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planning multi-step chemical
synthesis routes via a decision transformer

Emma Granqvist, ab Roćıo Mercado a and Samuel Genheden b

We present RetroSynFormer, a novel approach to multi-step retrosynthesis planning. Here, we express the

task of iteratively breaking down a compound into building blocks as a sequence-modeling problem and

train a model based on the Decision Transformer. The synthesis routes are generated by iteratively

predicting chemical reactions from a set of predefined rules that encode known transformations, and

routes are scored during construction using a novel reward function. RetroSynFormer was trained on

routes extracted from the PaRoutes dataset of patented experimental routes. On targets from the

PaRoutes test set, the RetroSynFormer could find routes to commercial starting materials for 92% of the

targets, and we show that the produced routes on average are close to the reference patented route

and of good quality. Furthermore, we explore alternative model implementations and discuss the

robustness of the model with respect to beam width, reward function, and template space size. We also

compare RetroSynFormer to AiZynthFinder, a conventional retrosynthesis algorithm, and find that our

novel model is competitive and complementary to the established methodology, thus forming a valuable

addition to the field of computer-aided synthesis planning.
1 Introduction

Organic chemical synthesis is fundamental to molecular design
and discovery, yet designing efficient synthetic routes remains
a signicant challenge and is oen a bottleneck.1 Retrosyn-
thesis, an approach that dates back to the 1960s,2,3 addresses
this by systematically deconstructing target compounds into
readily available starting materials. Recent advances in articial
intelligence (AI) and deep learning (DL) have greatly contrib-
uted to the elds of retrosynthesis prediction and computer-
aided synthesis planning,4–7 leveraging expanding reaction
datasets.4,8 However, there are outstanding challenges, espe-
cially for efficient search algorithms inmulti-step retrosynthesis
planning.

In this work, we introduce the RetroSynFormer, a novel
approach to multi-step retrosynthesis prediction guided by
a Decision Transformer (DT).9 By framing retrosynthesis as
a sequence modeling problem, RetroSynFormer predicts reac-
tion steps autoregressively, conditioning each decision on
previous steps to capture reaction patterns across datasets.
Unlike conventional search-based methods, RetroSynFormer
inherently learns context-dependent synthesis strategies,
enabling the model to utilize the full history of the path it has
taken to synthesize a compound at each step and thereby
potentially improving route prediction.
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We summarize the three main contributions of our work as
follows:

� This is the rst example of the DT being used for retro-
synthesis planning problems, where we recast retrosynthesis
optimization as a sequence modeling task;

� This is one of the rst demonstration of true multi-step
retrosynthesis planning using DL models, as opposed to prior
work which has focused on the sequential application of single-
step models;

� We thoroughly benchmark our model using meaningful
metrics, such as the success rate and top-1 accuracy, providing
a detailed comparison to the current SOTA: AiZynthFinder.
2 Background
2.1 Retrosynthesis prediction

Organic synthesis plays a central role in nearly all chemical
industries, from drug discovery to material discovery.1 The aims
of organic synthesis are to efficiently manufacture organic
compounds through a series of chemical reactions; this is
a complex problem as each compound can be assembled in
multiple ways, creating a huge chemical space and making for
a challenging search problem. The synthesis of chemical
compounds therefore represents a critical bottleneck in
molecular design, a challenge which motivated the conceptu-
alization of retrosynthesis by E. J. Corey in 19673 following
earlier developments.2 Retrosynthesis refers to the idea of iter-
atively breaking down a target compound until all building
blocks are readily available starting materials. Since then,
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emergence of computational technologies and resources has
enabled computer-assisted synthesis planning for more
productive and efficient retrosynthesis prediction. In recent
years, research on retrosynthesis has been further expedited
due to the recent developments of AI and DL,4–7 and the emer-
gence of larger collections of reaction data on which the AI-
driven retrosynthesis can be trained.4,8 This development has
enabled chemists to save valuable time and effort when
designing synthetic experiments which can lead to nding the
right compounds faster.10

Retrosynthesis can broadly be categorized into template-free
and template-based methods. Template based methods apply
predened reaction rules, templates, which generally result in
reliable reactions grounded in known chemistry, while the
template-free methods learn the reactions directly from the data
and thus are not bounded by the templates. The template-free
methods can then generalize beyond the known reaction rules
with the risk of generating chemically unfeasible reactions.
Furthermore, retrosynthesis prediction is typically separated into
two tasks, single-step retrosynthesis prediction and multi-step
retrosynthesis planning. In single-step retrosynthesis, the task is
to decompose a compound to one or more precursor molecules, or
reactants. Multi-step retrosynthesis aims to nd a sequence of
reactions—a synthesis route—which describes how to make
a chemical compound from a set of readily available starting
materials. The task is typically approached by iteratively using
a single-step model to break down a compound into precursors
until all starting materials belong to a set of available building
blocks. Single-step models have been extensively researched, and
we refer to a recent review for an overview.11 Conversely, multi-step
retrosynthesis typically employs a single-step model with a search
algorithm such as Monte Carlo tree search (MCTS)12,13 or A*
search;14,15 reinforcement learning (RL) has also been proposed for
this task.16 However, methods such as MCTS typically only
consider the current state (i.e., a singlemolecule) whenmaking the
predictions for the next reaction. Some work has proposed
including additional context into models, such as the parent
reactions, when making the predictions.17 We hypothesize here
that including the additional route context in the predictions
would be benecial to retrosynthesismodeling, and that this could
result in a model which can learn common patterns or combina-
tions of reactions across the entire route dataset.
2.2 Language models in synthesis planning

In recent years, a variety of transformer models have been
widely adopted for various different tasks including machine
translation, natural language processing and computer vision.
Nonetheless, these models have also gained widespread use in
computer-aided synthesis planning. One such example is the
Chemformer, a molecular transformer model that has been
trained for multiple tasks, including retrosynthesis planning,
forward synthesis, and property prediction.18 The Chemformer
model has also been integrated with AiZynthFinder for multi-
step retrosynthesis planning.6 One other application that uses
large language models for multi-step retrosynthesis prediction
is DirectMultiStep, which predicts routes as single strings and
Digital Discovery
thus bypasses the need for single-step methods.19 Although an
interesting approach, predicting a route as a single string
presents a unique set of challenges which are difficult to over-
come, such as the inability to condition routes on available
starting materials and the generation of invalid routes.

