained on xTB data, its predictions carry the known systematic
bias of that method, resulting in a mean underestimation of the
DFT gaps by 3.94 eV.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Scatter plots demonstrating the generalization of the MLPR model on the external QM9 dataset. The model was trained only on GFN2-
xTB data. The y-axis in both plots shows the MLPR's predictions. The x-axis shows the reference “true” gaps from QM9 at two different levels of

theory: (left) DFT (B3LYP/6-31G(2df,p)) and (right) GW.

The comparison to the higher-level GW reference (Fig. 5,
right) provides a more complete picture. As expected, the
model's predictions show a larger systematic underestimation
of 7.75 eV relative to the GW gaps. However, it is critical to note
that it is a well-established fact that DFT itself (particularly with
the B3LYP functional) significantly underestimates the more
sophisticated GW gap. Therefore, this large deviation is not
a failure of the model; rather, it correctly reflects the combined,
systematic underestimation of both the GFN2-xTB training data
and the DFT benchmark relative to the GW standard.

2.4.7 Model improvements. While this study demonstrates
the successful application of descriptor-based machine
learning, a promising avenue for future improvement is the
implementation of GNN architectures. The current state-of-the-
art in molecular property prediction is dominated by models
such as SchNet,"**'* MPNNs,*'** MEGNet>** and PaiNN,*’
which learn features directly from the 3D molecular graph
rather than relying on pre-calculated descriptors. These
methods have achieved exceptionally low prediction errors
(MAE < 0.1 eV) and represent the next logical step for enhancing
predictive accuracy. Therefore, testing additional descriptor-
based models like Random Forest or XGBoost is unlikely to
yield fundamentally new insights, as they operate on the same
feature space. Future work will focus on developing a GNN-
based pipeline to investigate if this methodological shift can
overcome the challenges our current models face with mole-
cules possessing complex electronic structures, thereby pushing
the boundaries of predictive accuracy for large-scale natural
product databases.

In parallel with exploring new architectures, several refine-
ments could enhance the current modeling framework. A
deeper investigation into the chemical structures of molecules
with high prediction errors—particularly for the challenging
functional groups identified in this study, such as aliphatic

© 2026 The Author(s). Published by the Royal Society of Chemistry

carboxylic acids, alcohols, and amines—could reveal specific
structural motifs or electronic interactions that the current
descriptors fail to capture. The observation that smaller, under-
represented molecular groups exhibited poorer predictive
performance underscores the need to address data scarcity.
Future work should prioritize strategies such as targeted data
augmentation techniques, gathering more data for these
groups, or employing weighting schemes during regression to
account for potential biases in the training data. A primary
strategy is the use of deep generative models,” such as Varia-
tional Autoencoders (VAEs)*** or Generative Adversarial
Networks (GANs),” which can learn to produce novel, yet
chemically valid, molecular structures within a specific chem-
ical domain. This approach would allow for the targeted
generation of new molecules belonging to the poorly predicted
classes, directly enriching and balancing the training set.
Alternatively, data augmentation can be performed in the
descriptor space. Techniques like the Synthetic Minority Over-
sampling Technique®* (SMOTE) and its variants®™ have been
successfully adapted for QSAR datasets, where they create
synthetic minority class samples by interpolating between
existing data points in the high-dimensional feature space.

To make data acquisition more efficient, an active
learning®** loop represents another promising direction. In
this paradigm, the model's own uncertainty estimates are used
to intelligently select the most informative molecules for which
to perform expensive quantum chemical calculations. This
ensures that computational resources are focused on the areas
of chemical space where the model would benefit most from
new information. These established strategies, from generative
models to active learning, provide a clear and feasible path
toward significantly improving model robustness and predictive
accuracy for the challenging molecular subgroups identified in
this work.

Digital Discovery, 2026, 5, 203-213 | 211


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5dd00186b

Open Access Article. Published on 17 November 2025. Downloaded on 2/11/2026 10:46:17 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Digital Discovery

Other avenues for improvement include exploring novel
descriptor selection strategies, incorporating domain knowl-
edge through expert-curated features, and adjusting the
computational workflow to incorporate higher-precision
quantum chemical methods for the target property, which
would enable enhanced reliability and practicability of the
findings based on the semi-empirical XIB data. A small but
structurally diverse subset of molecules, particularly those
where the current model shows high error or those belonging to
challenging chemical groups, could be re-evaluated using DFT
or the recently developed general-purpose Extended Tight-
Binding®* (g-xTB). Comparing the ML model's predictions not
only to the XTB target values but also to these more accurate
DFT-level results would serve two key purposes. First, it would
provide a valuable cross-check on the physical trends identified
by the model. Second, it would help to disentangle the model's
prediction error from the inherent error of the underlying semi-
empirical method. This would provide a more robust assess-
ment of the model's performance and its applicability for
practical high-throughput screening campaigns.

3 Conclusions

This study successfully developed a high-throughput, machine
learning-based approach for predicting the HL-gap of natural
products, addressing the computational expense and time
limitations of traditional quantum mechanical methods like
DFT when applied to large datasets of molecules. Utilizing
a curated dataset of over 400 000 molecules from the COCONUT
database and a streamlined computational workflow, the effi-
cacy of combining xTB calculations with advanced machine
learning algorithms was demonstrated. The findings highlight
the critical role of molecular polarizability, specifically
SMR_VSA descriptors, in determining the HL-gap in both
models. All tested machine learning models, including GBR,
MLPR, XGB, and RFR, achieved good overall predictive perfor-
mance, though the MLPR model showed a slight advantage in
generalization ability. A comprehensive external validation
confirmed this, as the MLPR model successfully predicted gaps
for the, QM9 dataset, with its predictions faithfully capturing
the underlying chemical trends and the known systematic bi-
ases of its training method when compared to DFT and GW
benchmarks. Challenges remain in accurately predicting HL-
gaps for molecules containing multiple functional groups,
notably aliphatic carboxylic acids, alcohols, and amines. Anal-
ysis of feature importance and performance across molecular
subsets revealed that aromatic carbocycles and polarizability
are strong predictors of the HL-gap, while the presence of
multiple interacting functional groups or complex electronic
structures often leads to reduced accuracy. These observations
underscore the importance of considering both electronic and
structural features in HL-gap modeling and suggest that further
model refinement, particularly in addressing the complexities
of specific functional group interactions and complex electronic
structures, holds significant promise for future improvements
in the predictive accuracy. This study therefore contributes
a reliable, high-throughput methodology and provides
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a quantitative performance baseline, paving the way for future
large-scale screening of electronic properties in the vast and
biomedically important chemical space of natural products.
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