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Ab initio insights into support-induced sulfur resistance of Ni-based
reforming catalysts

Amit Chaudhari 𝑎, Pavel Stishenko 𝑎, Akash Hiregange 𝑎, Christopher R. Hawkins 𝑏, Misbah Sarwar 𝑏, Stephen
Poulston 𝑏 and Andrew J. Logsdail ∗𝑎

Ni-based catalysts are well established for industrial H2 production via methane steam reforming; however, their susceptibility
to sulfur poisoning necessitates expensive desulfurisation and limits the development of low temperature processes using
renewable feedstocks. Designing next-generation catalysts requires an atomic-level understanding of the factors that affect the
catalyst sulfur tolerance, but this is difficult to obtain due to complex interactions between the Ni catalyst and non-inert metal
oxide supports. In this work, we investigate the atomic-level mechanisms driving the support-induced sulfur resistance of
Ni catalysts, emphasising the role of disorder in Ni-bound sulfur-oxygen adsorption complexes and support defect chemistry
in promoting catalyst regeneration. The thermodynamic driving force for oxygen-mediated sulfur removal from a Ni(111)
surface, which is indicative of the regenerative effects of support oxygen buffering, is investigated using grand canonical
Monte Carlo (GCMC) sampling of a lattice model that is parameterised using density functional theory (DFT). The outcome
is predictions of the equilibrium surface coverage and composition of co-adsorbed S and O atoms on Ni(111) at length
scales that are inaccessible to DFT simulations. The GCMC predictions are validated using a fine-tuned machine learned
interatomic potential to reveal entropic contributions for catalyst regeneration at experimentally relevant surface coverages,
demonstrating an integrated approach for efficiently exploring the complex combinatorial space of adsorption complexes with
near ab initio accuracy. Simulations of the surface chemistry of Ni(111) are complemented by predictions of the energetics
of bulk defect formation in prototypical metal oxide support materials to provide insights into the proclivity for oxygen
release and phase transformation during catalytic reactions. The computational modelling is correlated with experimental
characterisation and methane steam reforming activity tests for H2S-poisoned Ni nanoparticle catalysts, allowing us to
rationalise the experimentally observed differences in the catalyst sulfur tolerance and establish strategies for future catalyst
optimisation. The work demonstrates the integration of ab initio computational modelling, statistical sampling and machine
learning, in a combined framework that complements experimental characterisation, to inform the rational design of catalyst
support materials for sustainable H2 production.

𝑎 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom.
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1 Introduction

Methane steam reforming (MSR) is an established industrial process that produces ∼ 95% of the global H2 sup-

ply1 via the conversion of natural gas (primarily CH4, with smaller amounts of higher hydrocarbons) to syngas

(mixtures of CO, CO2 and H2), at high temperature and pressure, in the presence of a catalyst. The commercial

Ni-based catalysts are highly susceptible to sulfur poisoning by impurities in the feedstock, e.g., H2S, SO2, H2SO4

and/or COS, and therefore an expensive feed desulfurisation process is necessary to achieve sub-ppm sulfur con-

centrations.2 The additional cost and complexity of feed desulfurisation also limits the development of biogas

reforming processes for scalable H2 production from renewable feedstocks, e.g., using solid oxide fuel cells3 or via

combined steam and dry reforming.4 Understanding the factors that affect the catalyst sulfur tolerance is essen-

tial to enable the direct use of sulfur-containing feedstocks; a challenge that is particularly important for Ni-based

catalysts as they are more economically viable than those based on platinum group metals (PGMs).

A number of strategies have been considered to enhance the sulfur tolerance of Ni-based catalysts, such as

alloying with PGMs, including Au, Cu, Mn, Pd, Pt and Rh.5 Alloys are widely reported in the literature and are

proposed to enhance the catalyst sulfur tolerance via different mechanisms, e.g., promoting sulfur scavenging

by secondary metallic active phases,6 promoting sulfur oxidation and desorption at high temperatures7,8 and

suppressing the dissociative adsorption of feedstock poisons like H2S.9 The optimisation of metal oxide supports is

another effective strategy to enhance the sulfur tolerance of supported Ni nanoparticles during catalytic reforming

reactions, with the mechanism widely hypothesised to involve oxygen buffering from reducible supports like CeO2

and Y2O3.10,11 In these materials, lattice oxygen is proposed to migrate from the support to the Ni active phase

under reducing conditions at high temperatures, resulting in the oxidation and desorption of catalyst poisons e.g.,

C → CO2
12–16 and S → SO2.17–20 Similarly, a number of established chemical and electrochemical regeneration

methods have been shown to restore the activity of poisoned Ni catalysts by modulating the transfer of oxygen to

the poisoned Ni active sites. Chemical regeneration of sulfur-poisoned Ni catalysts can be achieved using exposure

in steam, H2 and/or O2 depending on the degree of sulfur poisoning.21,22 Electrochemical regeneration can also

be used to control the O2− spillover from both aqueous environments; and Y2O3-stabilised ZrO2 (YSZ) supports,

towards sulfur poisoned Pt and Ni species, enabling catalyst oxidative regeneration using a negative electrode

potential.23–25

Ab initio computational modelling methods, such as density functional theory (DFT), provide an atomic-level

insight into the surface chemistry of sulfur-poisoned Ni nanoparticles. Atomic sulfur is often used to represent

H2S poisoning at low/medium surface coverage (𝜃S) due to the predicted dissociative adsorption of H2S → S on

Ni(111), which does not cause surface reconstruction or sulfur penetration into the Ni bulk as observed at high

𝜃S.26–29 DFT studies of oxygen-mediated sulfur removal from Ni(111) show that both atomic O and molecular O2

(which adsorbs dissociatively) can lead to the sequential oxidation of S → SO → SO2, which then desorbs at high

temperatures.30,31 These studies were limited to idealised adlayer representations of S, with 𝜃S = 0.25 monolayer

(ML) and 0.5 ML, and do not account for variations in configurational entropy at intermediate coverages; there-

fore, whether the formation of SO2 is thermodynamically or kinetically driven at experimentally relevant surface

coverages remains unresolved. Constructing more experimentally relevant predictive models for S and O adsorp-
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tion on Ni(111) requires extensive sampling of the large configurational space of adsorption complexes, which is

computationally infeasible with DFT alone. Statistical sampling algorithms, such as grand canonical Monte Carlo

(GCMC), must therefore be considered as they are well suited for exploring the configurational space of adsorp-

tion complexes on a lattice model of the surface, where adsorbates occupy predefined adsorption sites.32,33 In

GCMC, the ground state of the system is estimated by stochastically sampling a DFT-parameterised Hamiltonian

through adsorbate perturbations such as adsorption, desorption or diffusion.34 The GCMC approach allows the

system to explore a wide range of chemically relevant surface configurations, producing extended models that

are beyond the atomistic length scales afforded by DFT, whilst ensuring all accessible states contribute to the

statistical ensemble when determining surface properties at thermodynamic equilibrium.