2.3 Decision transformer

Here we present the RetroSynFormer, a novel approach to multi-
step retrosynthesis prediction where the search is guided by a DT
model.9 The DT framework, originally proposed for RL tasks,
reformulates decision-making as a sequence modeling problem,
leveraging the success of transformers in natural language pro-
cessing. Instead of learning a traditional value function or policy,
a DT models trajectories of states, actions, and rewards as
sequences, predicting future actions autoregressively based on past
context. This formulation makes DT particularly well-suited for
offline RL settings, where a xed dataset of trajectories is available,
and direct interaction with the environment is costly or impractical.

In retrosynthesis prediction, running additional experiments to
test new chemical reactions and explore the search space is oen
infeasible on a short time-scale, making offline learning essential.
By using a DT, our approach conditions action predictions (i.e.,
reaction templates) on previous states and actions in a retro-
synthetic route, allowing it to capture common reaction patterns
and dependencies observed in historical data. This enables the
RetroSynFormer to effectively generalize across diverse reaction
pathways without requiring explicit exploration through new
experiments. Starting from a target molecule, the model autore-
gressively predicts the next reaction step until reaching a stopping
criterion, constructing complete retrosynthetic routes in a exible
and data-driven manner. Unlike other sequence-based RL
approaches such as the Searchformer,20 which integrates A*-like
search with a transformer-based policy, our approach directly
models retrosynthetic trajectories with learnable rewards, making
it more exible for data-driven generalization. As the DT leverages
the full route trajectory information, making it well-suited for
retrosynthesis planning scenarios where long-horizon dependen-
cies are critical, we believe it offers advantages to policy-gradient
approaches that may require reward shaping or explicit policy
optimization.21

3 Methodology

RetroSynFormer is a DT model to predict the next reaction
(action) in a synthesis route. During inference the model uses
a retrosynthesis environment to generate the next reactant
molecule(s) (state) and a reward for each action, iteratively
generating the retrosynthesis route until one of the stopping
criteria is met (Fig. 1).

3.1 Data

RetroSynFormer is trained on a subset of routes from the
PaRoutes dataset4 where the routes have been derived from the
reactions in the USPTO dataset provided by Lowe.22 The
PaRoutes dataset includes 457 166 routes as JSON data objects
with nested dictionaries, where the molecules are represented
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Overview of the RetroSynFormer method. The Decision Transformer, based on GPT-2 architecture, predicts an action, a, (reaction
template) which is passed to the Retrosynthesis Environment that generates the new state, s, along with the corresponding reward, r. The
environment keeps track of the chemical context, such as available building blocks, reaction templates, and maximum depth allowed, as well as
the current route, its status, and stop criteria for when to end the predictions.

Table 1 Details of the datasets. The first three rows show the number
of unique routes in the training, validation, and test sets for the three
main datasets curated in this work. All datasets were created from
PaRoutes4 data. The last row includes the mean pairwise Tanimoto
similarity between 10 000 random targets from the training set and
test set

Dataset Small Standard Large

Training set 44 736 67 180 86 048
Valid set 5362 8222 10 645
N1 test set 2168 4320 5631
N5 test set 1732 3569 5260
# Templates 588 1572 2986
# Building blocks 38 521 58 251 72 737
Total # unique targets 53 626 82 222 106 452
Total # routes 144 812 326 294 442 844
Test–train mean similarity 0.127 0.123 0.126
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as SMILES and the reactions are atom-mapped reaction SMILES
with an associated reaction template extracted via RDChiral.23,24

The full PaRoutes dataset includes a total of 42 551 reaction
templates and routes for 175 164 unique targets.

Here, we formulate the retrosynthesis task as a classication
task and at each step we aim to predict the correct action, i.e.,
a reaction template. By reducing the number of possible
templates, the complexity of the task can be reduced. Therefore,
we sorted the templates based on the frequency in the routes and
extracted routes with only the most frequently occurring
templates. We have created three datasets: small, standard and
large, each based on different frequency-cut-offs for the included
templates. For the standard dataset, all routes with only the 3000
most commonly used templates were taken, giving in total 247 531
(54%) routes, and for the small and large dataset we instead
extracted the 1000 and 6000most common templates, respectively
(for detailed numbers, see Table 1). To further reduce the number
of templates, we followed the procedure of Heid et al.25 to identify
templates that are subgraphs of other templates, which corre-
spond to the nal size of the action space. For the standard dataset
this gives 1572 templates. The process of creating the dataset is
illustrated in Fig. 2a.

The standard dataset is used in all experiments while the
small and large datasets are only used for the results in Section
4.6. Note that the standard dataset is a subset of the large
dataset and that the small dataset is a subset of the standard
dataset, as illustrated in Fig. 2b.

Synthesis routes are naturally tree-like data structures. In order
to easily process them using the DT, we need to convert the tree-
like routes into sequences of states, actions, and rewards, illus-
trated in Fig. 3. Where the molecules are the states, the reaction
template is the action and for each step, a reward is calculated.
When a reaction decomposes a molecular state into more than
© 2025 The Author(s). Published by the Royal Society of Chemistry
one intermediate reactant, a branch is formed in the route. To
standardize the way branching points are handled in the data,
reactant SMILES are sorted according to length and the molecule
with the longest SMILES is expanded rst, while the other mole-
cule is added to a stack. In this way, we follow a depth-rst order
when transforming the route into a sequence: only aer a given
branch is completely rolled out (all leaves are building blocks) do
we continue with the next branch.

