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Ab initio insights into support-induced sulfur resistance of Ni-based
reforming catalysts

Amit Chaudhari ¢, Pavel Stishenko ¢, Akash Hiregange ¢, Christopher R. Hawkins ?, Misbah Sarwar ”, Stephen
Poulston  and Andrew J. Logsdail *¢

Ni-based catalysts are well established for industrial H, production via methane steam reforming; however, their susceptibility
to sulfur poisoning necessitates expensive desulfurisation and limits the development of low temperature processes using
renewable feedstocks. Designing next-generation catalysts requires an atomic-level understanding of the factors that affect the
catalyst sulfur tolerance, but this is difficult to obtain due to complex interactions between the Ni catalyst and non-inert metal
oxide supports. In this work, we investigate the atomic-level mechanisms driving the support-induced sulfur resistance of
Ni catalysts, emphasising the role of disorder in Ni-bound sulfur-oxygen adsorption complexes and support defect chemistry
in promoting catalyst regeneration. The thermodynamic driving force for oxygen-mediated sulfur removal from a Ni(111)
surface, which is indicative of the regenerative effects of support oxygen buffering, is investigated using grand canonical
Monte Carlo (GCMC) sampling of a lattice model that is parameterised using density functional theory (DFT). The outcome
is predictions of the equilibrium surface coverage and composition of co-adsorbed S and O atoms on Ni(111) at length
scales that are inaccessible to DFT simulations. The GCMC predictions are validated using a fine-tuned machine learned
interatomic potential to reveal entropic contributions for catalyst regeneration at experimentally relevant surface coverages,
demonstrating an integrated approach for efficiently exploring the complex combinatorial space of adsorption complexes with
near ab initio accuracy. Simulations of the surface chemistry of Ni(111) are complemented by predictions of the energetics
of bulk defect formation in prototypical metal oxide support materials to provide insights into the proclivity for oxygen
release and phase transformation during catalytic reactions. The computational modelling is correlated with experimental
characterisation and methane steam reforming activity tests for H,S-poisoned Ni nanoparticle catalysts, allowing us to
rationalise the experimentally observed differences in the catalyst sulfur tolerance and establish strategies for future catalyst
optimisation. The work demonstrates the integration of ab initio computational modelling, statistical sampling and machine
learning, in a combined framework that complements experimental characterisation, to inform the rational design of catalyst
support materials for sustainable H, production.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 20 January 2026. Downloaded on 1/21/2026 4:58:21 AM.

(cc)

4 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom.
b Johnson Matthey Technology Centre, Blount’s Court, Sonning Common, Reading, RG4 9NH, United Kingdom.
* E-mail: LogsdailA@cardiff.ac.uk

1424 |1


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cy01279a

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 20 January 2026. Downloaded on 1/21/2026 4:58:21 AM.

(cc)

Catalysis Science & Technology

View Article Online
DOI: 10.1039/D5CY01279A

1 Introduction

Methane steam reforming (MSR) is an established industrial process that produces ~ 95% of the global H, sup-
plyY via the conversion of natural gas (primarily CH,, with smaller amounts of higher hydrocarbons) to syngas
(mixtures of CO, CO, and H;), at high temperature and pressure, in the presence of a catalyst. The commercial
Ni-based catalysts are highly susceptible to sulfur poisoning by impurities in the feedstock, e.g., H,S, SO,, H,SO,
and/or COS, and therefore an expensive feed desulfurisation process is necessary to achieve sub-ppm sulfur con-
centrations.? The additional cost and complexity of feed desulfurisation also limits the development of biogas
reforming processes for scalable H, production from renewable feedstocks, e.g., using solid oxide fuel cells® or via
combined steam and dry reforming.” Understanding the factors that affect the catalyst sulfur tolerance is essen-
tial to enable the direct use of sulfur-containing feedstocks; a challenge that is particularly important for Ni-based

catalysts as they are more economically viable than those based on platinum group metals (PGMs).

A number of strategies have been considered to enhance the sulfur tolerance of Ni-based catalysts, such as
alloying with PGMs, including Au, Cu, Mn, Pd, Pt and Rh.”! Alloys are widely reported in the literature and are
proposed to enhance the catalyst sulfur tolerance via different mechanisms, e.g., promoting sulfur scavenging

78 and

by secondary metallic active phases,® promoting sulfur oxidation and desorption at high temperatures
suppressing the dissociative adsorption of feedstock poisons like H,S.? The optimisation of metal oxide supports is
another effective strategy to enhance the sulfur tolerance of supported Ni nanoparticles during catalytic reforming
reactions, with the mechanism widely hypothesised to involve oxygen buffering from reducible supports like CeO,
and Y,0;.1%1 In these materials, lattice oxygen is proposed to migrate from the support to the Ni active phase
under reducing conditions at high temperatures, resulting in the oxidation and desorption of catalyst poisons e.g.,
C — CO,12U8 and S — 50,.1720 Similarly, a number of established chemical and electrochemical regeneration
methods have been shown to restore the activity of poisoned Ni catalysts by modulating the transfer of oxygen to
the poisoned Ni active sites. Chemical regeneration of sulfur-poisoned Ni catalysts can be achieved using exposure
in steam, H, and/or O, depending on the degree of sulfur poisoning.21%22/ Electrochemical regeneration can also
be used to control the O%~ spillover from both aqueous environments; and Y,0;-stabilised ZrO, (YSZ) supports,
towards sulfur poisoned Pt and Ni species, enabling catalyst oxidative regeneration using a negative electrode

potential.’2372>

Ab initio computational modelling methods, such as density functional theory (DFT), provide an atomic-level
insight into the surface chemistry of sulfur-poisoned Ni nanoparticles. Atomic sulfur is often used to represent
H,S poisoning at low/medium surface coverage (fs) due to the predicted dissociative adsorption of H,S — S on
Ni(111), which does not cause surface reconstruction or sulfur penetration into the Ni bulk as observed at high
05.25722 DFT studies of oxygen-mediated sulfur removal from Ni(111) show that both atomic O and molecular O,
(which adsorbs dissociatively) can lead to the sequential oxidation of S — SO — SO,, which then desorbs at high
temperatures.2%3l These studies were limited to idealised adlayer representations of S, with 65 = 0.25 monolayer
(ML) and 0.5 ML, and do not account for variations in configurational entropy at intermediate coverages; there-
fore, whether the formation of SO, is thermodynamically or kinetically driven at experimentally relevant surface

coverages remains unresolved. Constructing more experimentally relevant predictive models for S and O adsorp-
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tion on Ni(111) requires extensive sampling of the large configurational space of adsorption complexes, which is
computationally infeasible with DFT alone. Statistical sampling algorithms, such as grand canonical Monte Carlo
(GCMCQ), must therefore be considered as they are well suited for exploring the configurational space of adsorp-
tion complexes on a lattice model of the surface, where adsorbates occupy predefined adsorption sites.233 [n
GCMC, the ground state of the system is estimated by stochastically sampling a DFT-parameterised Hamiltonian
through adsorbate perturbations such as adsorption, desorption or diffusion.2* The GCMC approach allows the
system to explore a wide range of chemically relevant surface configurations, producing extended models that
are beyond the atomistic length scales afforded by DFT, whilst ensuring all accessible states contribute to the

statistical ensemble when determining surface properties at thermodynamic equilibrium.