Lattice models simplify the sampling of the configurational space of adsorption complexes but neglect off-lattice

effects, such as many-body lateral interactions and surface reconstruction, which can be non-negligible under

experimental reaction conditions. To account for off-lattice effects, extended GCMC-predicted adlayers can be

refined using classical interatomic potentials (IPs) to perform geometry optimisation and/or molecular dynamics

simulations.35–37 Classical simulations are a computationally efficient approach for modelling materials at the

length scales unaffordable using DFT, but the accuracy of these simulations is dependent on that of the underlying

IP. Modern machine learned interatomic potentials (MLIPs) offer a promising approach for balancing accuracy

and computational efficiency by avoiding the predefined functional forms used in traditional IPs, enabling MLIPs

to capture complex potential energy surfaces with greater flexibility. Recent advancements in neural network

(e.g., SchNet,38 PaiNN,39 M3GNet,40 CHGNet41 and MACE42) and Gaussian process-based (e.g., GAP43) MLIPs

have enabled more accurate modelling of chemical reactivity on transition metal surfaces.44–46 Among these

methods, the MACE42 architecture, based on message-passing neural networks (MPNNs) and the Atomic Cluster

Expansion (ACE),47 is popular as it requires less training data compared to other architectures; thus a MACE

model provides a computationally tractable means for simulating off-lattice effects in extended surfaces with near

ab initio accuracy.48

Accurate simulations of poisoning and reactivity of Ni-based MSR catalysts are also very challenging to realise

due to the interplay between oxygen buffering (causing catalyst regeneration) and phase transformations of the

metal oxide support (causing catalyst deactivation). For example, Ni/𝛾-Al2O3 catalysts can undergo progressive

Ni substitution for Al, resulting in the in situ transformation of Ni/𝛾-Al2O3 to spinel-type NiAl2O4.49 Conflicting

reports exist for the utility of Ni-based spinel-type oxides and whether they deactivate Ni-based catalysts50 or en-

hance catalytic activity51–56 and tolerance to S and C poisons57 due to the facile formation of oxygen vacancies.

Accurate predictions of the energetics of oxygen vacancy formation and substitutional doping for these support

materials are non-trivial using DFT, particularly for reducible transition metal oxides (TMOs) e.g., TiO2, and rare-

earth metal oxides (REOs) e.g., CeO2, which are experimentally reported to exhibit favourable oxygen buffering

capacities.58,59 The Coulomb self-interaction error (SIE) of local and semi-local DFT, when simulating materials

with partially filled d or f orbitals, results in erroneous defect formation energies in TMOs and REOs;60–62 there-

fore, it is necessary to use “beyond-DFT” methods with corrective schemes to combat the SIE. Hubbard corrected

density functional theory (DFT+U) is a popular approach as it is computationally tractable for large systems (e.g.,

defects in large supercells) and involves an ad-hoc energy correction applied selectively to localised orbitals, i.e.,
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Ti 3𝑑 orbitals in TiO2 and Ce 4 𝑓 orbitals in CeO2.63 Despite the benefits of DFT+U in computational efficiency,

the determination of appropriate simulation parameters, including the Hubbard 𝑈 value and projector, is non-

trivial for simulating defects in TMOs and REOs with accuracy that matches experimental observations, and care

is therefore necessary in application.64,65

In this work, a combined computational and experimental approach is adopted to investigate the enhanced

sulfur tolerance of Ni nanoparticles on reducible metal oxide supports, with the aim of establishing strategies for

future catalyst optimisation. We investigate the thermodynamic driving force for oxygen-mediated sulfur removal

from Ni(111), indicative of the regenerative effects of support oxygen buffering, using GCMC sampling of a DFT-

parameterised lattice model. The GCMC-predicted adlayers enable the prediction of the surface coverage and

composition of competitively adsorbed S and O atoms as a function of temperature and the chemical potentials

of S and O across an extended Ni(111) surface. The GCMC-predicted adlayers are validated using geometry op-

timisation simulations with a fine-tuned MACE MLIP to reveal entropic contributions and limitations to catalyst

regeneration at experimentally relevant surface coverages. Simulations of the surface chemistry of Ni(111) are

complemented by DFT+U predictions of the energetics of bulk defect formation (oxygen vacancies and Ni sub-

stitution) in prototypical metal oxide support materials, providing insights into the proclivity for oxygen release

and phase transformation during catalytic reactions. The computational modelling is correlated with experimen-

tal characterisation (TPD-MS, XPS, ICP) and MSR activity testing of H2S-poisoned Ni nanoparticle catalysts to

rationalise the experimentally observed differences in the catalyst sulfur tolerance. The work demonstrates the

integration of ab initio computational modelling, statistical sampling and machine learning to construct more re-

alistic models of complex catalytic materials, which further complement experimental characterisation to inform

future strategies for catalyst rational design.

2 Methodology

2.1 Electronic Structure Calculations

2.1.1 DFT

All electronic structure calculations were performed using the Fritz-Haber Institute ab initio materials simulation

(FHI-aims) software package,66 which uses an all electron numerical atom-centred orbital (NAO) basis set, inter-

faced with the Python-based Atomic Simulation Environment (ASE).67 Periodic boundary conditions were applied

using converged k-point sampling with the standard light basis set (2020), with equivalent accuracy to the TZVP

Gaussian-type orbital basis set,68 as decided after benchmarking of the bulk Ni vacancy formation energy (see

the Supplementary Information, SI, Section S1.1.1). Relativistic effects were accounted for using the zeroth order

regular approximation (ZORA)66 as a scalar correction. The system charge and spin were set to zero, given the

reported quenching of Ni(111) surface magnetic moments following oxygen adsorption69 and the temperatures

of MSR far exceeding the Curie temperature of Ni (631 K), only below which long-range magnetic order is ob-

served.70 The mBEEF meta-GGA exchange correlation density functional was used,71,72 as defined in Libxc,73

providing the best accuracy compared to other local and semi-local functionals (see SI Section S1.1.2). Disper-

sion corrections were not explicitly included as sulfur and oxygen bind strongly to Ni(111) through short-range

chemisorption, which are well described by the mBEEF density functional.71 For such systems, long-range van der
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Waals interactions provide only minor contributions to adsorption energies, whilst any van der Waals correction

may also be detrimental to the representation of the support material; therefore, no further dispersion corrections

are included. Self-consistent field (SCF) optimisation of the electronic structure was achieved using a convergence

criteria of 1 × 10−6 eV for the change in total energy, 1 × 10−4 eV for the change in the sum of eigenvalues and

1× 10−6 e a−3
0 for the change in charge density. Unit cell equilibrium volumes (𝑉0) were calculated by fitting to the

Birch-Murnaghan equation of state using ASE.74 Geometry optimisation was performed using the quasi-Newton

BFGS algorithm75–78 with a force convergence criteria of 0.01 eV/Å. The pristine Ni(111) surface was modelled

using a six layer symmetric periodic slab, of which the bottom three layers were frozen to mimic the system bulk,

resulting in a converged surface energy in line with computational literature and experimental references (see SI

Section S1.1.3). A 20 Å vacuum gap was used in the direction perpendicular to the surface to eliminate artificial

interactions between periodic images. A dipole correction was applied to compensate for the inhomogeneous

electric field arising from surface adsorption. Adsorption energies were calculated as:

ΔEAds = E[Ni(111) + Ads] − ENi(111) + 𝜇Ads (1)

where the chemical potential of the adsorbed species (𝜇Ads) was calculated using the energies of isolated atomic

S, atomic O, molecular SO and molecular SO2.