Finally, the set of available starting materials, i.e., building
blocks, is dened by the set of all leaf molecules from the
extracted routes. Details can be found in Table 1.
3.2 Data splitting

The same data splitting is followed three times for each of the
large, standard, and small datasets. These datasets enable us to
Digital Discovery
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Fig. 2 Overview of the data processing steps to create the small, standard and large datasets. (a) The filtering process. First, we filter routes from
PaRoutes to keep only those using the 3000 most common templates. After filtering, the remaining reaction templates are further reduced by
converting the templates to the “corrected” templates described in ref. 25. (b) Illustration of the relationship between PaRoutes and the three
datasets, large, standard, and small, showing how the large dataset is a subset of the PaRoutes dataset, the standard dataset is a subset of the large
dataset, and the small dataset is a subset of the standard dataset. (c) Illustration showing how the N1 and N5 sets relate to the three datasets in (b);
as in (b) the N1 and N5 sets in the smaller datasets are subsets of the larger ones.

Digital Discovery Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/8
/2

02
6 

7:
58

:2
7 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
study the effect of training set size on model performance;
details for each dataset can be found in Table 1.

We split the data by the target compounds rather than by the
routes and in this way ensure that there is no overlap between
Fig. 3 Overview of how the synthesis routes are converted from tree
Transformer model. In the example, a route is decomposed into a 3-ste
forming the states and squares represent the reactions forming the actio
a reaction, i.e., the next state. A state is defined by either a single or pair of
for the second “empty” molecule (represented by the empty circle in ti
evaluated and if the compound is an intermediate (turquoise and purple c
the next time-steps. If the compound is a building block (red, green, an

Digital Discovery
the targets in the hold-out test set and the training and vali-
dation sets. The mean Tanimoto similarity between the
compounds in the test set and training set (based on 1024-bit
Morgan Fingerprints) is also reported. First, we created a hold-
structures to state, reward and action sequences for the Decision
p state, reward and action sequences. Circles represent the molecules
ns. The reward at each time-step is a function of the reactants given by
molecules, where in the case of a singlemolecule, zero-padding is used
me step 0 and 2). After each time-step, the status of each reactant is
ircles) it will be put in a stack of unexplored states and decomposed in
d yellow circles) then it is the end of a branch.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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out test set from the N1 and N5 targets of the PaRoutes dataset,4

and because we subsample the templates, we also needed to
subsample the N1 and N5 sets (see Fig. 2c). For the standard
dataset the number of targets are 4320 and 3569 for N1 and N5,
respectively. Here, the N1 set consists of relatively simple,
predominantly linear synthetic routes, reecting the broader
distribution of extracted routes. The N5 set also contains routes,
generally longer and more complex, and was designed to be
a more challenging benchmark for retrosynthesis prediction.

Aer removing the N1 and N5 targets and their corresponding
routes, we randomly selected 10% (8222 for the standard dataset)
of the total number of unique target compounds from the
remaining target compounds to create the validation set. Finally,
the rest of the target compounds formed the training set (67 180
target compounds for the standard dataset).
3.3 Decision transformer

The RetroSynFormer architecture leverages the DT to autore-
gressively predict the next chemical reaction given all previous
reactions, molecules, and rewards. Here, we used the GPT-2 DT
model implemented in the Transformers repository.26

The input to the DT model consists of three vectors: actions,
A = [a0,., at], states, S = [s0,., st], and rewards, R = [r0,., rt].
Each element in A is a one-hot vector encoding a reaction
template where ai ˛ {0,1}1,572 for the standard dataset. Each
template determines the chemical transformation to apply to
the target molecule. Each element in S represents the target
molecule(s), so that si+1 = ai (si); here, si˛ℝd where d is the
length of the molecular ngerprint used. Finally, each element
in R is a reward such that ri ¼ f ðsiÞ˛ℝ, providing an estimate of
the quality of the route at the current time-step, i. The total
number of time-steps is denoted by t in a reaction sequence. We
used Optuna for hyperparameter optimization to determine the
model parameters; details and optimal parameters are provided
in Table S1 in the SI.

All the presented models have been trained on only one
route per target, where, for each target, the route was randomly
selected from all available routes.

3.3.1 Actions. The reaction templates used here are the
“corrected” templates following Heid et al..25 The number of
available actions is determined by the number of templates that
are used in the routes in our dataset. As described in Section 3.1,
we are using a set of 1572 reaction templates for the standard
dataset, which is also the size of our action space, A ˛
{0,1}t×1572, where t is the total number of reactions (time-steps)
sampled in a given route. During inference, RDChiral23 is used
to get the reactants for the next state given the template and
target molecule. The size of the action space for small and large
datasets is given in Table 1 and corresponds to the number of
available templates in the respective dataset.

3.3.2 States. The initial state contains a Morgan ngerprint
representation27 of the target molecule, generated using
RDKit.28 The next states contain the Morgan ngerprints for the
unexplored intermediate reactant(s) generated by the next
reaction. The state dimension needs to be constant when pre-
dicting each timestep even though the actual numbers of
© 2025 The Author(s). Published by the Royal Society of Chemistry
molecules in the state will vary. We have therefore truncated the
state vector which is passed to the model to include two mole-
cules. If only one molecule is in the state (as in the initial state
or for uni-molecular reactions), zero padding is added; if there
are three or more molecules, only the two largest molecules are
included in the state vector. However, all reactants will of course
be explored by the model. This restriction only impacts the few
templates which have three reactants but does not impact the
overall performance. Importantly, the molecular states are
treated as a stack, meaning that the last molecule added to the
state will be the rst explored in the next step, while any other
reactants are put in a stack of all unexplored intermediates. This
leads to a depth-rst search exploration of the states. When
calculating the reward for a given step, all reactants predicted by
the reaction are considered. Each molecule is represented by
a 1024-bit Morgan ngerprint, such that the total dimension of
the state is 2048 bits.