Lattice models simplify the sampling of the configurational space of adsorption complexes but neglect off-lattice
effects, such as many-body lateral interactions and surface reconstruction, which can be non-negligible under
experimental reaction conditions. To account for off-lattice effects, extended GCMC-predicted adlayers can be
refined using classical interatomic potentials (IPs) to perform geometry optimisation and/or molecular dynamics
simulations.’*>"7 Classical simulations are a computationally efficient approach for modelling materials at the
length scales unaffordable using DFT, but the accuracy of these simulations is dependent on that of the underlying
IP. Modern machine learned interatomic potentials (MLIPs) offer a promising approach for balancing accuracy
and computational efficiency by avoiding the predefined functional forms used in traditional IPs, enabling MLIPs
to capture complex potential energy surfaces with greater flexibility. Recent advancements in neural network
(e.g., SchNet,*® PaiNN,32 M3GNet,4? CHGNet*!! and MACE#2) and Gaussian process-based (e.g., GAP“3) MLIPs
have enabled more accurate modelling of chemical reactivity on transition metal surfaces.444% Among these

methods, the MACE#2 architecture, based on message-passing neural networks (MPNNs) and the Atomic Cluster

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Expansion (ACE),4Z is popular as it requires less training data compared to other architectures; thus a MACE

model provides a computationally tractable means for simulating off-lattice effects in extended surfaces with near

Open Access Article. Published on 20 January 2026. Downloaded on 1/21/2026 4:58:21 AM.

ab initio accuracy.4®

(cc)

Accurate simulations of poisoning and reactivity of Ni-based MSR catalysts are also very challenging to realise
due to the interplay between oxygen buffering (causing catalyst regeneration) and phase transformations of the
metal oxide support (causing catalyst deactivation). For example, Ni/y-Al,O3 catalysts can undergo progressive
Ni substitution for Al, resulting in the in situ transformation of Ni/y-Al,O; to spinel-type NiAl,0,.4? Conflicting
reports exist for the utility of Ni-based spinel-type oxides and whether they deactivate Ni-based catalysts>? or en-

51556l and tolerance to S and C poisonsZ due to the facile formation of oxygen vacancies.

hance catalytic activity
Accurate predictions of the energetics of oxygen vacancy formation and substitutional doping for these support
materials are non-trivial using DFT, particularly for reducible transition metal oxides (TMOs) e.g., TiO,, and rare-
earth metal oxides (REOs) e.g., CeO,, which are experimentally reported to exhibit favourable oxygen buffering
capacities.”822 The Coulomb self-interaction error (SIE) of local and semi-local DFT, when simulating materials

60h62] there-

with partially filled d or f orbitals, results in erroneous defect formation energies in TMOs and REOs;
fore, it is necessary to use “beyond-DFT” methods with corrective schemes to combat the SIE. Hubbard corrected
density functional theory (DFT+U) is a popular approach as it is computationally tractable for large systems (e.g.,

defects in large supercells) and involves an ad-hoc energy correction applied selectively to localised orbitals, i.e.,
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Ti 3d orbitals in TiO, and Ce 4f orbitals in CeO,.®? Despite the benefits of DFT+U in computational efficiency,
the determination of appropriate simulation parameters, including the Hubbard U value and projector, is non-
trivial for simulating defects in TMOs and REOs with accuracy that matches experimental observations, and care
is therefore necessary in application. 46>

In this work, a combined computational and experimental approach is adopted to investigate the enhanced
sulfur tolerance of Ni nanoparticles on reducible metal oxide supports, with the aim of establishing strategies for
future catalyst optimisation. We investigate the thermodynamic driving force for oxygen-mediated sulfur removal
from Ni(111), indicative of the regenerative effects of support oxygen buffering, using GCMC sampling of a DFT-
parameterised lattice model. The GCMC-predicted adlayers enable the prediction of the surface coverage and
composition of competitively adsorbed S and O atoms as a function of temperature and the chemical potentials
of S and O across an extended Ni(111) surface. The GCMC-predicted adlayers are validated using geometry op-
timisation simulations with a fine-tuned MACE MLIP to reveal entropic contributions and limitations to catalyst
regeneration at experimentally relevant surface coverages. Simulations of the surface chemistry of Ni(111) are
complemented by DFT+U predictions of the energetics of bulk defect formation (oxygen vacancies and Ni sub-
stitution) in prototypical metal oxide support materials, providing insights into the proclivity for oxygen release
and phase transformation during catalytic reactions. The computational modelling is correlated with experimen-
tal characterisation (TPD-MS, XPS, ICP) and MSR activity testing of H,S-poisoned Ni nanoparticle catalysts to
rationalise the experimentally observed differences in the catalyst sulfur tolerance. The work demonstrates the
integration of ab initio computational modelling, statistical sampling and machine learning to construct more re-
alistic models of complex catalytic materials, which further complement experimental characterisation to inform

future strategies for catalyst rational design.

2 Methodology

2.1 Electronic Structure Calculations

2.1.1 DFT

All electronic structure calculations were performed using the Fritz-Haber Institute ab initio materials simulation
(FHI-aims) software package, 66 which uses an all electron numerical atom-centred orbital (NAO) basis set, inter-
faced with the Python-based Atomic Simulation Environment (ASE).Z Periodic boundary conditions were applied
using converged k-point sampling with the standard light basis set (2020), with equivalent accuracy to the TZVP
Gaussian-type orbital basis set, 8 as decided after benchmarking of the bulk Ni vacancy formation energy (see
the Supplementary Information, SI, Section S1.1.1). Relativistic effects were accounted for using the zeroth order
regular approximation (ZORA)®® as a scalar correction. The system charge and spin were set to zero, given the
reported quenching of Ni(111) surface magnetic moments following oxygen adsorption® and the temperatures
of MSR far exceeding the Curie temperature of Ni (631 K), only below which long-range magnetic order is ob-
served.”? The mBEEF meta-GGA exchange correlation density functional was used,”172 as defined in Libxc,”
providing the best accuracy compared to other local and semi-local functionals (see SI Section S1.1.2). Disper-
sion corrections were not explicitly included as sulfur and oxygen bind strongly to Ni(111) through short-range

chemisorption, which are well described by the mBEEF density functional.”! For such systems, long-range van der
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Waals interactions provide only minor contributions to adsorption energies, whilst any van der Waals correction
may also be detrimental to the representation of the support material; therefore, no further dispersion corrections
are included. Self-consistent field (SCF) optimisation of the electronic structure was achieved using a convergence
criteria of 1 x 1076 eV for the change in total energy, 1 x 10™* eV for the change in the sum of eigenvalues and
I1x10%e ay 3 for the change in charge density. Unit cell equilibrium volumes (V;) were calculated by fitting to the
Birch-Murnaghan equation of state using ASE.”# Geometry optimisation was performed using the quasi-Newton
BFGS algorithm778 with a force convergence criteria of 0.01 eV/A. The pristine Ni(111) surface was modelled
using a six layer symmetric periodic slab, of which the bottom three layers were frozen to mimic the system bulk,
resulting in a converged surface energy in line with computational literature and experimental references (see SI
Section S1.1.3). A 20 A vacuum gap was used in the direction perpendicular to the surface to eliminate artificial
interactions between periodic images. A dipole correction was applied to compensate for the inhomogeneous

electric field arising from surface adsorption. Adsorption energies were calculated as:

AEpgs = E[Ni111) + ads] — ENia11) + Hads €8]

where the chemical potential of the adsorbed species (uags) Was calculated using the energies of isolated atomic

S, atomic O, molecular SO and molecular SO,,.