2.1.2 DFT+𝑈 and Defect Calculations

All DFT+U calculations were performed with FHI-aims, using the on-site definition of the occupation matrix

and the Fully Localised Limit (FLL) double counting correction.63 A Hubbard correction was applied to treat the

Coulomb self-interaction of Ti 3d orbital electrons in tetragonal rutile TiO2 and Ce 4f orbital electrons in cubic

CeO2. No Hubbard correction was applied for the Ni dopants or for 𝛾-Al2O3. Hubbard 𝑈 values for Ti 3d and

Ce 4f orbital electrons were chosen as 𝑈Ti 3𝑑 = 2.575 eV and 𝑈Ce 4 𝑓 = 2.653 eV, which are both valid with a

refined atomic-like Hubbard projector, as defined in the SI Section S1.2. Hubbard 𝑈 values and projectors were

simultaneously determined using a machine learning-based workflow, with the target of reproducing the bulk

material covalency as calculated using hybrid-DFT, which results in numerically stable self-consistent simulations

of point defects.65 Defect calculations in 𝛾-Al2O3, TiO2 and CeO2 were performed using the supercell sizes listed

in the SI Section S1.2, with suitable sizes to ensure a consistent defect concentration across the three systems

whilst also accurately representing the dilute limit. Defect energies (ΔEDefect) following substitution of a host

metal atom (Al in 𝛾-Al2O3, Ti in TiO2 and Ce in CeO2) with a Ni atom were calculated as:

ΔEDefect = EDefective Bulk + 𝜇Host − EStoichiometric Bulk − 𝜇Dopant (2)

where the chemical potentials 𝜇Host and 𝜇Dopant were calculated using the energy of bulk Ti (hexagonal close

packed) as well as Al, Ce and Ni (all cubic). Oxygen vacancy formation energies (ΔEOV) were calculated as:

ΔEOV = EDefective Bulk + 𝜇O − EStoichiometric Bulk (3)
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where the chemical potential 𝜇O was calculated using half the energy of an isolated O2 molecule. Defect calcu-

lations in TiO2 and CeO2 were performed using the "occupation matrix release" (OMR) method to initialise Ti3+

and Ce3+ polarons at nearest neighbour atoms to the defect, before the DFT+U-predicted total energy (𝐸DFT+𝑈)

is pre-converged using fixed orbital occupancies until Δ𝐸DFT+𝑈 ≤ 0.001 eV and then all orbital occupancies are

calculated self-consistently.63

2.2 Monte Carlo Sampling

All lattice modelling and Monte Carlo sampling was performed using the the Surface Science Modeling and

Simulation Toolkit (SuSMoST) software package,34 considering adsorption complexes of S, O, SO and their pairs,

and the occupation of hollow HCP and hollow FCC active sites on Ni(111) motivated by our results in Section 3.1

and 3.2. Full DFT geometry optimisation was performed for 70 symmetrically inequivalent pairs of adsorption

complexes on either a 10 × 10 or 7 × 7 Ni(111) surface supercell within a 10 Å or 5 Å radial cutoff, respectively,

as explained further in Section 3.2, before calculating the energy of lateral interactions, Δ𝐸Lateral, using:

Δ𝐸
𝑠1 ,𝑠2
lateral = 𝐸

𝑠1 ,𝑠2
𝑥-𝑥 Pair − 𝐸Ni(111) −

(
𝐸
𝑠1
𝑥 + 𝐸

𝑠2
𝑥

)
(4)

where 𝐸Ni(111) is the energy of the pristine surface, 𝐸 𝑠1 ,𝑠2
𝑥-𝑥 Pair is the energy of a pair of adsorbates 𝑥 at sites 𝑠1 and 𝑠2

for 𝑥 ∈ {S,O} and 𝑠1, 𝑠2 ∈ {Hollow HCP,Hollow FCC}, 𝐸 𝑠1
𝑥 is the energy of a single adsorbate 𝑥 occupying site 𝑠1

and 𝐸
𝑠2
𝑥 is the energy of a single adsorbate 𝑥 occupying site 𝑠2. 35 adsorption complexes consisting of pairs of S-S,

O-O and S-O atoms, with |Δ𝐸Lateral | ≥ 0.04 eV, were chosen for parameterising a pairwise Hamiltonian (ℋ) for

subsequent GCMC sampling, based on the generalised lattice-gas model of adsorption monolayers by Akimenko

et al.,79 using:

ℋ =
∑︁
𝑖∈𝐿

Δ𝐸Ads (𝜎𝑖) +
∑︁
𝑖, 𝑗∈𝐿

Δ𝐸lateral (𝜎𝑖 , 𝜎𝑗 , r𝑖 𝑗 ) (5)

where 𝐿 is a set of lattice sites, 𝜎𝑖 is an adsorption complex at site 𝑖, Δ𝐸Ads (𝜎𝑖) is the adsorption energy of the

adsorption complex at site 𝑖 in the zero coverage limit and Δ𝐸lateral (𝜎𝑖 , 𝜎𝑗 , r𝑖 𝑗 ) is the energy of lateral interactions

between adsorption complexes at sites 𝑖 and 𝑗 , given the radius-vector (r𝑖 𝑗) between the two sites. Geometry

optimisation of S-O pairs with a short interatomic separation of 1.45 Å, corresponding to adsorption at neigh-

bouring hollow HCP and hollow FCC active sites, resulted in atomic diffusion to other active sites, therefore these

adsorption complexes were disregarded for subsequent GCMC sampling. Similarly, molecularly adsorbed SO was

predicted to be less stable than individually adsorbed S and O atoms at low surface coverage, and therefore was

not included in the GCMC sampling (see Section 3.2).

GCMC sampling was performed on a hexagonal lattice of 30 × 30 centers with periodic boundary conditions,

which was large enough to avoid finite size effects. Each Monte Carlo step involved 30 × 30 attempted moves,

i.e., one attempt for each active site per step to change the state of the adsorbed layer through adsorption,

desorption and surface diffusion of atomic S and O. The acceptance or rejection of a new configuration of the

model adsorbed layer of S and O was determined using the Metropolis algorithm,80 where a new configuration is

accepted if the total energy (ℋ) is less than that of the previous configuration (i.e., Δℋ ≤ 0 eV) or, if Δℋ > 0 eV,

the new configuration is accepted with the probability min
{
1, exp

(
−Δℋ

𝑅𝑇

)}
. One million Monte Carlo steps were
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used to reach thermodynamic equilibrium and then the same number of steps were used to calculate ensemble

averages. The parallel tempering algorithm was used to improve convergence to equilibrium and calculate the

temperature dependence of the predicted adlayer coverage and composition, while also accounting for variations

in configurational entropy.81 The following temperatures were used for parallel tempering replicas: 300, 400, 600,

800, 1000, 1200, 1500 and 1700 K. Each simulation was performed with varying relative chemical potentials (𝜇R)

of sulfur (𝜇R
S ) and oxygen (𝜇R

O) between -1 and 1 eV, which correspond to the adsorption energies of a single S or

O atom on Ni(111) in the zero coverage limit, before geometry relaxation. Negative values of 𝜇R correspond to

surfaces that are less likely to adsorb atoms in the zero coverage limit, whilst positive values of 𝜇R correspond to

surfaces that are more likely to adsorb atoms in the zero coverage limit. We note that non-zero coverages are still

possible for both positive and negative values of 𝜇R after geometry relaxation, due to entropic effects or attractive

lateral interactions. To enable direct comparison with experiment, the relative chemical potentials used for GCMC

sampling were mapped to gas phase partial pressures, corresponding to reservoirs of O2 and H2S, using ideal gas

thermodynamics at the same temperature and a standard-state pressure of 1 bar:

𝜇R
S (𝑇, 𝑝) = Δ𝐸S

Ads +
[
𝐺H2S (𝑇, 𝑝) − 𝐸H2S

]
−
[
𝐺H2

(𝑇, 𝑝) − 𝐸H2

]
(6)

𝜇R
O (𝑇, 𝑝) = Δ𝐸O

Ads +
1
2

[
𝐺O2

(𝑇, 𝑝) − 𝐸O2

]
(7)

where Δ𝐸S
Ads (Δ𝐸O

Ads) are the DFT-computed adsorption energies for a S (O) atom on Ni(111) in the zero-coverage

limit; 𝐺H2S, 𝐺H2
and 𝐺O2

are the Gibbs free energies of the isolated H2S, H2 and O2 molecules, respectively,

obtained from ideal gas thermochemistry using ASE; and 𝐸H2S, 𝐸H2
and 𝐸O2

are the DFT-computed energies of

the isolated H2S, H2 and O2 molecules, respectively.