3.3.3 Reward function. In contrast to other route scoring
methods29,30 that evaluate the complete route, here we need
a reward function that can evaluate the goodness of an inter-
mediate route aer each reaction. This poses a challenge, as
assessing route quality before it is complete is inherently more
difficult and we cannot use any of the commonly used route
scorers. Instead, we chose here to include two aspects of the
states when calculating the reward at each time-step: (1) the
condition of the molecule(s) in the current state and (2) the
depth. For a molecule in a route there are three distinct
conditions it can meet: (1) a building block, (2) an intermediate,
or (3) a dead end. A dead end means that either no reaction
template can be applied or that the maximum depth has been
exceeded. The second component of the reward function, the
depth, simply measures how many transformations the current
molecule is away from the target. The depth is included in the
reward to incentivize the model to not only focus on nding
building block compounds but also to favor shorter routes by
penalizing greater route depths. See Algorithm 1 in the SI and
Fig. 4 for an example with a 4-step route. To determine how
much each condition should contribute to the reward and how
to incorporate the depth, we performed an optimization using
Optuna;31 see Table S2 for details.
3.4 Inference

The DT model can be viewed as a policy which predicts the next
action. However, it lacks the chemical context such as knowledge
about the building blocks, the route, what actions are applicable
to what molecule, when a route is solved, etc., which is needed
during inference. Therefore, we have implemented a retrosyn-
thesis environment to be used in combination with the DT, as is
typically done for RL. During inference the environment is used to
apply the predicted templates to get the new reactants, evaluate
the status of the reactants, calculate the reward function, and
build and evaluate the synthesis route. In more detail, the prob-
ability for each reaction template is predicted by the DT, which
determines the rst applicable template with the highest likeli-
hood as the next action. The action is used to take a step in the
environment using RDChiral,23 which returns the reactants given
Digital Discovery
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Fig. 4 Example of a synthesis route annotated with the associated reward calculations for each step, showing how the route reward is calculated
using the reward parameters. The reward for each step is the average of all reactant molecules in that step and the total route reward is the sum
of the reward over all steps.
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the reaction template (action) and the next molecule (rst mole-
cule in the state). Thereaer, the molecules in the new state are
sorted based on size and evaluated. If a molecule in the state is
part of the building block set, that branch is solved and thus the
molecule does not need to be further expanded. However, if there
are no applicable actions (reaction templates) for that molecule or
the route exceeds the maximum depth, the molecule is labeled as
a dead end and the route is unsolved. If the molecule, however, is
determined to be an intermediate, then we add it to the stack of
states to be expanded.

The environment also monitors for loops in the route that
could stem from recurring intermediates. Loops are not
a desirable behavior in a route, so if an intermediate occurs
more than once in a linear route, the route is terminated and
labeled as unsolved.
3.5 Beam search

Since beam search has proven to be a useful strategy for various
natural language tasks, oen resulting in improved perfor-
mance, we have implemented it for the RetroSynFormer.32

Using beam search, the top n templates given a specic
compound (state) are applied at each time-step and evaluated;
the same procedure is then applied to each of the n resulting
new states, leading to n2 new states. These n2 states are sorted
based on the cumulative route likelihood and the top n beams
kept for the next iteration. This procedure is repeated until
either a route is solved or the maximum depth is reached. The
beam search enables the RetroSynFormer to consider multiple
routes for each target and this way increase the likelihood of
nding a solved route. The special case of a beam search using
n = 1 is equivalent to a greedy search.
Digital Discovery
3.6 Evaluation metrics

To assess the model's performance on the retrosynthesis task,
we computed standard metrics which evaluate a model's ability
to nd solved routes for a given target. Specically, wemeasured
success rate, dened as the percentage of targets for which the
model identies a route where all starting materials are avail-
able in stock. Additionally, we assessed top-1 accuracy, which
calculates the percentage of targets for which the predicted
retrosynthetic route is identical to the ground-truth route. To
further compare predicted and target routes, we also evaluated
the model using distance metrics to compare the similarity of
the predicted routes with the target routes. We calculated the
route similarity using the tree edit distance (TED). Since exact
TED computation is oen infeasible, we used an approximation
based on an LSTM model, following Genheden et al.33

To further evaluate the predictions made by the model we
also calculate the action accuracy and reaction class accuracy.
Here, we compare each action in the predicted routes to the
corresponding step in the target route. If the predicted and
target routes are not the same length, we exclude the additional
actions of the longer route in order to calculate these accuracies.

Finally, we assess the route quality using the DeepSet route
score described in Yujia et al.34 and implemented in rxnutils.35

This score has incorporated human expert assessments of
synthesis routes and can be used to categorize routes as either
“good” for scores between 0 and 5, “plausible” if the score is
between 5 and 9, or “bad” if the score is between 9 and 15.
3.7 Baseline

As a baseline, we trained AiZynthFinder, a template-based one-
step retrosynthesis model on the reactions from the same
© 2025 The Author(s). Published by the Royal Society of Chemistry
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routes as the RetroSynFormer model using AiZynthTrain.24

AiZynthFinder is a template-based Monte Carlo tree search
method. The search is guided by a policy to suggest possible
precursors at each step. The policy here is a neural network that
has been trained on reaction templates. We then performed
retrosynthesis experiments with the template-based one-step
model using AiZynthFinder using the same templates as used
by RetroSynFormer. The baseline was evaluated on the same N1
and N5 target sets from PaRoutes.4 In these experiments, we
used the same set of building blocks (stock) as in the Retro-
SynFormer experiments. We used the default AiZynthFinder
settings, i.e., 100 iterations of Monte Carlo tree search, and
a maximum depth of 6 (the same as RetroSynFormer). Rigorous
comparisons of the standard AiZynthFinder with a template-
free single-step model (Chemformer) have been made previ-
ously, demonstrating that the template-free model solves more
routes but with a longer search time.6

4 Results

The RetroSynFormer was used to predict routes for 1500 random
targets from the N1 test set, and 1500 random targets from the N5
test set. The training and evaluation steps were repeated three
times for statistical analysis. For these experiments, RetroSyn-
Former was trained on one randomly sampled route per unique
target (e.g., 67 180 routes for the standard dataset). By default, the
RetroSynFormer returns only the rst route found via the beam
search, although it can also generate multiple routes. Unless
otherwise stated, we use a beam width of 50 and return the route
with the greatest cumulative likelihood; we call this model Retro-
SynFormer50. As a baseline, AiZynthFinder was trained as
described in Section 3.7 and evaluated on the same test sets. For
comparison with the baseline, the highest ranked route from
AiZynthFinder was extracted for each target.

