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Over the past three decades, the pharmaceutical and agrochemical sectors have embarked on a

transformative journey towards greener-by-design processes, firmly rooted in the principles of green

chemistry. Building on this foundation, green engineering frameworks have expanded the focus beyond

environmental concerns to encompass product quality, economic viability, and the evolving demands

of modern healthcare. At the heart of this transformation is continuous and smart manufacturing due to

its capacity to reduce raw material use, waste, and energy consumption. While attention has

understandably centered on replacing or refining conventional batch operations, the breadth of progress

is far wider. Advanced analytics and digitization, as exemplified by AI-driven modeling, are nurturing the

rise of ‘‘smart factories’’ that autonomously optimize performance in real time. A prime illustration lies in

the purification of fine chemicals, where real-time analytics and advanced process control slash solvent

requirements, an acute pollution hotspot, while ensuring consistent product quality. Meanwhile, 3D

printing has introduced a genuinely disruptive dimension, challenging traditional notions of scale and

location through on-demand, flexible production. In this piece, we explore how these converging

technological frontiers lay the groundwork for the patient-centered, eco-conscious pharmaceutical and

agrochemical facilities of the future.

1. Introduction

Nearly three decades ago, the fine chemicals industry experi-
enced a watershed moment with the advent of green chemistry.
This framework redefined reaction efficiency by shifting
emphasis from mere product yield to a holistic strategy prior-
itizing resource conservation and waste reduction. The intro-
duction of the E(nvironmental)-Factor, defined as the ratio of
waste mass to product mass, highlighted the sectors heavy
reliance on stoichiometric protocols, high solvent volumes, and

inefficient equipment, resulting in E-factors that were signifi-
cantly higher than those typical in bulk chemical manufacturing
(Table 1).1 Over time, it became clear that solvent inefficiency
had been seriously underestimated, with more recent figures
placing pharmaceutical E-factors near 182 kg of waste per kg of
product.2 This realization has galvanized the rise of a ‘‘greener-
by-design’’ philosophy in fine chemical production, particularly
in the pharmaceutical and agrochemical sectors.

A major pollution hotspot lies in the synthesis of active
ingredients, which typically accounts for 75–90% of the carbon
footprint of small molecules.3,4 Major contributors to this
footprint include organic solvents, fossil-fuel feedstocks, ineffi-
cient catalytic protocols, and the intrinsic constraints of reac-
tion and processing conditions. Recent breakthroughs targeting
these core synthetic pillars have been detailed in Part 1 of this

Table 1 E-factor in the chemical industry. Adapted from ref. 1

Industry segment Tons per annum
E-factor
(kg of waste per kg product)

Oil refining 106–108 o1
Bulk chemicals 104–106 1–50
Fine chemicals 10–104 450
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two-volume review. While greener active ingredient synthesis
is key, green engineering plays an equally important role, as
sustainability can only truly arise from the synergy between
chemistry and engineering. In this context, the 12 principles
of green engineering,5 and the Sandestin 9 principles of
green engineering6 provide foundational frameworks that
guide the design of inherently sustainable processes and tech-
nologies. Importantly, whereas green chemistry is primarily
concerned with waste prevention and hazard reduction, green
engineering embodies a broader outlook by encompassing
aspects of profitability and product quality within the frame-
work of green process design.7 This is reflected in the relation-
ship between process mass intensity (PMI), which quantifies
the total mass of all materials used per unit product, and
E-factor (waste only), captured succinctly by PMI = E-factor + 1.1

At first glance, sustainability may appear incompatible with
profitability; however, in the manufacture of fine chemicals,
the two often go hand in hand. Mounting evidence supports
this view,1,8 as reductions in raw material consumption, waste-
disposal costs, energy usage, and improvements in capacity
utilization can collectively offset initial investments. Only in
specific cases, such as when reagents like phosphorus oxychloride
(POCl3) or phosphorus pentachloride (PCl5) cannot be replaced
with greener alternatives, a divergence may arise. Nevertheless,
even in such instances, the overall process can be designed to
remain green, with high solvent recovery, efficient throughput,
and minimized waste generation. A case in point is Pfizer’s 2021
Environmental, Social, Governance Report,9 which documented a
27% reduction in hazardous waste from 114 000 metric tons in
2020 to 82 700 in 2021, largely attributed to process intensifica-
tion. Concurrently an annual revenue growth of 95% was
recorded.10

A key force driving the evolution of modern process
development is the industry’s commitment to ‘‘continuous
improvement’’, an imperative shaped by growing demands for
sustainability, efficiency, and cost-effectiveness. Many companies
have formalized this pursuit through structured ‘‘continuous
excellence’’ programs, which blend lean manufacturing (requiring
maximal productivity with minimal waste), six Sigma (requiring
minimal process variability and defects), and digital innovation
to systematically enhance operations.11 These initiatives aim
not only to reduce waste and variability but also to accelerate
innovation cycles, improve product quality, and optimize resource
utilization.