2.1.2 DFT+U and Defect Calculations

All DFT+U calculations were performed with FHI-aims, using the on-site definition of the occupation matrix

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

and the Fully Localised Limit (FLL) double counting correction.®3 A Hubbard correction was applied to treat the

Coulomb self-interaction of Ti 3d orbital electrons in tetragonal rutile TiO, and Ce 4f orbital electrons in cubic

Open Access Article. Published on 20 January 2026. Downloaded on 1/21/2026 4:58:21 AM.

Ce0,. No Hubbard correction was applied for the Ni dopants or for y-Al,03;. Hubbard U values for Ti 3d and

(cc)

Ce 4f orbital electrons were chosen as U3¢ = 2,575 eV and U4/ = 2.653 eV, which are both valid with a
refined atomic-like Hubbard projector, as defined in the SI Section S1.2. Hubbard U values and projectors were
simultaneously determined using a machine learning-based workflow, with the target of reproducing the bulk
material covalency as calculated using hybrid-DFT, which results in numerically stable self-consistent simulations
of point defects.®? Defect calculations in y-Al,03, TiO> and CeO, were performed using the supercell sizes listed
in the SI Section S1.2, with suitable sizes to ensure a consistent defect concentration across the three systems
whilst also accurately representing the dilute limit. Defect energies (AEpefect) following substitution of a host

metal atom (Al in y-Al,O3, Ti in TiO, and Ce in CeO,) with a Ni atom were calculated as:

AEpefect = Epefective Bulk + MHost — Estoichiometric Bulk — MDopant 2)

where the chemical potentials ppost and ppopant Were calculated using the energy of bulk Ti (hexagonal close

packed) as well as Al, Ce and Ni (all cubic). Oxygen vacancy formation energies (AEgy) were calculated as:

AEoy = Epefective Bulk + Ho — Estoichiometric Bulk 3

124 | 5


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cy01279a

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 20 January 2026. Downloaded on 1/21/2026 4:58:21 AM.

(cc)

Catalysis Science & Technology

View Article Online
DOI: 10.1039/D5CY01279A

where the chemical potential uo was calculated using half the energy of an isolated O, molecule. Defect calcu-
lations in TiO, and CeO, were performed using the "occupation matrix release" (OMR) method to initialise Ti>"
and Ce®* polarons at nearest neighbour atoms to the defect, before the DFT+U-predicted total energy (EPFT*+V)
is pre-converged using fixed orbital occupancies until AEPFT*V < 0.001 eV and then all orbital occupancies are

calculated self-consistently.©3

2.2 Monte Carlo Sampling

All lattice modelling and Monte Carlo sampling was performed using the the Surface Science Modeling and
Simulation Toolkit (SuSMoST) software package,*# considering adsorption complexes of S, O, SO and their pairs,
and the occupation of hollow HCP and hollow FCC active sites on Ni(111) motivated by our results in Section 3.1
and 3.2. Full DFT geometry optimisation was performed for 70 symmetrically inequivalent pairs of adsorption
complexes on either a 10 x 10 or 7 x 7 Ni(111) surface supercell within a 10 A or 5 A radial cutoff, respectively,
as explained further in Section 3.2, before calculating the energy of lateral interactions, AEy aeral, Using:

AEMN2 = B2 — Enia1n) — (Ex + EY) 4

lateral ~— "~ x-x Pair

51552
x-x Pair

where Eyj(111) is the energy of the pristine surface, £ is the energy of a pair of adsorbates x at sites s; and s,
for x € {S,0} and sy, s, € {Hollow HCP, Hollow FCC}, E;' is the energy of a single adsorbate x occupying site s,
and Ey’ is the energy of a single adsorbate x occupying site s5. 35 adsorption complexes consisting of pairs of S-S,
0-0 and S-O atoms, with |AEyera| = 0.04 €V, were chosen for parameterising a pairwise Hamiltonian (%) for
subsequent GCMC sampling, based on the generalised lattice-gas model of adsorption monolayers by Akimenko
et al.,”? using:

H = AEpgs(07) + ) ABjareral (01, 07, X)) 5)
ieL i,jeL

where L is a set of lattice sites, oy is an adsorption complex at site i, AEaq5(07) is the adsorption energy of the
adsorption complex at site i in the zero coverage limit and AEjaeral (07, 07, ¥;i5) is the energy of lateral interactions
between adsorption complexes at sites i and j, given the radius-vector (r;;) between the two sites. Geometry
optimisation of S-O pairs with a short interatomic separation of 1.45 A, corresponding to adsorption at neigh-
bouring hollow HCP and hollow FCC active sites, resulted in atomic diffusion to other active sites, therefore these
adsorption complexes were disregarded for subsequent GCMC sampling. Similarly, molecularly adsorbed SO was
predicted to be less stable than individually adsorbed S and O atoms at low surface coverage, and therefore was

not included in the GCMC sampling (see Section 3.2).

GCMC sampling was performed on a hexagonal lattice of 30 x 30 centers with periodic boundary conditions,
which was large enough to avoid finite size effects. Each Monte Carlo step involved 30 x 30 attempted moves,
i.e., one attempt for each active site per step to change the state of the adsorbed layer through adsorption,
desorption and surface diffusion of atomic S and O. The acceptance or rejection of a new configuration of the
model adsorbed layer of S and O was determined using the Metropolis algorithm,®? where a new configuration is

accepted if the total energy (%) is less than that of the previous configuration (i.e., AZ < 0 eV) or, if AZ > 0 €V,

AX

the new configuration is accepted with the probability min{ 1, exp (—ﬁ) } One million Monte Carlo steps were
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used to reach thermodynamic equilibrium and then the same number of steps were used to calculate ensemble
averages. The parallel tempering algorithm was used to improve convergence to equilibrium and calculate the
temperature dependence of the predicted adlayer coverage and composition, while also accounting for variations
in configurational entropy.®L The following temperatures were used for parallel tempering replicas: 300, 400, 600,
800, 1000, 1200, 1500 and 1700 K. Each simulation was performed with varying relative chemical potentials (uR)
of sulfur (ufs‘) and oxygen (/,tg) between -1 and 1 €V, which correspond to the adsorption energies of a single S or
O atom on Ni(111) in the zero coverage limit, before geometry relaxation. Negative values of u® correspond to
surfaces that are less likely to adsorb atoms in the zero coverage limit, whilst positive values of u® correspond to
surfaces that are more likely to adsorb atoms in the zero coverage limit. We note that non-zero coverages are still
possible for both positive and negative values of u® after geometry relaxation, due to entropic effects or attractive
lateral interactions. To enable direct comparison with experiment, the relative chemical potentials used for GCMC
sampling were mapped to gas phase partial pressures, corresponding to reservoirs of O, and H,S, using ideal gas

thermodynamics at the same temperature and a standard-state pressure of 1 bar:

H(T.p) = AESy, + [Gus(T. p) = Ens | = [Guy (T p) — En ©
1
HS(T.p) = AES,, + = | Go, (T.p) - Eo, | %

where AEi ds (AEg 1) are the DFT-computed adsorption energies for a S (O) atom on Ni(111) in the zero-coverage
limit; Gﬂzs’ GH2 and Go, are the Gibbs free energies of the isolated H,S, H, and O, molecules, respectively,
obtained from ideal gas thermochemistry using ASE; and En,s, En, and Eo, are the DFT-computed energies of

the isolated H,S, H, and O, molecules, respectively.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

2.3 Many-Body Tensor Representations
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To quantify the differences in the GCMC-predicted spatial distribution of adsorbed S and O on Ni(111), the

GCMC-predicted adlayers were encoded into structural fingerprints using many-body tensor representations (MB-

(cc)

TRs), 82 with the DScribe Python library.83€4 Two-body MBTRs were used to encode pairwise interatomic distances
between adsorbed S and O atoms as a smooth density distribution over a continuous grid, which was then discre-
tised into five MBTR descriptors and reduced to a one-dimensional descriptor using principal component analysis
(PCA) with the Scikit-learn Python library.®> The principal component output from PCA (PCMBTR) captures the
most significant trends in the spatial disorder of co-adsorbed S and O in the GCMC-predicted adlayers. All hyper-

parameters for evaluating the MBTRs and PCMBTR are listed in the SI Section S2.

2.4 Interatomic Potential Training and Inferencing

The GCMC predictions were validated using geometry optimisation calculations with a MACE (version 0.3.10)
MLIP,#2 providing a computationally efficient means to relax the high-coverage GCMC-predicted adlayers on the
30 x 30 Ni(111) surface (~5800 atoms, surface area ~50 nm?). The MACE MLIP was trained using the diverse
dataset of 5921 DFT-optimised structures collected in the work, including isolated atoms and molecules (S, O, SO,

SO, and SO,), Ni(111) periodic slab models of different thicknesses and adsorption complexes involving S, O, SO

1424 | 7
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and SO, at both low and high surface coverage on Ni(111). Training was performed using multihead replay fine-
tuning of the off-the-shelf MACE-MPA-0 (medium) foundation model, ¢ trained on approximately 146,000 unique
materials in the Material Project Trajectory (MPTrj) dataset8%87 and 3.2 million unique materials in a subset of the
Alexandria dataset.®8 No dispersion correction was used and the model precision was set to float64. A randomly
selected 4737 structures (80%) were used for model training, with the remaining 1184 structures (20%) used for
validation. The Adam optimiser® was used to minimise a cost function comprised of an equally weighted average
of energy and force errors, with the learning rate set to 0.01. The MACE model consists of two message-passing
layers and employs a radial cutoff for learning interatomic interactions of 6 A, resulting in a total receptive field
of 12 A, which is greater than the distance when lateral interactions between surface adsorbed pairs of S-S, 0-O
and S-O atoms decay to zero at low surface coverage, as computed using DFT. Fine-tuning was performed for
24 epochs, to balance cost and accuracy due to plateauing of the energy and force errors (Figures b) and (c),
respectively). The fine-tuned model gave a training (validation) root mean squared error (RMSE) of 14.4 (14.2)
meV/atom in total energies and 16.3 (17.2) meV/A in atomic forces. When inferenced on the full dataset, the
pre-trained foundation model gave a RMSE of 1.43 x 10!° eV in total energies and 10.7 eV/A in maximum atomic

forces, which were reduced by > 99 % upon fine-tuning the model as shown in the parity plots in Figures [I}(d)

and (e).
—_ ° ®
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Figure 1: (a) Overview of the use of grand canonical Monte Carlo (GCMC) sampling and a fine-tuned MACE machine learned
interatomic potential for studying the co-adsorption of S and O atoms on Ni(111) at thermodynamic equilibrium. The MACE
model is fine-tuned from the MACE-MPA-0 pre-trained foundation model for 24 epochs, which results in a reduction in the (b)
energy and (c) force errors until both start to plateau. When inferenced on the full dataset of DFT-optimised structures, the
fine-tuned model yields a reduction in the RMSE in total energies and maximum atomic forces of > 99 % vs. the pre-trained
foundation model, as shown in the parity plots for (d) total energies and (e) maximum atomic forces.

The fine-tuned MACE model was then used as the ASE calculator to run geometry optimisation calculations
using the BFGS algorithmZ'Z8 with a force convergence criteria of 0.01 eV/A. Six GCMC-predicted adlayers of
differing coverages and intermixing of adsorbed S and O were validated using MACE: for ug = -1 eV, ,ug =-1eV,

-0.7 eV and -0.5 eV, and T = 600 K and 1200 K. The accuracy of the GCMC-predicted adlayers were validated

8| 144
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by computing the root mean squared deviation (RMSD) of the S and O atomic positions (x and y co-ordinates)

between the initial GCMC-predicted adlayers and the final MACE-optimised adlayers:

RMSD; = \/(x%\/IACE — xGOMC)2 | (yMACE _ yGCMC)2 ()
where xX5°MC and ySMC gre the x and y coordinates of atom i (either S or O) in the initial GCMC-predicted adlayer
and xMACE and yMACE are the corresponding coordinates in the final MACE-optimised adlayer.

2.5 Experimental Characterisation

To investigate how support oxygen buffering affects the sulfur tolerance of the Ni catalyst, we selected three model
supports spanning a range of reducibilities. y-Al,O3 is chosen as a high surface area, structurally robust support
material with negligible oxygen buffering behaviour.®? Rutile TiO, is chosen as a moderately reducible support
material, which can form oxygen vacancies and facilitate mild oxygen buffering at high temperatures.*? CeO, is
chosen as the prototypical support material for strong oxygen buffering under catalytic reaction conditions due to
the ease of switching between the Ce** and Ce** oxidation states, and low oxygen vacancy formation energy.>82%

The three supported catalysts of 10 wt % NiO on y-Al,O3 (commercial, surface area= 140 m?/g), rutile TiO,
(commercial, surface area= 20 m?/g) and CeO,, (commercial, surface area= 20 m?/g) were synthesised using the
standard incipient wetness impregnation method, where the support materials were first impregnated with a Ni
nitrate precursor solution, then dried and calcined at 773 K for 2 hours to obtain the final catalyst samples.”Y The
catalysts were pelletised to a size of 250-355 um and activated in a tube furnace, in a mixture of 10 % H, in N, at

923 K for 10 hours. Scanning electron microscopy (SEM) was used to visualise the morphology of the prepared

catalysts using a Zeiss ultra 55 Field emission electron microscope equipped with in-lens secondary electron and

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

backscattered detectors. X-ray diffraction (XRD) was performed using a Bruker D8 Advance Davinci design unit

to measure the NiO crystallite size in the prepared catalysts.