4.1 Retrosynthesis performance

There are many approaches for evaluating the performance of
retrosynthesis algorithms,4 and one of the most common and
also most important metrics is the success rate (the percentage
of targets for which a solved route is found). This is a prereq-
uisite for evaluating other aspects of the predictions such as the
quality of the sampled routes. However, because we have
Table 2 Performance of the RetroSynFormer compared to the AiZynthF
evaluation metrics. Arrows indicate the direction of better performance

Test set

RetroSynFormer50a

N1

Success rate (%) [ 0.924
Top-1 accuracy [ 0.106
Mean time per route(s) Y 68.1
Mean TED Y 5.58
Mean # reactions per route Y 2.34

a RetroSynFormer results show averages over three runs using beam width
success rate,# 0.001 for the top-1 accuracy,# 1.7 for themean time per rou
# reactions per route.

© 2025 The Author(s). Published by the Royal Society of Chemistry
reference routes for the targets as extracted from patents, we
can not only calculate if the predicted route is identical to the
target route (the accuracy), but also the similarity.

A summary of the RetroSynFormer50 performance on the N1
and N5 targets is presented in Table 2. Although RetroSyn-
Former50 results in a slightly worse success rate than the
AiZynthFinder baseline, we can see that it performs comparably
in many other aspects. For example, the success rate for the N1
test set between the models differs by less than 2%, and the top-
1 accuracy differs by only 0.039 and is nevertheless rather low
for both models. Compared to the N1 set, the N5 set is more
difficult for both models as the success rate and top-1 accuracy
is lower. The TED and average route length in Table 2 are only
calculated for the solved routes. Here we only see some smaller
differences between the models. It seems like the difference
between the target and predictions in general are larger for the
N5 set and also that on average the routes for the N5 targets are
slightly longer, although the routes are on average short.

In Fig. 5a we can see the distribution of route lengths for the
predictions compared to the targets. We observe that the distri-
butions for the AiZynthFinder routes and RetroSynFormer routes
are very similar and, interestingly, that the target routes are in
general longer compared to the predicted routes. This suggests
that it is possible to nd shorter routes with the available stock
than what was used for the original patent routes. In Fig. 5b, we
plot the distribution of the route reward in the predicted routes
fromRetroSynFormer compared to the target routes. The predicted
routes show a wider distribution than the target routes, and the
median reward is rather different. Equivalent gures for results on
the N5 set are available in Fig. S1a and b – and we observe the
similar trends as for theN1 set. In addition to the evaluation on the
test set, an additional evaluation on a separate set of targets has
been included in SI D.
4.2 Complementarity of retrosynthesis approaches

As demonstrated, the RetroSynFormer is almost comparable to
AiZynthFinder with respect to the success rate. A natural ques-
tion that arises is if the solved targets are the same across the
models, or if the targets solved by each model are comple-
mentary. As described above, the two models have been evalu-
ated on the same N1 and N5 target sets, and the number of
inder baseline on retrosynthesis planning tasks using a diverse suite of
for each metric

AiZynthFinder

N5 N1 N5

0.899 0.939 0.924
0.058 0.143 0.071
81.9 5.45 5.8
7.08 5.40 7.12
2.55 2.52 2.92

50. Standard deviation for the RetroSynFormer models is# 0.004 for the
te,# 0.05 for themean tree edit distance (TED), and# 0.01 for themean
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Fig. 5 Route characteristics for the N1 test set target routes compared to the RetroSynFormer and AiZynthFinder predictions (including only the
solved routes) for the same targets. (a) The median route length is 3 for the target routes and 2 for the RetroSynFormer and AiZynthFinder routes,
indicating that solved routes are generally shorter than those in the reference dataset. (b) The median reward for the route reward is −6 for the
target routes and −2 for the RetroSynFormer routes. (a) Histograms of N1 route lengths, measured as the number of actions per route, for each
route set. (b) Stacked bar plot showing the distribution of N1 route rewards in the target versus RetroSynFormer-predicted routes.
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targets solved by eachmodel is reported in Table 3. Here, we can
see that 88.5% of the N1 routes are solved by both models and
that 3.9% and 5.4% are solved by only RetroSynFormer and
AiZynthFinder, respectively. This means that only 32 routes
(2.1%) could not be solved by either model. Similarly, for the N5
set only 3.1% of targets could not be solved by any model. To
conclude, by combining both methods we can solve 97–98% of
the routes and potentially reduce the error compared to using
an individual model. We have also compared the tree edit
distance between the routes solved by both models and observe
that the TED for the solved routes are lower than the observed
TED for the reference routes presented in 2. However, we clearly
see that the different methods suggest different routes.

In Fig. 6 we compare an example route generated by Retro-
SynFormer to the route generated by AiZynthFinder for the
same substituted benzamide target from the patent US-
8680159-B2, a patent for bradykinin 1 receptor modulating
compounds. In this example, RetroSynFormer generates a route
in two steps and is very efficient. The route starts with a reduc-
tive amination, a step with some support from the literature
Table 3 Comparison in terms of number and percentage of the N1
and N5 targets successfully solved, showing how many are solved by
only RetroSynFormer, only AiZynthFinder, both models, or by neither
of the models. There are 1500 targets in each of these N1 and N5 sets.
The TED column refers to the tree edit distance between the solved
routes

Solved by

N1 N5

Count Percent TED Count Percent TED

Only RetroSynFormer 59 3.9% 67 4.5%
Only AiZynthFinder 81 5.4% 112 7.5%
Both 1328 88.5% 3.81 1274 84.9% 4.81
None 32 2.1% 47 3.1%