2.3 Many-Body Tensor Representations

To quantify the differences in the GCMC-predicted spatial distribution of adsorbed S and O on Ni(111), the

GCMC-predicted adlayers were encoded into structural fingerprints using many-body tensor representations (MB-

TRs),82 with the DScribe Python library.83,84 Two-body MBTRs were used to encode pairwise interatomic distances

between adsorbed S and O atoms as a smooth density distribution over a continuous grid, which was then discre-

tised into five MBTR descriptors and reduced to a one-dimensional descriptor using principal component analysis

(PCA) with the Scikit-learn Python library.85 The principal component output from PCA (PCMBTR) captures the

most significant trends in the spatial disorder of co-adsorbed S and O in the GCMC-predicted adlayers. All hyper-

parameters for evaluating the MBTRs and PCMBTR are listed in the SI Section S2.

2.4 Interatomic Potential Training and Inferencing

The GCMC predictions were validated using geometry optimisation calculations with a MACE (version 0.3.10)

MLIP,42 providing a computationally efficient means to relax the high-coverage GCMC-predicted adlayers on the

30 × 30 Ni(111) surface (∼5800 atoms, surface area ∼50 nm2). The MACE MLIP was trained using the diverse

dataset of 5921 DFT-optimised structures collected in the work, including isolated atoms and molecules (S, O, SO,

SO2 and SO3), Ni(111) periodic slab models of different thicknesses and adsorption complexes involving S, O, SO
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and SO2 at both low and high surface coverage on Ni(111). Training was performed using multihead replay fine-

tuning of the off-the-shelf MACE-MPA-0 (medium) foundation model,46 trained on approximately 146,000 unique

materials in the Material Project Trajectory (MPTrj) dataset86,87 and 3.2 million unique materials in a subset of the

Alexandria dataset.88 No dispersion correction was used and the model precision was set to float64. A randomly

selected 4737 structures (80%) were used for model training, with the remaining 1184 structures (20%) used for

validation. The Adam optimiser89 was used to minimise a cost function comprised of an equally weighted average

of energy and force errors, with the learning rate set to 0.01. The MACE model consists of two message-passing

layers and employs a radial cutoff for learning interatomic interactions of 6 Å, resulting in a total receptive field

of 12 Å, which is greater than the distance when lateral interactions between surface adsorbed pairs of S-S, O-O

and S-O atoms decay to zero at low surface coverage, as computed using DFT. Fine-tuning was performed for

24 epochs, to balance cost and accuracy due to plateauing of the energy and force errors (Figures 1(b) and (c),

respectively). The fine-tuned model gave a training (validation) root mean squared error (RMSE) of 14.4 (14.2)

meV/atom in total energies and 16.3 (17.2) meV/Å in atomic forces. When inferenced on the full dataset, the

pre-trained foundation model gave a RMSE of 1.43 × 1010 eV in total energies and 10.7 eV/Å in maximum atomic

forces, which were reduced by > 99 % upon fine-tuning the model as shown in the parity plots in Figures 1(d)

and (e).

Figure 1: (a) Overview of the use of grand canonical Monte Carlo (GCMC) sampling and a fine-tuned MACE machine learned
interatomic potential for studying the co-adsorption of S and O atoms on Ni(111) at thermodynamic equilibrium. The MACE
model is fine-tuned from the MACE-MPA-0 pre-trained foundation model for 24 epochs, which results in a reduction in the (b)
energy and (c) force errors until both start to plateau. When inferenced on the full dataset of DFT-optimised structures, the
fine-tuned model yields a reduction in the RMSE in total energies and maximum atomic forces of > 99 % vs. the pre-trained
foundation model, as shown in the parity plots for (d) total energies and (e) maximum atomic forces.

The fine-tuned MACE model was then used as the ASE calculator to run geometry optimisation calculations

using the BFGS algorithm75–78 with a force convergence criteria of 0.01 eV/Å. Six GCMC-predicted adlayers of

differing coverages and intermixing of adsorbed S and O were validated using MACE: for 𝜇R
S = -1 eV, 𝜇R

O = -1 eV,

-0.7 eV and -0.5 eV, and T = 600 K and 1200 K. The accuracy of the GCMC-predicted adlayers were validated
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by computing the root mean squared deviation (RMSD) of the S and O atomic positions (𝑥 and 𝑦 co-ordinates)

between the initial GCMC-predicted adlayers and the final MACE-optimised adlayers:

RMSD𝑖 =

√︃
(𝑥MACE

𝑖
− 𝑥GCMC

𝑖
)2 + (𝑦MACE

𝑖
− 𝑦GCMC

𝑖
)2 (8)

where 𝑥GCMC
𝑖

and 𝑦GCMC
𝑖

are the 𝑥 and 𝑦 coordinates of atom 𝑖 (either S or O) in the initial GCMC-predicted adlayer

and 𝑥MACE
𝑖

and 𝑦MACE
𝑖

are the corresponding coordinates in the final MACE-optimised adlayer.

2.5 Experimental Characterisation

To investigate how support oxygen buffering affects the sulfur tolerance of the Ni catalyst, we selected three model

supports spanning a range of reducibilities. 𝛾-Al2O3 is chosen as a high surface area, structurally robust support

material with negligible oxygen buffering behaviour.90 Rutile TiO2 is chosen as a moderately reducible support

material, which can form oxygen vacancies and facilitate mild oxygen buffering at high temperatures.59 CeO2 is

chosen as the prototypical support material for strong oxygen buffering under catalytic reaction conditions due to

the ease of switching between the Ce3+ and Ce4+ oxidation states, and low oxygen vacancy formation energy.58,90

The three supported catalysts of 10 wt % NiO on 𝛾-Al2O3 (commercial, surface area= 140 m2/g), rutile TiO2

(commercial, surface area= 20 m2/g) and CeO2 (commercial, surface area= 20 m2/g) were synthesised using the

standard incipient wetness impregnation method, where the support materials were first impregnated with a Ni

nitrate precursor solution, then dried and calcined at 773 K for 2 hours to obtain the final catalyst samples.91 The

catalysts were pelletised to a size of 250-355 𝜇m and activated in a tube furnace, in a mixture of 10 % H2 in N2 at

923 K for 10 hours. Scanning electron microscopy (SEM) was used to visualise the morphology of the prepared

catalysts using a Zeiss ultra 55 Field emission electron microscope equipped with in-lens secondary electron and

backscattered detectors. X-ray diffraction (XRD) was performed using a Bruker D8 Advance Davinci design unit

to measure the NiO crystallite size in the prepared catalysts.