Open Access Article. Published on 20 January 2026. Downloaded on 1/21/2026 4:58:21 AM.

A 1 g portion of each catalyst was then saturated with H,S at room temperature for 18 hours in a fixed bed

(cc)

reactor, using a feed gas of 100 ppm of H,S in a mixture of 2.5 % H; in N, with a relative humidity of 50 % and
a flowrate of 500 ml/min. The total sulfur content following room temperature saturation was quantified using
inductively coupled plasma (ICP) analysis. As the focus of this work is to investigate the thermodynamic driving
force for sulfur removal and catalyst regeneration, rather than the kinetics of sulfur adsorption under operating
reaction conditions, the room temperature sulfur loading protocol provides a consistent baseline from which we
assess the temperature-dependent catalyst regeneration behaviour. We note that the measured sulfur content for
each catalyst is expected to be a high (upper bound) estimate, with reduced adsorption at higher temperatures.
The surface speciation of the H,S-poisoned catalysts, with a measurement depth of 5-10 nm, was analysed using X-
ray photoelectron spectroscopy (XPS). Temperature programmed desorption-mass spectrometry (TPD-MS), using
a Micromeritics Autochem II Chemisorption analyser linked with a MKS Cirrus 2 mass spectrometer, was used to
track the desorption of H,O, SO and SO,, from the H,S-poisoned catalysts under a fixed temperature ramp of 10
K/min from room temperature to 1223 K in Nj.

MSR activity testing was carried out in a low-pressure rig designed to flow dry gas mixtures of N, CH4 (and

higher hydrocarbons) and H, for catalyst pre-reduction. The dry gas composition used was 68.4 % CH, and 3.6
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% C,Hg, with a balance of N,. The dry gas mixture is then combined with steam (following prior heating and
evaporation in an oven) forming a reaction gas mixture that is flowed through a packed catalyst bed, contained in
a quartz tube, within a furnace that is electrically heated up to 1223 K. The MSR activity for each H;S-poisoned
catalyst was evaluated at steady state, at temperatures of 873, 973 and 1073 K, under regulated outlet backpres-
sures of 100, 120 and 150 mbar, respectively. During the reaction, the dry gas is combined with steam resulting
in a steam to carbon ratio of 3:1, with a total gas flowrate of 200 ml/min. The quartz tube (diameter 0.4 cm) was
loaded to a 1.5 cm bed length, equating to 0.097 g (0.094 cm?) of catalyst and 0.155 g (0.094 cm?®) of SiC inert
dilutant. We note that the studied support materials are chosen as model systems to investigate the key principles
driving the catalyst sulfur tolerance, but are not immediately compatible with existing industrial MSR processes
due to differences in the catalyst form (i.e., pellets vs. powders) and thermal instability at very high temperatures

over long timescales.

3 Results and Discussion

3.1 Atomic and Molecular Adsorption on Ni(111)

To ascertain the number of non-equivalent adsorption sites on Ni(111), atomic S and O were adsorbed at the four
initial positions illustrated in Figure [2(a), including hollow HCP, hollow FCC, atop and bridge sites. Geometry
optimisation of atomic S adsorbed at both atop and bridge sites resulted in S diffusion to the hollow HCP site,
whilst atomic O adsorbed at atop and bridge sites diffused to hollow HCP and hollow FCC sites, respectively.
The hollow HCP sites in Figures b) and (d) and the hollow FCC sites in Figures c) and (e) were therefore

determined to be the relevant non-equivalent sites for adsorption.

BB BB
ey By Sy 9

Figure 2: (a) The four studied adsorption sites on the Ni(111) surface, with the unit cell boundaries denoted in the black
dashed lines, including (1) hollow HCP, (2) hollow FCC, (3) atop and (4) bridge. (b)-(i) The most stable single atom (S and O)
and molecular (SO and SO;) adsorption complexes on a 1 x 1 Ni(111) surface, calculated using DFT with the mBEEF exchange
correlation density functional, where (b) and (c) correspond to S adsorption, (d) and (e) correspond to O adsorption, (f) and (g)
correspond to SO adsorption and (h) and (i) correspond to SO, adsorption. (a)-(i) are top down views of the Ni(111) surface
and the bottom row is a side view for adsorption complexes (f)-(i). The corresponding adsorption energies for the adsorption
complexes (b)-(i) are listed in the SI Section S1.1.4.

lk—w

L—w

Both atomic S and O strongly chemisorb on the Ni(111) surface and display an energetic preference for adsorp-
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tion at hollow FCC sites, by 0.05 €V for S and 0.23 €V for O. The trends in adsorption energies and site preferences
are in agreement with computational literature detailed in SI Section S1.1.4, although the absolute values of ad-
sorption energies are found to vary slightly with the choice of exchange correlation density functional, as GGAs
from the literature tend to underbind,”Z and the choice of Ni(111) surface model parameters.22°39> The adsorp-
tion of molecular SO was also considered, with both S and O directly bonded to the surface. At both hollow HCP
and FCC sites, S-bound SO was calculated to be more energetically stable by 2.35 €V and 2.10 eV, respectively.
Finally, we tested SO, adsorption at the four initial positions in Figure a), from which the non-equivalent ad-
sorption sites were atop and bridge sites in Figures h) and (i), respectively. SO, is calculated to be most stable
when S occupies the bridge site of Ni(111), as is reported experimentally,?® with the same preferential stability

as reported in the DFT study of Liu et al.”? All calculated adsorption energies are reported in SI Section S1.1.4.

3.2 Pairwise and Many-Body Lateral Interactions on Ni(111)

The four non-equivalent adsorption complexes of atomic S and O in Figures [2|(b)-(e), were used to construct
new adsorption complexes of S-S, O-O and S-O pairs at low surface coverage on a 10 x 10 Ni(111) surface (for
S-S and O-O pairs) and a 7 x 7 Ni(111) surface for S-O pairs (to reduce computational cost at no detriment to
accuracy). Following geometry optimisation, the energies of adsorbed single atoms and pairs were then used
to compute lateral energies (Ejueral, defined in Section 2.2, Equation @)), which are plot in Figures [3(a)-(c)
for pairs of S-S, O-O and S-O, respectively. Lateral interactions are repulsive for all pairs in Figures [3(a)-(c),
indicating that the O-mediated removal of adsorbed S occurs at high surface coverage and would require a large
supply of O atoms to the surface to overcome the repulsive lateral interactions between adsorbed S and O, e.g.,

from a reducible metal oxide support with a large oxygen buffering capacity or using a high partial pressure of O,

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

gas during experimental catalyst regeneration. All adsorption complexes corresponding to |Eyaceral| = 0.04 €V, i.e.,

green markers in Figures a)-(c), were used to parameterise the pairwise Hamiltonian (%, defined in Section

Open Access Article. Published on 20 January 2026. Downloaded on 1/21/2026 4:58:21 AM.