Digital Discovery
(e.g., US8519124B2 or WO/2020/103896 patents as identied by
a search in the Pistachio database36,37), followed by a depro-
tection of the amine group. The patented target route also ends
with a reduction of a protected aminocyclohexanone and
naphthyridine, followed by deprotection, but takes some steps
to build up the aminocyclohexanone intermediate from cheaper
starting materials. AiZynthFinder, on the other hand, fails to
employ the template for the reductive amination, and thus is
unable to break the bond between the naphthyridine and
cyclohexane rings. Aer many unproductive steps, the search
hits the maximum tree depth and stops at a starting material
not in the commercial stock. Nevertheless, we want to stress
that this example only serves to illustrate a scenario where
RetroSynFormer produces a route complementary to AiZynth-
Finder, and we could likely identify other examples where
AiZynthFinder is better suited to solve a given target than
RetroSynFormer.
4.3 Analysis of chemistry in predicted routes

To gain a deeper understanding of the model behavior, we
further analyzed the reactions in the solved predicted routes,
i.e., the routes that terminated in purchasable (in-stock) starting
material(s). In Table 4, we show that the total number of reac-
tions observed in the solved routes is on the order of 3000
compared to 4000 in the target routes, an observation that is
also reected by the shorter average route lengths of
RetroSynFormer-predicted routes (Table 2). Furthermore, these
reactions are represented by about 650 and 700 unique
templates for the RetroSynFormer and AiZynthFinder, respec-
tively, which is fewer than the approximately 800 unique
templates in the target routes. However, the unique number of
reaction classes is about 60 for both the predicted and target
routes. This shows that there is a great redundancy in the
templates, i.e., several templates represent similar reactions,
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Comparison of an example route generated by RetroSynFormer for a substituted benzamide target from the patent US-8680159-B2 (top
panel) to the route generated by AiZynthFinder (middle panel); the target route is shown for reference (bottom panel). The final product is the
same in all three panels and denoted with a golden box. The reactions are visualized as arrows, the green boxes indicate purchasable building
blocks and the red box indicates a dead-end state that is not a purchasable building block (i.e., the maximum route depth was reached).

Table 4 Summary statistics, action/class/route accuracies, and route scores for the solved routes. DeepSet route score estimates the route
quality, and routes with scores between 0 and 5 are considered to be of high quality. Arrows indicate the direction of better performance for each
metric

RetroSynFormer50 AiZynthFinder Targets

N1 N5 N1 N5 N1 N5

Number of total reactions 3047 3189 3234 3556 4093 4567
Number of unique templates 669 650 712 706 795 812
Number of unique reaction classes 63 61 62 63 62 61
Action accuracy [ 0.266 0.223 0.312 0.239 — —
Class accuracy [ 0.374 0.321 0.415 0.333 — —
Route accuracy [ 0.127 0.084 0.163 0.096 — —
Unordered route accuracy [ 0.177 0.125 0.216 0.147 — —
DeepSet route score34 Y 3.139 3.313 3.336 3.531 3.137 3.411
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such that the model can predict different templates that lead to
identical disconnections.

In Fig. S2a and S3a we plot histograms of the 15 most
common reaction templates in the N1 and N5 target routes,
respectively, and compare them to the histograms from the
predicted routes. We can observe that there is a signicant
discrepancy—popular templates in the target routes are not
necessarily the most frequently used templates in the predicted
routes. Furthermore, we plot histograms of the 15 most
© 2025 The Author(s). Published by the Royal Society of Chemistry
common reaction classes in the target routes in Fig. S2b and
S3b, and we observe that there is signicantly less discrepancy
in the templates between the reference N1 and N5 routes
compared to those in the predicted routes for the same sets.
This is also reected in the higher class accuracies for the
RetroSynFormer and AiZynthFinder compared to the action
accuracies (Table 4). This indicates that routes generated by the
respective methods differ in the preferred templates and that
combining both methods might increase the diversity of routes.
Digital Discovery
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Fig. 7 Effect of increasing the beam width on RetroSynFormer performance on the N1 and N5 sets. (a) Success rate versus beam width. (b) Tree
edit distance (TED) versus beam width. (c) Top-1 accuracy versus beam width. (d) Average search time per target versus beam width. Error bars
indicate the standard deviation of three separate model predictions in all plots.
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In general, both the action and class accuracies are lower for the
RetroSynFormer than for AiZynthFinder, and, generally
speaking, the accuracy is lower for the N5 set than for the N1 set.

We also looked at the solved routes separately and calculated
the route accuracy for solved routes (Table 4). Naturally, we
observe that this accuracy is slightly higher than when we also
include unsolved routes (Table 2). If we disregard the order of
the steps, we also observe a slight increase in accuracy (e.g.,
+0.05 for route accuracy on the N1 set using the RetroSyn-
Former), indicating that although some of the predicted routes
are overall correct, the exact order of the individual actions
might differ compared to the target routes.

Finally, we estimated route quality by the recently proposed
DeepSet route score34 for both the predicted and target routes as
an additional quality assessment. We observe that scores for the
RetroSynFormer are marginally better (lower) than for
AiZynthFinder on both the N1 and N5 datasets. However, as
averages for predicted and patented reference routes in both
Digital Discovery
datasets are <3.5, they can all be classied as “good”. This
quality assessment indicates that on average the routes can be
used as-is to plan the wet-lab experiments and that they do not
require modication by an experienced scientist.
4.4 Model exploration 1: beam search

The results presented above were achieved using a beam width
of 50. A high beam width naturally results in a larger search
space and thus a higher probability of success; however, for the
same reason, it also increases the search time as we can see in
Fig. 7c. Thus, there is a trade-off between optimizing success
rate and search time. Using the trained model, we have evalu-
ated the effect of the beam width on route predictions for the
targets in the test set (Fig. 7). We can here clearly see that the
success rate increases logarithmically with the beam width, as
expected. However, when increasing the beam width, the search
time increases exponentially and becomes a limiting factor for
choosing the beam width. Interestingly, we don't see the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Different reward functions and their impact on the model
performance

Reward function

Success ratea Top-1 accuracya

N1 N5 N1 N5

Default 0.924 0.899 0.106 0.058
Increasing building block reward 0.916 0.889 0.099 0.054
Decreasing building block reward 0.916 0.891 0.107 0.056
Remove scaling building block
reward