A 1 g portion of each catalyst was then saturated with H2S at room temperature for 18 hours in a fixed bed

reactor, using a feed gas of 100 ppm of H2S in a mixture of 2.5 % H2 in N2, with a relative humidity of 50 % and

a flowrate of 500 ml/min. The total sulfur content following room temperature saturation was quantified using

inductively coupled plasma (ICP) analysis. As the focus of this work is to investigate the thermodynamic driving

force for sulfur removal and catalyst regeneration, rather than the kinetics of sulfur adsorption under operating

reaction conditions, the room temperature sulfur loading protocol provides a consistent baseline from which we

assess the temperature-dependent catalyst regeneration behaviour. We note that the measured sulfur content for

each catalyst is expected to be a high (upper bound) estimate, with reduced adsorption at higher temperatures.

The surface speciation of the H2S-poisoned catalysts, with a measurement depth of 5-10 nm, was analysed using X-

ray photoelectron spectroscopy (XPS). Temperature programmed desorption-mass spectrometry (TPD-MS), using

a Micromeritics Autochem II Chemisorption analyser linked with a MKS Cirrus 2 mass spectrometer, was used to

track the desorption of H2O, SO and SO2 from the H2S-poisoned catalysts under a fixed temperature ramp of 10

K/min from room temperature to 1223 K in N2.

MSR activity testing was carried out in a low-pressure rig designed to flow dry gas mixtures of N2, CH4 (and

higher hydrocarbons) and H2 for catalyst pre-reduction. The dry gas composition used was 68.4 % CH4 and 3.6
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% C2H6, with a balance of N2. The dry gas mixture is then combined with steam (following prior heating and

evaporation in an oven) forming a reaction gas mixture that is flowed through a packed catalyst bed, contained in

a quartz tube, within a furnace that is electrically heated up to 1223 K. The MSR activity for each H2S-poisoned

catalyst was evaluated at steady state, at temperatures of 873, 973 and 1073 K, under regulated outlet backpres-

sures of 100, 120 and 150 mbar, respectively. During the reaction, the dry gas is combined with steam resulting

in a steam to carbon ratio of 3:1, with a total gas flowrate of 200 ml/min. The quartz tube (diameter 0.4 cm) was

loaded to a 1.5 cm bed length, equating to 0.097 g (0.094 cm3) of catalyst and 0.155 g (0.094 cm3) of SiC inert

dilutant. We note that the studied support materials are chosen as model systems to investigate the key principles

driving the catalyst sulfur tolerance, but are not immediately compatible with existing industrial MSR processes

due to differences in the catalyst form (i.e., pellets vs. powders) and thermal instability at very high temperatures

over long timescales.

3 Results and Discussion

3.1 Atomic and Molecular Adsorption on Ni(111)

To ascertain the number of non-equivalent adsorption sites on Ni(111), atomic S and O were adsorbed at the four

initial positions illustrated in Figure 2(a), including hollow HCP, hollow FCC, atop and bridge sites. Geometry

optimisation of atomic S adsorbed at both atop and bridge sites resulted in S diffusion to the hollow HCP site,

whilst atomic O adsorbed at atop and bridge sites diffused to hollow HCP and hollow FCC sites, respectively.

The hollow HCP sites in Figures 2(b) and (d) and the hollow FCC sites in Figures 2(c) and (e) were therefore

determined to be the relevant non-equivalent sites for adsorption.

Figure 2: (a) The four studied adsorption sites on the Ni(111) surface, with the unit cell boundaries denoted in the black
dashed lines, including (1) hollow HCP, (2) hollow FCC, (3) atop and (4) bridge. (b)-(i) The most stable single atom (S and O)
and molecular (SO and SO2) adsorption complexes on a 1 × 1 Ni(111) surface, calculated using DFT with the mBEEF exchange
correlation density functional, where (b) and (c) correspond to S adsorption, (d) and (e) correspond to O adsorption, (f) and (g)
correspond to SO adsorption and (h) and (i) correspond to SO2 adsorption. (a)-(i) are top down views of the Ni(111) surface
and the bottom row is a side view for adsorption complexes (f)-(i). The corresponding adsorption energies for the adsorption
complexes (b)-(i) are listed in the SI Section S1.1.4.

Both atomic S and O strongly chemisorb on the Ni(111) surface and display an energetic preference for adsorp-
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tion at hollow FCC sites, by 0.05 eV for S and 0.23 eV for O. The trends in adsorption energies and site preferences

are in agreement with computational literature detailed in SI Section S1.1.4, although the absolute values of ad-

sorption energies are found to vary slightly with the choice of exchange correlation density functional, as GGAs

from the literature tend to underbind,92 and the choice of Ni(111) surface model parameters.29,93–95 The adsorp-

tion of molecular SO was also considered, with both S and O directly bonded to the surface. At both hollow HCP

and FCC sites, S-bound SO was calculated to be more energetically stable by 2.35 eV and 2.10 eV, respectively.

Finally, we tested SO2 adsorption at the four initial positions in Figure 2(a), from which the non-equivalent ad-

sorption sites were atop and bridge sites in Figures 2(h) and (i), respectively. SO2 is calculated to be most stable

when S occupies the bridge site of Ni(111), as is reported experimentally,96 with the same preferential stability

as reported in the DFT study of Liu et al.95 All calculated adsorption energies are reported in SI Section S1.1.4.

3.2 Pairwise and Many-Body Lateral Interactions on Ni(111)

The four non-equivalent adsorption complexes of atomic S and O in Figures 2(b)-(e), were used to construct

new adsorption complexes of S-S, O-O and S-O pairs at low surface coverage on a 10 × 10 Ni(111) surface (for

S-S and O-O pairs) and a 7 × 7 Ni(111) surface for S-O pairs (to reduce computational cost at no detriment to

accuracy). Following geometry optimisation, the energies of adsorbed single atoms and pairs were then used

to compute lateral energies (𝐸lateral, defined in Section 2.2, Equation (4)), which are plot in Figures 3(a)-(c)

for pairs of S-S, O-O and S-O, respectively. Lateral interactions are repulsive for all pairs in Figures 3(a)-(c),

indicating that the O-mediated removal of adsorbed S occurs at high surface coverage and would require a large

supply of O atoms to the surface to overcome the repulsive lateral interactions between adsorbed S and O, e.g.,

from a reducible metal oxide support with a large oxygen buffering capacity or using a high partial pressure of O2

gas during experimental catalyst regeneration. All adsorption complexes corresponding to |𝐸Lateral | ≥ 0.04 eV, i.e.,

green markers in Figures 3(a)-(c), were used to parameterise the pairwise Hamiltonian (ℋ, defined in Section

2.2, Equation 5) for GCMC sampling. Geometry optimisation of S-O pairs at low surface coverage reveals the

instability of short-range interactions of ≤ 1.45 Å between adjacent hollow HCP and hollow FCC sites, which

results in atomic diffusion to neighbouring sites in Figures 3(d) and (e). We therefore do not include short-range

S-O interactions in the GCMC sampling by assigning 𝐸lateral = ∞ eV within the lattice model for both initial

configurations in Figures 3(d) and (e).