2.2, Equation 5) for GCMC sampling. Geometry optimisation of S-O pairs at low surface coverage reveals the

instability of short-range interactions of < 1.45 A between adjacent hollow HCP and hollow FCC sites, which

(cc)

results in atomic diffusion to neighbouring sites in Figures[3{(d) and (e). We therefore do not include short-range
S-O interactions in the GCMC sampling by assigning Ejuera1 = oo €V within the lattice model for both initial
configurations in Figures d) and (e).

We investigate the validity of excluding short-range S-O interactions from the GCMC sampling, which would
create the conditions necessary for the oxidation of S — SO, by considering how the S and O surface coverages
affect the energetics of S oxidation. The geometry optimisation simulations in Figures[3{(d) and (e) were repeated
onasmaller 1 x 1 Ni(111) surface in Figures[3|(f) and (g), respectively, corresponding to a higher surface coverage,
before evaluating the relative stability (AERejative) Of an adsorbed SO molecule at the most stable hollow-FCC site

vs. atomic S and O, using:

AERelative = EQ/Ni111) E£67N1(111) )
where Esng/rf\n(nl) is the energy of a geometry optimised SO molecule adsorbed at a hollow-FCC site on an n x n
Ni(111) surface and E'X" is the energy of a geometry optimised pair of S and O atoms adsorbed at an initial

S,0/Ni(111)

interatomic separation of 1.45 Aonannxn Ni(111) surface.

1424] | 11
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Figure 3: Lateral energies between adsorbed (a) S-S, (b) O-O and (c) S-O atomic pairs, at low surface coverage on Ni(111),
calculated using DFT with the mBEEF exchange correlation density functional. Green (red) markers correspond to adsorption
complexes that are included (not included) in the pairwise GCMC Hamiltonian. The marker shape corresponds to the type
of active site occupied by each atom in the pairs. The initial (top row) and final optimised geometries (bottom row) for DFT
relaxations of short-range S-O interactions, where S occupies a hollow-HCP site and O occupies a hollow-FCC site in (d) and
(f), whilst S occupies a hollow-FCC site and O occupies a hollow-HCP site in (e) and (g). Adsorption complexes (d) and (e)
correspond to low surface coverage ona 7 x 7 Ni(111) surface, whilst complexes (f) and (g) correspond to high surface coverage
onalx 1Ni(111) surface. The relative energy for each adsorption complex (d)-(g), calculated using Equation (9), is listed
underneath each subfigure.

Comparing the relative energies in Figures[3|(d)-(g), there is a significant site-dependence in the energetic fea-
sibility of S oxidation to SO, where relaxation of S adsorbed at hollow-FCC sites and O adsorbed at hollow-HCP
sites dramatically reduces AERejaive cOmpared to relaxation of S adsorbed at hollow-HCP sites and O adsorbed at
hollow-FCC sites. This observation is consistent with the spin-polarised DFT study of Das and Saida, who calcu-
lated AERelative = 0.41 €V for S adsorbed at a hollow-FCC site and O adsorbed at a hollow-HCP site and AEggative
= 2.98 eV for both atoms adsorbed at hollow-FCC sites, on a 2 x 2 Ni(111) surface.2Z Our results further show a
strong coverage-dependence for the feasibility of S oxidation, as shown by the reduction in AEge|asive from 0.57 €V
to 0.01 eV by increasing the surface coverage from Figure [3|(e) to Figure [3[(g). The pairwise GCMC Hamilto-
nian, which excludes short-range S-O interactions that are energetically unfavourable at low surface coverage, is
concluded to be valid for simulated adlayers with low s and 6o, only shown as the lighter regions in the GCMC-
predicted isotherms in Figures[d|(a) and (b), as well as regions of low intermixing between S and O shown as the
lighter regions in Figure[d{(c). In these regions, strong adsorbate interactions with the Ni(111) surface exceed any
attractive lateral interactions between adsorbed S and O as may be required for the formation of oxidised sulfur
species.

Under sulfur-rich conditions (,ul; — —1 €V), the GCMC-predicted isotherm in Figure E(a) predicts a large sulfur
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coverage of up to 0.45 ML that is thermodynamically stable even at extremely low H,S feed concentrations in a
H,S/H, mixture, on the order of parts per million. This reflects the strong chemisorption of atomic S to Ni(111)
relative to the weak thermodynamic driving force for desorption into H,S. In contrast, Figure E(b) shows that
co-adsorbed oxygen can reduce sulfur coverages on Ni(111) via site competition under sufficiently oxygen-rich
conditions (u§ — —1 eV); although this does not occur under any realistic oxygen partial pressures at 600 K. These

results suggest that a high temperature is essential for oxygen-assisted catalyst regeneration via site competition

between co-adsorbed S and O.
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Figure 4: GCMC-predicted surface coverages of (a) S and (b) O at 600 K for relative chemical potentials of S (ug) and O (ug)
ranging between -1 eV and 0.2 €V, as defined in Section 2.2. (c) The principal component derived from two-body many-body
tensor representations (PCMBTR | discussed in the SI Section S2), which encodes the pairwise interatomic distances between
adsorbed S and O atoms across 10 GCMC-predicted adlayers for 441 combinations of ;11; and ,ug at 600 K. The secondary
axes in (a), (b) and (c) show the equivalent gas phase thermodynamic control variables corresponding to the relative chemical
potentials, including the ratio of partial pressures (p) of H,S to H, (for a fixed py, = 1 bar) and the partial pressure of O,
which were obtained from ideal gas thermodynamics at the same temperature and a standard-state pressure of 1 bar. (d) The
root-mean-square deviation (RMSD) in S and O x and y atomic co-ordinates, between GCMC-predicted and MACE-reoptimised
adlayers. Bars represent the mean RMSD for each pg value at T = 600 K and 1200 K. Error bars represent the standard deviation
of the RMSD. All bars correspond to ug = -1 €V, thereby testing the validity of adlayers with varied intermixing of adsorbed S
and O atoms on Ni(111), which increases for larger values of ,ug.

To investigate the entropic contributions to catalyst regeneration via oxidation of S — SO, we validated six
GCMC-predicted adlayers for ,ug = -1¢eV, ,u% = -1¢eV,-0.7 eV and -0.5 eV, and T = 600 K and 1200 K, using
geometry optimisation simulations with the fine-tuned MACE model (trained on both low coverage and high
coverage DFT relaxations). The mean and standard deviation of the RMSD of adsorbate atomic displacements
is shown in Figure [4(d), where the MACE relaxation trajectories do not lead to S oxidation. In all cases in

Figure[4{(d), the differences in the GCMC-predicted and MACE-optimised adlayer structures are driven by surface
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diffusion of some adsorbed S atoms to nearest neighbour sites without any S oxidation to SO or SO,, whilst the
RMSD in atomic positions is consistently lower for adsorbed O than S (discussed in the SI Section S3). The results
suggest that combinations of /11; and yg that lead to higher coverages and intermixing of S and O, illustrated
by the dark blue regions in Figure [(c), create conditions that are necessary but not sufficient alone for SO
formation and that thermal activation is essential for SO formation irrespective of the degree of S and O co-
adsorption. As a result, the use of metal oxide support materials with a large oxygen buffering capacity can aid
the regeneration of S-poisoned catalysts at high temperature, where the formation and desorption of SO and SO,
is feasible. However, tuning the support oxygen buffering capacity is unlikely to improve the sulfur tolerance of
low temperature catalysts, which requires modification of the Ni catalyst to reduce the high affinity of S, O, SO
and SO,. These findings are consistent with the kinetic modelling of S oxidation on Ni(111) by Galea et al., who
combined DFT simulations with TPD experiments to investigate the removal of adsorbed S atoms using gas-phase
0,.31 Their TPD results showed no SO, formation at temperatures below 600 K for surfaces with low S coverage,
indicating that direct oxidation of S atoms is not thermally accessible at these conditions. Instead, S removal was
only observed above 600 K and at sufficiently high O, exposures, to facilitate O-assisted S diffusion and oxidation.
Their DFT calculations similarly demonstrated a high activation barrier (>1 eV) for SO formation from isolated S

and O atoms on Ni(111).