0.912 0.890 0.110 0.064

Flipping sign intermediate score 0.914 0.890 0.106 0.054
Remove scaling intermediate 0.920 0.898 0.105 0.060
Flipping sign dead end score 0.921 0.899 0.107 0.058
Remove scaling dead end 0.915 0.898 0.103 0.059

a RetroSynFormer results show averages over three runs. Standard
deviations for all RetroSynFormer models are # 0.006 for success rate
and # 0.005 for top-1 accuracy.
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expected increase in top-1 accuracy or decrease in TED with
increasing beam width. Both of these metrics show an optimal
beam width of 10 and they deteriorate slightly for high beam
widths. This shows that there is not a clear correlation between
the success rate and the top-1 accuracy, and highlight the
importance of considering both metrics for retrosynthesis.
4.5 Model exploration 2: reward function

A hyperparameter search was performed as described in Section
3.3.3. Surprisingly, we observed that the model was not very
sensitive to the choice of reward function. In Table 5 we
demonstrate this by showing the success rate and top-1 accu-
racy for models trained using alternative reward functions.
Here, we have changed the signs and removed the scaling with
the depth parameter. Details for all the reward functions can be
found in Table S3. The results show that the default reward used
in the main results presented does indeed give the highest
success rate. However, the difference between the other rewards
is in general small and if the top-1 accuracy is considered
Table 6 Performance of RetroSynFormer compared to AiZynthFinder fo

Dataset Model Test set Success ra

Small RetroSynFormer50 N1 0.950
N5 0.833

AiZynthFinder N1 0.923
N5 0.917

Standard RetroSynFormer50 N1 0.924
N5 0.899

AiZynthFinder N1 0.939
N5 0.924

Large RetroSynFormer50 N1 0.929
N5 0.887

AiZynthFinder N1 0.939
N5 0.925

a RetroSynFormer results show averages over three runs. Standard deviatio
top-1 accuracy, # 0.09 for TED, and # 0.01 for route length.

© 2025 The Author(s). Published by the Royal Society of Chemistry
instead, the best reward function is another one denoted as
remove scaling building block reward. This is because the
reward was optimized with regards to the success rate rather
than the top-1 accuracy.
4.6 Model exploration 3: action space size

All results presented above have used the standard dataset
which includes 1572 templates. We noted that the size of the
action space scales with the number of reaction templates as the
templates are encoded as one-hot vectors. To evaluate the
scalability of the method with respect to the reaction templates
and show that the approach is also useful for other action
spaces that are of larger or smaller sizes, we have trained Ret-
roSynFormer and AiZynthFinder with two other datasets,
denoted as small and large (see Section 3.1 and Fig. 2). For the
evaluation, we constructed different N1 and N5 test sets for the
different action space sizes by randomly sampling 1500 routes
from each N1 and N5. This is done to ensure that we evaluate
the models on targets with reference routes consisting of the
full template space. The results of this evaluation can be found
in Table 6. The results indicate that the model is able to solve
the majority of the targets for all action space sizes and that the
success rate does not differ signicantly depending on the
template set. We can also observe that the top-1 accuracy
decreases when the number of available templates increases.
This is not surprising as when there are more disconnections to
choose from, the probability of predicting the correct one
decreases and it is likely that there are more reaction templates
that are plausible and/or very similar. In addition, the addi-
tional templates which are added when scaling up the template
space will be less frequently used andmight be only used in very
few routes, something which may also explain the drop in top-1
accuracy.

We further sub-sampled the targets in the N1 and N5 sets to
select the targets that are common between the small, medium,
and large datasets; there are 232 and 248 such targets for N1
and N5, respectively. The performances of RetroSynFormer and
AiZynthFinder on those targets are shown in Table S4.
r the different datasets

tea Top-1 accuracya TEDa Avg. Route lengtha

0.182 4.426 2.291
0.101 5.428 2.472
0.223 4.065 2.343
0.125 7.121 2.923
0.106 5.5836 2.337
0.058 7.075 2.548
0.143 5.398 2.517
0.071 7.120 2.923
0.082 6.168 2.276
0.045 7.54 2.531
0.115 6.112 2.538
0.073 7.713 3.019

ns of all RetroSynFormer models are# 0.004 for success rate,# 0.003 for
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Interestingly, the largest drop in performance is observed for
the models trained on the small dataset, where the success rate
of RetroSynFormer drops by almost 10% compared to the entire
small target set. The success rate of AiZynthFinder trained on
the small dataset does not show the same drop in success rate,
but the top-1 accuracy is noticeably lower.
5 Discussion

We have presented a novel approach, RetroSynFormer, for ret-
rosynthesis prediction that uses the recently developed DT to
generate synthesis routes conditioned on a target compound.
The DT model is one of the few DL models that recast an RL
problem as a sequence modeling problem. We have herein
shown for the rst time that it is possible to adapt the DTmodel
for problems in the chemical domain. Nevertheless, RetroSyn-
Former shares many implementation details with established
retrosynthesis methods: it uses a xed set of templates to break
down molecules into reactants—just as template-based single-
step models—and it uses a xed stock of building blocks to
indicate the termination of retrosynthesis pathways—as do the
majority of published multi-step retrosynthesis algorithms. In
contrast, although RetroSynFormer predicts the next reaction
autoregressively, it utilizes at each step the entirety of the
previously predicted route and thus has the potential to opti-
mize the sequence of reactions over a larger context window
than is possible with existing algorithms.