We investigate the validity of excluding short-range S-O interactions from the GCMC sampling, which would

create the conditions necessary for the oxidation of S → SO, by considering how the S and O surface coverages

affect the energetics of S oxidation. The geometry optimisation simulations in Figures 3(d) and (e) were repeated

on a smaller 1 × 1 Ni(111) surface in Figures 3(f) and (g), respectively, corresponding to a higher surface coverage,

before evaluating the relative stability (ΔERelative) of an adsorbed SO molecule at the most stable hollow-FCC site

vs. atomic S and O, using:

ΔERelative = E 𝑛×𝑛
SO/Ni(111) − E 𝑛×𝑛

S,O/Ni(111) (9)

where E 𝑛×𝑛
SO/Ni(111) is the energy of a geometry optimised SO molecule adsorbed at a hollow-FCC site on an 𝑛 × 𝑛

Ni(111) surface and E 𝑛×𝑛
S,O/Ni(111) is the energy of a geometry optimised pair of S and O atoms adsorbed at an initial

interatomic separation of 1.45 Å on an 𝑛 × 𝑛 Ni(111) surface.
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Figure 3: Lateral energies between adsorbed (a) S-S, (b) O-O and (c) S-O atomic pairs, at low surface coverage on Ni(111),
calculated using DFT with the mBEEF exchange correlation density functional. Green (red) markers correspond to adsorption
complexes that are included (not included) in the pairwise GCMC Hamiltonian. The marker shape corresponds to the type
of active site occupied by each atom in the pairs. The initial (top row) and final optimised geometries (bottom row) for DFT
relaxations of short-range S-O interactions, where S occupies a hollow-HCP site and O occupies a hollow-FCC site in (d) and
(f), whilst S occupies a hollow-FCC site and O occupies a hollow-HCP site in (e) and (g). Adsorption complexes (d) and (e)
correspond to low surface coverage on a 7 × 7 Ni(111) surface, whilst complexes (f) and (g) correspond to high surface coverage
on a 1 × 1 Ni(111) surface. The relative energy for each adsorption complex (d)-(g), calculated using Equation (9), is listed
underneath each subfigure.

Comparing the relative energies in Figures 3(d)-(g), there is a significant site-dependence in the energetic fea-

sibility of S oxidation to SO, where relaxation of S adsorbed at hollow-FCC sites and O adsorbed at hollow-HCP

sites dramatically reduces ΔERelative compared to relaxation of S adsorbed at hollow-HCP sites and O adsorbed at

hollow-FCC sites. This observation is consistent with the spin-polarised DFT study of Das and Saida, who calcu-

lated ΔERelative = 0.41 eV for S adsorbed at a hollow-FCC site and O adsorbed at a hollow-HCP site and ΔERelative

= 2.98 eV for both atoms adsorbed at hollow-FCC sites, on a 2 × 2 Ni(111) surface.97 Our results further show a

strong coverage-dependence for the feasibility of S oxidation, as shown by the reduction in ΔERelative from 0.57 eV

to 0.01 eV by increasing the surface coverage from Figure 3(e) to Figure 3(g). The pairwise GCMC Hamilto-

nian, which excludes short-range S-O interactions that are energetically unfavourable at low surface coverage, is

concluded to be valid for simulated adlayers with low 𝜃S and 𝜃O, only shown as the lighter regions in the GCMC-

predicted isotherms in Figures 4(a) and (b), as well as regions of low intermixing between S and O shown as the

lighter regions in Figure 4(c). In these regions, strong adsorbate interactions with the Ni(111) surface exceed any

attractive lateral interactions between adsorbed S and O as may be required for the formation of oxidised sulfur

species.

Under sulfur-rich conditions (𝜇R
S → −1 eV), the GCMC-predicted isotherm in Figure 4(a) predicts a large sulfur
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coverage of up to 0.45 ML that is thermodynamically stable even at extremely low H2S feed concentrations in a

H2S/H2 mixture, on the order of parts per million. This reflects the strong chemisorption of atomic S to Ni(111)

relative to the weak thermodynamic driving force for desorption into H2S. In contrast, Figure 4(b) shows that

co-adsorbed oxygen can reduce sulfur coverages on Ni(111) via site competition under sufficiently oxygen-rich

conditions (𝜇R
O → −1 eV); although this does not occur under any realistic oxygen partial pressures at 600 K. These

results suggest that a high temperature is essential for oxygen-assisted catalyst regeneration via site competition

between co-adsorbed S and O.

Figure 4: GCMC-predicted surface coverages of (a) S and (b) O at 600 K for relative chemical potentials of S (𝜇R
S ) and O (𝜇R

O)
ranging between -1 eV and 0.2 eV, as defined in Section 2.2. (c) The principal component derived from two-body many-body
tensor representations (PCMBTR, discussed in the SI Section S2), which encodes the pairwise interatomic distances between
adsorbed S and O atoms across 10 GCMC-predicted adlayers for 441 combinations of 𝜇R

S and 𝜇R
O at 600 K. The secondary

axes in (a), (b) and (c) show the equivalent gas phase thermodynamic control variables corresponding to the relative chemical
potentials, including the ratio of partial pressures (𝑝) of H2S to H2 (for a fixed 𝑝H2 = 1 bar) and the partial pressure of O2,
which were obtained from ideal gas thermodynamics at the same temperature and a standard-state pressure of 1 bar. (d) The
root-mean-square deviation (RMSD) in S and O 𝑥 and 𝑦 atomic co-ordinates, between GCMC-predicted and MACE-reoptimised
adlayers. Bars represent the mean RMSD for each 𝜇R

O value at T = 600 K and 1200 K. Error bars represent the standard deviation
of the RMSD. All bars correspond to 𝜇R

S = -1 eV, thereby testing the validity of adlayers with varied intermixing of adsorbed S
and O atoms on Ni(111), which increases for larger values of 𝜇R

O.

To investigate the entropic contributions to catalyst regeneration via oxidation of S → SO, we validated six

GCMC-predicted adlayers for 𝜇R
S = -1 eV, 𝜇R

O = -1 eV, -0.7 eV and -0.5 eV, and T = 600 K and 1200 K, using

geometry optimisation simulations with the fine-tuned MACE model (trained on both low coverage and high

coverage DFT relaxations). The mean and standard deviation of the RMSD of adsorbate atomic displacements

is shown in Figure 4(d), where the MACE relaxation trajectories do not lead to S oxidation. In all cases in

Figure 4(d), the differences in the GCMC-predicted and MACE-optimised adlayer structures are driven by surface
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diffusion of some adsorbed S atoms to nearest neighbour sites without any S oxidation to SO or SO2, whilst the

RMSD in atomic positions is consistently lower for adsorbed O than S (discussed in the SI Section S3). The results

suggest that combinations of 𝜇R
S and 𝜇R

O that lead to higher coverages and intermixing of S and O, illustrated

by the dark blue regions in Figure 4(c), create conditions that are necessary but not sufficient alone for SO

formation and that thermal activation is essential for SO formation irrespective of the degree of S and O co-

adsorption. As a result, the use of metal oxide support materials with a large oxygen buffering capacity can aid

the regeneration of S-poisoned catalysts at high temperature, where the formation and desorption of SO and SO2

is feasible. However, tuning the support oxygen buffering capacity is unlikely to improve the sulfur tolerance of

low temperature catalysts, which requires modification of the Ni catalyst to reduce the high affinity of S, O, SO

and SO2. These findings are consistent with the kinetic modelling of S oxidation on Ni(111) by Galea et al., who

combined DFT simulations with TPD experiments to investigate the removal of adsorbed S atoms using gas-phase

O2.31 Their TPD results showed no SO2 formation at temperatures below 600 K for surfaces with low S coverage,

indicating that direct oxidation of S atoms is not thermally accessible at these conditions. Instead, S removal was

only observed above 600 K and at sufficiently high O2 exposures, to facilitate O-assisted S diffusion and oxidation.

Their DFT calculations similarly demonstrated a high activation barrier (>1 eV) for SO formation from isolated S

and O atoms on Ni(111).