3.3 Reversible vs. Irreversible Catalyst Deactivation

The results in Section 3.2 can be used to rationalise the outcomes of experimental MSR activity testing of fresh
and H,S-poisoned Ni nanoparticle catalysts in Figure [5, which shows methane conversion as a function of the
reaction temperature. For both H,S-poisoned Ni/TiO, and H,S-poisoned Ni/CeO,, catalyst regeneration and
partial restoration of activity (to ~ 80 % and ~ 50 % of that of fresh Ni/TiO, and Ni/CeO,, respectively) is
achieved upon increasing the temperature beyond 973 K. Although H,S-poisoned Ni/TiO, is restored to the
highest absolute value of catalytic activity in Figure a), ICP analysis indicates a total uptake of H,S during room
temperature saturation of 0.11 weight percentage of sulfur (%swt), which is an order of magnitude lower than
that of Ni/y-Al,O3 (2.14 %s w:) and Ni/CeO, (2.53 %sw). The reduced sulfur loading on Ni/TiO, likely stems
from the reduced dispersion of Ni in the experimentally prepared catalyst, as evident by the SEM imaging in the
SI Section S4, which is consistent with the much larger XRD-determined NiO crystallite size of 17.9 nm on TiO,
vs. 12.1 nm on CeO,. As a result, Figure a) shows that H,S-poisoned Ni/CeO,, is restored to a substantially
greater catalytic activity than H,S-poisoned Ni/TiO,, relative to its sulfur-content, which is in line with our DFT+U
calculated oxygen vacancy formation energies of 3.44 eV for CeO, and 5.35 eV for TiO,, i.e., oxygen from the
CeO, lattice facilitates S oxidation. Both values are much lower than the DFT-calculated oxygen vacancy formation
energy of 7.00 eV for y-Al,O3, indicating support oxygen buffering may drive the enhanced sulfur resistance of
Ni/CeO,, although not in a manner to reduce the temperature required for catalyst regeneration, as discussed in

Section 3.2.

The H,S-poisoned Ni/y-Al,O3 catalyst was found to deactivate irreversibly in Figure b), with no restoration
of catalytic activity upon increasing temperature. Given the measured activity of the fresh Ni/y-Al,O3 catalyst,

which is subject to a pre-reduction in H, at 923 K, the irreversible deactivation of H,S-poisoned Ni/y-Al, 03 is likely
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2 due to the variation in the Ni oxidation state with respect to the reducibility of the reaction environment. The
'_

observed irreversible catalyst deactivation is consistent with the experimentally reported in situ transformation

of Ni/y-Al,0;3 to spinel-type NiAl,Qy, i.e., switching the Ni oxidation state from Ni’ in Ni** on the surface and

Open Access Article. Published on 20 January 2026. Downloaded on 1/21/2026 4:58:21 AM.

in the bulk, which is inactive for MSR.287100 The suppression of Ni’ when Ni/y-AL, O3 is exposed to oxidising

(cc)

atmospheres, e.g., when exposed to air in ambient conditions before characterisation, is further supported by the
Ni 2p3;, XPS spectra in Figure |§|(a), where the Ni surface speciation on the different supports is distinctly different
at ~ 853 €V, which corresponds to Ni®, whilst being similar at ~ 856 eV, which corresponds to Ni2* .19 Given that
the relative intensity of the peak at ~ 853 eV is lowest for H,S-poisoned Ni/y-Al;03, this suggests that y-Al,03

suppresses the formation of Ni® in oxidising conditions.

To investigate the driving force for irreversible catalyst deactivation further, we calculated the energetics of
substitutional defect formation in the support materials using DFT and DFT+U, as outlined in Section 2.1.2. As
shown in Figure |§|(c), the substitutional defect energy for Ni}, in y-Al, O3 is calculated as 6.08 €V, which is lower
than Nif, in TiO, (6.67 eV) and Nif, in CeO, (13.61 eV), supporting a hypothesis that the deactivating phase
transformation is more favourable for Ni/y-Al,O3, whereas Ni/TiO, and Ni/CeO, are more resistant to forming
bulk solid solutions. Figure |§|(c) further shows that the increasing defect energies from Ni}, to Nif, correlate
inversely with the polarisation of the Ni 3d e, orbitals, comprised of the 3d,. and 3d,>.,» orbitals that align

102

along the metal-oxygen bonds, 102 which is characteristic of complex oxides containing divalent ions such as Ni**

resulting in stabilisation via Jahn-Teller distortions that break the system symmetry. 103104 These results indicate
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an energetic favourability for the initial stages of phase transformation in y-Al,03, in agreement with the DFT+U-
parameterised Monte Carlo study of Elias et al., who concluded the NiAl,O4 can be more stable than NiO and
v-Al, 03 in Ni-rich conditions at high temperatures.@ The predicted insolubility of Ni in CeO, is in contrast with
literature-reported defect energies of ~ 2-3 eV using DFT+U in a planewave basis. 0108 Whilst the two sets of
results are not directly comparable due to differences in the employed Hubbard projectors, our results align with
previous work that shows self-consistent DFT+U in a NAO framework can successfully rationalise experimentally
observed defect chemistry in TMOs, e.g., the varying oxidation states of Nb and W dopants in different TiO,
polymorphs®65 and the energetics of Mg doping in LiCo0,,%5 the results for which can vary ambiguously in the
plane-wave DFT+U literature.207"110 The Jarge defect energy for Nig, is confirmed as not an artifact of our chosen

DFT+U parameters by repetition of the calculation using standalone DFT, which yields a defect formation energy

of 13.81 eV.
—H,S/Ni/TiO; H2S/Ni/y-Al,03  — H,S/Ni/CeO, (c)
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Figure 6: Normalised XPS spectra for (a) Ni 2p3;; and (b) S 2p for the three H,S-poisoned Ni catalysts following room
temperature saturation with H,S (before MSR activity testing). (c) Substitutional defect energies for Ni;l in bulk y-Al,O3
(DFT), Ni;i in bulk TiO, (DFT+U) and Nié . in bulk CeO, (DFT+U), calculated using the mBEEF exchange correlation density
functional and Hubbard parameters detailed in the SI Section S1.2. The defect energies are plot alongside the corresponding
Ni 3d ¢4 orbitals, including both 3d > and 3dxz>y2 orbitals. Large differences between 3d» and 3d, 22 orbital occupancies are

reportedly characteristic of systems with stabilising Jahn-Teller distortions. 103104