We conducted a comprehensive benchmarking of Retro-
SynFormer against AiZynthFinder, a well-established, template-
based method that represents a conventional retrosynthesis
approach. In terms of success rate, i.e., for howmany targets the
retrosynthesis produces a route that leads to commercial
building blocks, the two approaches are comparable (see Table
2). AiZynthFinder outperforms RetroSynFormer by a few
percentage points, but it is unclear if this difference is of
practical importance. When comparing the predicted routes to
the reference patent routes for each target, AiZynthFinder more
oen reproduces the patented routes—but if we look at the
route similarity as computed by TED, RetroSynFormer is
indistinguishable from AiZynthFinder on average. The two
approaches also nd routes of comparable length, and the
average route score is similar. This indicates that RetroSyn-
Former produces routes that are different than the patented
route but of similar quality to the routes produced by AiZynth-
Finder. Encouragingly, the predicted routes by either algorithm
are of similar quality to the patented reference routes, and can
in both cases be classied as “good” according to a recently
established route scoring method.34 Furthermore, we have
shown that the two approaches to retrosynthesis are comple-
mentary, and together they can predict routes to the commer-
cial starting material for >97% of the targets investigated (see
Table 3). Such a result has been observed for other retrosyn-
thesis models with AiZynthFinder before6 and point to a real
use-case for RetroSynFormer where the combination of
different algorithms has a higher chance of producing valuable
results and can be used in a staged fashion.
Digital Discovery
The exact reproducibility of the reference patented route is
also not a necessity because of the redundancy in the template
set, i.e., different templates could translate into identical or
near identical disconnections. We have shown that both Ret-
roSynFormer and AiZynthFinder show a greater discrepancy
from the patented routes if one looks at the exact predicted
template rather than the reaction classes represented by the
templates. If we instead evaluate route quality based on class
accuracy or disregard the order of the reactions in the route, we
generally observe greater agreement with the patented routes
(Table 4). This complexity of calculating route similarity was
recently discussed in Genheden et al..29 Furthermore, we have
again shown that only a fraction of the templates are practically
needed to nd synthesis routes, e.g., RetroSynFormer uses only
669 out of the 1572 available templates (standard dataset) to
nd synthesis routes for the N1 targets. This has been shown
previously for AiZynthFinder38 and here we have shown it again
for RetroSynFormer. Hence, it is clear that we either (1) should
evaluate retrosynthesis planning on a different target set where
more templates are needed, or (2) need better retrosynthesis
models that can better employ rarely used templates.

Designing a novel algorithm is not straightforward, and
herein we have highlighted a few explorations on the model
design. First, beam search was essential for nding routes to
commercial materials; in Fig. 7 we show that with a greedy
algorithm we only reach about 30% success rate. Unfortunately,
the scaling factor of the beam search is considerable, especially
compared to a search algorithm such as the one in AiZynth-
Finder where additional iterations come at basically a constant
cost. However, the success rate increases more steeply with
increased beam width in the RetroSynFormer than with addi-
tional iterations in AiZynthFinder.4 This indicates that the effort
of increased beam width could make a practical difference to
the produced synthesis routes, compared to AiZynthFinder
where it takes many additional iterations to nd additional
solutions. We acknowledge that there are still a lot of engi-
neering improvements possible to increase the efficiency of
RetroSynFormer, which is currently much slower than
AiZynthFinder as a result of using a high beamwidth. We would
like to argue that currently the reported times in Table 2 are not
a fair comparison as the performance of AiZynthFinder has
been optimized over the course of >5 years.

Furthermore, a key challenge in developing RetroSynFormer
has been the design of the reward function. As presented in
Section 4.5, we observed that changing the reward function in
what seems to be a suboptimal way does not have a signicant
negative impact on the results, which may seem counter-
intuitive. First of all, it is not straightforward to evaluate
synthesis routes in a step-by-step fashion as we do here as it is
not evident how good a single reaction is until we have the full
route. We thus believe that further investigation of different
reward set-ups could potentially be benecial and it is possible
that one could design a better reward function than the one
used here. One possibility, for instance, could involve using
a machine learning model to estimate the future reward of
a partially constructed route.14 As a nal exploration, we
increased and decreased the action space and found that the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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performance of the RetroSynFormer compared to AiZynth-
Finder does not change noticeably in these experiments. It will
be up to future work to investigate if the model scales well to the
sizes available in proprietary datasets.24 Considering the low
fraction of templates used in practice, one could nevertheless
argue that having the ability to scale to larger template spaces is
not a requirement for a useful retrosynthesis algorithm.

Herein, we have specically evaluated the RetroSynFormer on
targets from the PaRoutes dataset because we are interested in
developing a novel algorithm and benchmarking it. Rather than
focusing on improving the state-of-the-art success rate by a few
percentage points, we have explored here a completely novel
architecture in this domain—the Decision Transformer—and
evaluated how well it works for retrosynthesis tasks and what its
limitations are. The PaRoutes dataset is ideal in this scenario as it
is robust, has been used in several previous publications, and
also provides reference patented routes. However, additional
experiments using the full PaRoutes dataset or alternatives would
be an interesting complement to our assessment of the gener-
alizability. In this direction, we have presented in SI D results of
the out-of-distribution evaluation of the method. Further inves-
tigation through a more comprehensive evaluation of the Retro-
SynFormer's generalizability on other target datasets, e.g.,
ChEMBL,39 GDB,40 or compound ideas from internal drug
discovery projects, could be interesting to explore in future work
to further explore the generalizability of the model. Since the
conventional AiZynthFinder is already successfully deployed in
drug discovery projects,10 it is worthwhile to identify areas where
a different algorithm like RetroSynFormer could bring additional
value. We have started in this work to identify that RetroSyn-
Former is in many ways complementary to AiZynthFinder,
although further investigations are required. It would be espe-
cially interesting to show the advantage of the memory inheri-
tance feature of the Decision Transformer, where we may base
the prediction of the next action on all previously predicted
actions (beyond a single route). This will require the design of
a special target set as it is likely that this feature may only be
important for certain classes of compounds.
6 Conclusion

We have presented RetroSynFormer, a novel approach to ret-
rosynthesis that models the task as a sequence modeling
problem. We have demonstrated that the model can nd valid
synthesis routes for 92% of the N1 targets and 90% of the N5
targets from the PaRoutes suite of retrosynthesis benchmarks,
and that—using it complementarily with AiZynthFinder—up to
>97% of targets can be solved. Our method is unique in its
approach as it is the rst time a DT has been used in the
chemical domain. The RetroSynFormer formulates retrosyn-
thesis prediction as sequence modeling and conditions its
predictions on previous reactions, targets, and rewards, thus
suggesting disconnections using greater global awareness than
more conventional approaches. With further development and
benchmarking, RetroSynFormer has the potential to become
a valuable tool for computer-aided synthesis planning.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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