3.3 Reversible vs. Irreversible Catalyst Deactivation

The results in Section 3.2 can be used to rationalise the outcomes of experimental MSR activity testing of fresh

and H2S-poisoned Ni nanoparticle catalysts in Figure 5, which shows methane conversion as a function of the

reaction temperature. For both H2S-poisoned Ni/TiO2 and H2S-poisoned Ni/CeO2, catalyst regeneration and

partial restoration of activity (to ∼ 80 % and ∼ 50 % of that of fresh Ni/TiO2 and Ni/CeO2, respectively) is

achieved upon increasing the temperature beyond 973 K. Although H2S-poisoned Ni/TiO2 is restored to the

highest absolute value of catalytic activity in Figure 5(a), ICP analysis indicates a total uptake of H2S during room

temperature saturation of 0.11 weight percentage of sulfur (%S wt), which is an order of magnitude lower than

that of Ni/𝛾-Al2O3 (2.14 %S wt) and Ni/CeO2 (2.53 %S wt). The reduced sulfur loading on Ni/TiO2 likely stems

from the reduced dispersion of Ni in the experimentally prepared catalyst, as evident by the SEM imaging in the

SI Section S4, which is consistent with the much larger XRD-determined NiO crystallite size of 17.9 nm on TiO2

vs. 12.1 nm on CeO2. As a result, Figure 5(a) shows that H2S-poisoned Ni/CeO2 is restored to a substantially

greater catalytic activity than H2S-poisoned Ni/TiO2, relative to its sulfur-content, which is in line with our DFT+𝑈

calculated oxygen vacancy formation energies of 3.44 eV for CeO2 and 5.35 eV for TiO2, i.e., oxygen from the

CeO2 lattice facilitates S oxidation. Both values are much lower than the DFT-calculated oxygen vacancy formation

energy of 7.00 eV for 𝛾-Al2O3, indicating support oxygen buffering may drive the enhanced sulfur resistance of

Ni/CeO2, although not in a manner to reduce the temperature required for catalyst regeneration, as discussed in

Section 3.2.

The H2S-poisoned Ni/𝛾-Al2O3 catalyst was found to deactivate irreversibly in Figure 5(b), with no restoration

of catalytic activity upon increasing temperature. Given the measured activity of the fresh Ni/𝛾-Al2O3 catalyst,

which is subject to a pre-reduction in H2 at 923 K, the irreversible deactivation of H2S-poisoned Ni/𝛾-Al2O3 is likely
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Figure 5: (a) Temperature profile for MSR activity testing of fresh and H2S-poisoned Ni catalysts supported on (b) 𝛾-Al2O3,
(c) TiO2 and (d) CeO2. The reduction in temperature from 1073 K to 873 K after 𝑡 = 6 hours was only performed for the
H2S-poisoned catalysts. All fresh catalysts were subject to an additional pre-reduction in H2 at 923 K, prior to 𝑡 = 0 hours. The
H2S-poisoned catalysts contain 0.11 %S wt, 2.14 %S wt and 2.53 %S wt for Ni/TiO2, Ni/𝛾-Al2O3 and Ni/CeO2, respectively, as
determined using ICP. As such, Ni/CeO2 is regenerated substantially more than Ni/TiO2 relative to its sulfur content.

due to the variation in the Ni oxidation state with respect to the reducibility of the reaction environment. The

observed irreversible catalyst deactivation is consistent with the experimentally reported in situ transformation

of Ni/𝛾-Al2O3 to spinel-type NiAl2O4, i.e., switching the Ni oxidation state from Ni0 in Ni2+ on the surface and

in the bulk, which is inactive for MSR.98–100 The suppression of Ni0 when Ni/𝛾-Al2O3 is exposed to oxidising

atmospheres, e.g., when exposed to air in ambient conditions before characterisation, is further supported by the

Ni 2𝑝3/2 XPS spectra in Figure 6(a), where the Ni surface speciation on the different supports is distinctly different

at ∼ 853 eV, which corresponds to Ni0, whilst being similar at ∼ 856 eV, which corresponds to Ni2+.101 Given that

the relative intensity of the peak at ∼ 853 eV is lowest for H2S-poisoned Ni/𝛾-Al2O3, this suggests that 𝛾-Al2O3

suppresses the formation of Ni0 in oxidising conditions.

To investigate the driving force for irreversible catalyst deactivation further, we calculated the energetics of

substitutional defect formation in the support materials using DFT and DFT+𝑈, as outlined in Section 2.1.2. As

shown in Figure 6(c), the substitutional defect energy for Ni×Al in 𝛾-Al2O3 is calculated as 6.08 eV, which is lower

than Ni×Ti in TiO2 (6.67 eV) and Ni×Ce in CeO2 (13.61 eV), supporting a hypothesis that the deactivating phase

transformation is more favourable for Ni/𝛾-Al2O3, whereas Ni/TiO2 and Ni/CeO2 are more resistant to forming

bulk solid solutions. Figure 6(c) further shows that the increasing defect energies from Ni×Al to Ni×Ce correlate

inversely with the polarisation of the Ni 3𝑑 𝑒g orbitals, comprised of the 3𝑑z2 and 3𝑑x2-y2 orbitals that align

along the metal-oxygen bonds,102 which is characteristic of complex oxides containing divalent ions such as Ni2+

resulting in stabilisation via Jahn-Teller distortions that break the system symmetry.103,104 These results indicate
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an energetic favourability for the initial stages of phase transformation in 𝛾-Al2O3, in agreement with the DFT+𝑈-

parameterised Monte Carlo study of Elias et al., who concluded the NiAl2O4 can be more stable than NiO and

𝛾-Al2O3 in Ni-rich conditions at high temperatures.49 The predicted insolubility of Ni in CeO2 is in contrast with

literature-reported defect energies of ∼ 2-3 eV using DFT+𝑈 in a planewave basis.105,106 Whilst the two sets of

results are not directly comparable due to differences in the employed Hubbard projectors, our results align with

previous work that shows self-consistent DFT+𝑈 in a NAO framework can successfully rationalise experimentally

observed defect chemistry in TMOs, e.g., the varying oxidation states of Nb and W dopants in different TiO2

polymorphs64,65 and the energetics of Mg doping in LiCoO2,65 the results for which can vary ambiguously in the

plane-wave DFT+𝑈 literature.107–110 The large defect energy for Ni×Ce is confirmed as not an artifact of our chosen

DFT+𝑈 parameters by repetition of the calculation using standalone DFT, which yields a defect formation energy

of 13.81 eV.