3.4 Sulfur Speciation and the Role of Water

To gain further insights into the mechanisms that drive sulfur removal from the H,S-poisoned catalysts, TPD-MS
was performed in N, to track the signals for H,0, SO and SO,, which correspond to measurements from mass
spectrometry (Figure(7). For H,S-poisoned Ni/CeO,, sulfur removal occurs partially in a low temperature regime
(between 423-573 K) and also a high temperature regime (beyond 973 K), which can be attributed to lattice

and surface oxygen, respectively, based on the thermogravimetric analysis of Zhu et al., who studied pure and
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Ni-doped CeO, nanorods showing surface oxygen release between 423-593 K and lattice oxygen release between
593-1073 KM Liu et al. similarly used TPD-MS to investigate SO, release from H,S-poisoned CeO,, concluding
that peaks between 473-673 K corresponded to the formation of SO, which could react with lattice oxygen above
673 K to form Ce(SO,), and then this decomposes back to SO, at 873 K."12 The role of oxygen in facilitating
sulfur removal was further supported by observations that SO, TPD-MS signals were greatest when the catalyst

was pretreated in O,, compared to inert Ar or reducing H,." 12

H2S/Ni/y-Al;03 e  H2S/Ni/TiO; e HyS/Ni/CeO;

1014 (a)
100 J

10—1 J
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Open Access Article. Published on 20 January 2026. Downloaded on 1/21/2026 4:58:21 AM.
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Figure 7: Temperature-programmed-desorption-mass spectrometry (TPS-MS) spectra obtained using a fixed temperature ramp
of 10 K/min from room temperature to 1223 K in N; for (a) H,O (mass = 18 g/mol) release from H,S-poisoned y-Al, O3, TiO,
and CeO,, (b) SO (mass = 48 g/mol) release from H,S-poisoned y-Al,O3 and CeO,, and (c) SO, (mass = 64 g/mol) release
from H,S-poisoned y-Al,03 and CeO,. The TPD-MS spectra for SO and SO, release from H,S-poisoned Ni/TiO, were negligible
(due to the lower H,S loading as discussed in Section 3.3) and therefore are not shown. TPD-MS signals for H,S (mass = 34
g/mol) release from all catalysts were negligible, indicating H,S desorption and/or dissociation before analysis. These catalysts
were not subject to a pre-reduction in in H, at 923 K, as discussed for the fresh catalysts in Section 3.3.

Figures b) and (c) show a greater TPD-MS signal for SO and SO, release from H,S-poisoned Ni/y-A,O3 at
low temperatures than H, S-poisoned Ni/CeO,,. We attribute this difference to the increased formation of surface

Ni,Al;_,O, solid solutions, based on our calculated bulk defect formation energies in Section 3.3 and the H,
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temperature programmed reduction (TPR) study of Shan et al., which correlated the bimodal distribution at low
temperatures in Figures[7[(b) and (c) to the existence of both Ni® and Ni2* on the catalyst surface.113 To rationalise
the differences between the high temperature SO and SO, desorption behaviour from Ni/y-Al,03 and Ni/CeO, in
Figures b) and (c), the S 2p XPS spectra in Figure E](b) is considered, where sulfates and sulfides (NiS) were
identified as the peaks at ~ 169 eV and ~ 162 eV, respectively. Around 85 % of all sulfur species in the three

H, S-poisoned catalysts were quantified to be sulfates using curve fitting of the S 2p XPS spectra in Figure [6{(b).

The temperature-dependent oxidation (reduction) of SO, to (from) sulfates is hypothesised to drive the differ-
ences in the TPD-MS spectra of Ni/y-Al,03; and Ni/CeO, in Figures b) and (c). The hypothesis is supported
by the study of Hamzehlouyan et al., who combined TPD and diffuse reflectance infrared Fourier transform spec-
troscopy (DRIFTS) to investigate SO, release from SO,-poisoned Pt/Al,O3 catalysts, concluding that SO,-TPD
peaks at ~ 509 K and ~ 947 K correspond to the desorption of molecularly adsorbed SO, and the dissociation
of aluminium sulfate, respectively.114 Furthermore, Smirnov et al. used temperature-resolved XPS to show that
water vapour inhibits SO, oxidation to sulfates on an Al,O, thin film but enhances sulfate formation on a CeO,
thin film, due to a Ce** redox-mediated mechanism of SO, oxidation.11% Together with our TPD-MS results in
Figure a), which show orders of magnitude greater water adsorption on Ni/y-Al,03 than Ni/CeO, due to the
7x greater surface area, the findings of Hamzehlouyan et al. and Smirnov et al. support the hypothesis that SO
and SO, desorb at lower temperatures from Ni/y-Al,0; as water vapour inhibits the formation and retention of

thermally stable sulfates.

4 Conclusions

Understanding the atomic level mechanisms that govern the sulfur tolerance of Ni-based catalysts is essential for
designing next-generation catalysts for industrial H, production via MSR and low-temperature processes from re-
newable feedstocks. In this study, a combined computational and experimental approach is adopted to investigate
the enhanced sulfur tolerance of Ni nanoparticles on reducible metal oxide supports, with the aim of uncovering
strategies for future catalyst optimisation. Combining DFT, GCMC and a fine-tuned MACE MLIP, we show that a
high oxygen chemical potential provided via support oxygen buffering is not sufficient alone for the removal of
adsorbed S from Ni(111), with thermal activation being essential. The results support experimental MSR activity
tests showing that the catalytic activity of Ni supported on reducible CeO, can be readily restored from a poisoned
state at high temperatures, compared to Ni supported on less reducible TiO, and y-Al,O3. The results are further
validated using DFT+U computed oxygen vacancy formation energies for the bulk support materials, which show
the ease of oxygen vacancy formation in the order CeO, > TiO, > y-Al;03. The MSR activity testing also indi-
cates the critical role of phase transformations into catalytically inactive phases, which is widely reported to occur
for Ni/y-Al,03, and that agrees with our DFT+U computed defect energies for substitutional Ni doping, which
indicate the initial stages of bulk phase transformation are more favourable in the order y-Al,O3 > TiO; > CeO,.
TPD-MS and XPS highlight the critical role of water in the formation of thermally stable sulfate species that can

increase the temperatures required for catalyst regeneration.

Overall, the combined computational and experimental investigation points to three critical aspects for the

rational design of metal oxide support materials for sulfur tolerant catalysts: (1) the feasibility of bulk oxygen

18| 1424


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cy01279a

Page 19 of 25 Catalysis Science & Technology

View Article Online
DOI: 10.1039/D5CY01279A

vacancy formation in the support; (2) the resistance of the bulk support to phase transformations into catalytically
inactive solid solutions; and (3) the support- and temperature-dependent surface chemistry of SO, to sulfates. The
integration of ab initio computational modelling, statistical sampling and machine learning further demonstrates
the importance of advanced workflows for studying complex catalytic materials in a manner that faithfully bridges

theory and experiment.
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