Figure 6: Normalised XPS spectra for (a) Ni 2𝑝3/2 and (b) S 2𝑝 for the three H2S-poisoned Ni catalysts following room
temperature saturation with H2S (before MSR activity testing). (c) Substitutional defect energies for Ni×Al in bulk 𝛾-Al2O3
(DFT), Ni×Ti in bulk TiO2 (DFT+𝑈) and Ni×Ce in bulk CeO2 (DFT+𝑈), calculated using the mBEEF exchange correlation density
functional and Hubbard parameters detailed in the SI Section S1.2. The defect energies are plot alongside the corresponding
Ni 3𝑑 𝑒g orbitals, including both 3𝑑z2 and 3𝑑x2-y2 orbitals. Large differences between 3𝑑z2 and 3𝑑x2-y2 orbital occupancies are

reportedly characteristic of systems with stabilising Jahn-Teller distortions. 103,104

3.4 Sulfur Speciation and the Role of Water

To gain further insights into the mechanisms that drive sulfur removal from the H2S-poisoned catalysts, TPD-MS

was performed in N2 to track the signals for H2O, SO and SO2, which correspond to measurements from mass

spectrometry (Figure 7). For H2S-poisoned Ni/CeO2, sulfur removal occurs partially in a low temperature regime

(between 423-573 K) and also a high temperature regime (beyond 973 K), which can be attributed to lattice

and surface oxygen, respectively, based on the thermogravimetric analysis of Zhu et al., who studied pure and
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Ni-doped CeO2 nanorods showing surface oxygen release between 423-593 K and lattice oxygen release between

593-1073 K.111 Liu et al. similarly used TPD-MS to investigate SO2 release from H2S-poisoned CeO2, concluding

that peaks between 473-673 K corresponded to the formation of SO2 which could react with lattice oxygen above

673 K to form Ce(SO4)2 and then this decomposes back to SO2 at 873 K.112 The role of oxygen in facilitating

sulfur removal was further supported by observations that SO2 TPD-MS signals were greatest when the catalyst

was pretreated in O2, compared to inert Ar or reducing H2.112

Figure 7: Temperature-programmed-desorption-mass spectrometry (TPS-MS) spectra obtained using a fixed temperature ramp
of 10 K/min from room temperature to 1223 K in N2 for (a) H2O (mass = 18 g/mol) release from H2S-poisoned 𝛾-Al2O3, TiO2
and CeO2, (b) SO (mass = 48 g/mol) release from H2S-poisoned 𝛾-Al2O3 and CeO2, and (c) SO2 (mass = 64 g/mol) release
from H2S-poisoned 𝛾-Al2O3 and CeO2. The TPD-MS spectra for SO and SO2 release from H2S-poisoned Ni/TiO2 were negligible
(due to the lower H2S loading as discussed in Section 3.3) and therefore are not shown. TPD-MS signals for H2S (mass = 34
g/mol) release from all catalysts were negligible, indicating H2S desorption and/or dissociation before analysis. These catalysts
were not subject to a pre-reduction in in H2 at 923 K, as discussed for the fresh catalysts in Section 3.3.

Figures 7(b) and (c) show a greater TPD-MS signal for SO and SO2 release from H2S-poisoned Ni/𝛾-Al2O3 at

low temperatures than H2S-poisoned Ni/CeO2. We attribute this difference to the increased formation of surface

Ni𝑥Al1−𝑥O2 solid solutions, based on our calculated bulk defect formation energies in Section 3.3 and the H2

1–24 | 17

Page 17 of 25 Catalysis Science & Technology

C
at

al
ys

is
S

ci
en

ce
&

Te
ch

no
lo

gy
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/2

1/
20

26
 4

:5
8:

21
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

DOI: 10.1039/D5CY01279A

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cy01279a


temperature programmed reduction (TPR) study of Shan et al., which correlated the bimodal distribution at low

temperatures in Figures 7(b) and (c) to the existence of both Ni0 and Ni2+ on the catalyst surface.113 To rationalise

the differences between the high temperature SO and SO2 desorption behaviour from Ni/𝛾-Al2O3 and Ni/CeO2 in

Figures 7(b) and (c), the S 2𝑝 XPS spectra in Figure 6(b) is considered, where sulfates and sulfides (NiS) were

identified as the peaks at ∼ 169 eV and ∼ 162 eV, respectively. Around 85 % of all sulfur species in the three

H2S-poisoned catalysts were quantified to be sulfates using curve fitting of the S 2𝑝 XPS spectra in Figure 6(b).

The temperature-dependent oxidation (reduction) of SO2 to (from) sulfates is hypothesised to drive the differ-

ences in the TPD-MS spectra of Ni/𝛾-Al2O3 and Ni/CeO2 in Figures 7(b) and (c). The hypothesis is supported

by the study of Hamzehlouyan et al., who combined TPD and diffuse reflectance infrared Fourier transform spec-

troscopy (DRIFTS) to investigate SO2 release from SO2-poisoned Pt/Al2O3 catalysts, concluding that SO2-TPD

peaks at ∼ 509 K and ∼ 947 K correspond to the desorption of molecularly adsorbed SO2 and the dissociation

of aluminium sulfate, respectively.114 Furthermore, Smirnov et al. used temperature-resolved XPS to show that

water vapour inhibits SO2 oxidation to sulfates on an Al2O3 thin film but enhances sulfate formation on a CeO2

thin film, due to a Ce3+ redox-mediated mechanism of SO2 oxidation.115 Together with our TPD-MS results in

Figure 7(a), which show orders of magnitude greater water adsorption on Ni/𝛾-Al2O3 than Ni/CeO2 due to the

7× greater surface area, the findings of Hamzehlouyan et al. and Smirnov et al. support the hypothesis that SO

and SO2 desorb at lower temperatures from Ni/𝛾-Al2O3 as water vapour inhibits the formation and retention of

thermally stable sulfates.

4 Conclusions

Understanding the atomic level mechanisms that govern the sulfur tolerance of Ni-based catalysts is essential for

designing next-generation catalysts for industrial H2 production via MSR and low-temperature processes from re-

newable feedstocks. In this study, a combined computational and experimental approach is adopted to investigate

the enhanced sulfur tolerance of Ni nanoparticles on reducible metal oxide supports, with the aim of uncovering

strategies for future catalyst optimisation. Combining DFT, GCMC and a fine-tuned MACE MLIP, we show that a

high oxygen chemical potential provided via support oxygen buffering is not sufficient alone for the removal of

adsorbed S from Ni(111), with thermal activation being essential. The results support experimental MSR activity

tests showing that the catalytic activity of Ni supported on reducible CeO2 can be readily restored from a poisoned

state at high temperatures, compared to Ni supported on less reducible TiO2 and 𝛾-Al2O3. The results are further

validated using DFT+𝑈 computed oxygen vacancy formation energies for the bulk support materials, which show

the ease of oxygen vacancy formation in the order CeO2 > TiO2 > 𝛾-Al2O3. The MSR activity testing also indi-

cates the critical role of phase transformations into catalytically inactive phases, which is widely reported to occur

for Ni/𝛾-Al2O3, and that agrees with our DFT+𝑈 computed defect energies for substitutional Ni doping, which

indicate the initial stages of bulk phase transformation are more favourable in the order 𝛾-Al2O3 > TiO2 > CeO2.

TPD-MS and XPS highlight the critical role of water in the formation of thermally stable sulfate species that can

increase the temperatures required for catalyst regeneration.

Overall, the combined computational and experimental investigation points to three critical aspects for the

rational design of metal oxide support materials for sulfur tolerant catalysts: (1) the feasibility of bulk oxygen
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vacancy formation in the support; (2) the resistance of the bulk support to phase transformations into catalytically

inactive solid solutions; and (3) the support- and temperature-dependent surface chemistry of SO2 to sulfates. The

integration of ab initio computational modelling, statistical sampling and machine learning further demonstrates

the importance of advanced workflows for studying complex catalytic materials in a manner that faithfully bridges

theory and experiment.
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The following data availability statement is included in the submitted Article: 

Availability of Data 

All input/output files for electronic structure calculations, Monte Carlo sampling and 
MACE fine-tuning are available open-source in the GitHub repository 
https://github.com/amitmc1/GCMC-Adlayers and as a supplementary dataset on 
Figshare at the DOI: https://doi.org/10.6084/m9.figshare.29562377. 
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