However, the implementation of continuous improvement
varies widely across regions, shaped by regulatory environ-
ments and cultural attitudes towards operational excellence.12

Japanese firms often operate within rigid hierarchies that can
hinder innovation; European companies typically emphasize
regulatory compliance alongside collaborative improvement;
U.S. firms favor agile, market-driven approaches supported by
proactive regulation. Even within the same region, company-
specific factors, such as leadership and organizational culture,
can significantly influence adoption. In Ireland’s pharmaceutical
sector, for instance, 97% of surveyed professionals reported
using continuous improvement strategies to boost productivity

and quality, yet 45% cited strict regulations as a barrier for
further implementation, particularly due to added validation
and regulatory requirements.13

In this context, process development is no longer seen as a
one-time effort but as an iterative, data-driven strategy for
sustained advancement. In fact, traditional linear models of
innovation,14 once characterized by sequential steps like research,
development, engineering, and commercial start-up, have been
gradually replaced by more adaptive and systematically organized
frameworks. The linear approach of improvement lacked the
responsiveness needed to navigate the increasing complexity of
technical, economic, and regulatory environments, resulting in
inefficiencies, delays, or missed opportunities. Over the past two
decades, stage-gate models have become the industry standard,
providing structured pathways for chemical innovation through
well-defined stages and decision-making checkpoints, or ‘‘gates’’.
As outlined by Harmsen,15,16 the most widely adopted stage-gate
model for both process and product innovation comprises six
phases: discovery (idea generation and proof of principle), concept
(initial design and validation through experiments), feasibility
(pilot-scale design and risk assessment), development (pilot plant
execution and Front End Engineering Design (FEED) preparation),
Engineering, Procurement, and Construction (EPC), and imple-
mentation (start-up and commercial manufacturing, with flexibil-
ity for multi-product production, especially in the pharmaceutical
and agrochemical sectors).

The second force behind both sustainability and economic
growth has been the standardization of international quality
standards, spearheaded by the International Council for Har-
monization of Technical Requirements for Pharmaceuticals for
Human Use (ICH). Fundamental manufacturing concepts have
been formalized in ICH guidelines (particularly Q7,17 Q8,18

Q9,19 and Q1020) including process intensification (streamlin-
ing manufacturing steps for efficiency), quality by design
(ensuring product quality from the outset, rather than relying
on end-point checks), and good manufacturing practice (con-
sistently meeting high quality and safety standards). Building
on these principles, the ICH has dedicated its latest guideline,
ICH Q13 (2023)21 to continuous manufacturing, an approach
already endorsed by the Food and Drug Administration (FDA)22

and European Medicines Agency (EMA).23 The United States
Pharmacopeia (USP) has reinforced this direction in its 2022
Annual Report, projecting that continuous manufacturing will
become an industry staple alongside traditional batch proces-
sing within the next decade.24

To contextualize the projected benefits of continuous man-
ufacturing, it is instructive to consider the conventional indus-
trial practice for the production of active ingredients. Typically,
manufacturing involves a series of sequential batch unit opera-
tions, involving reaction, purification, blending, and packaging
(Fig. 1). Historically, these stages have been spatially and
temporally segregated, resulting in prolonged processing,
repeated start-stop cycles, storage and transportation costs
between stages, and substantial facility footprints.25 In this
context, however, it must be mentioned that crop protection
manufacturing frequently employs telescoped batch reactions
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with minimal or no isolation of intermediates, as repeated
interruptions would be highly inefficient. Here, the focus is on
robust, scalable, and integrated processes that enable streamlined,
high-throughput production, different from pharmaceutical
models where final formulation and patient-specific customization
may play a greater role.26 Continuous manufacturing continuously
feeds materials through multiple integrated operations, minimiz-
ing processing times and lowering contamination risk by closed-
loop design. Its reconfigurable, modular design adapts readily to
manufacturing and supply chain requirements at a fraction of the
space requirement.27 Moreover, unlike batch processes, which can
operate with periodic, offline inspections, more sophisticated real-
time control systems are required to dynamically regulate process
parameters during long-term operation. Thus, two additional
components are essential: process analytical technologies (PAT),
such as inline infrared spectroscopy, for continuous detection of
impurities and product quality assurance; and (2) process control
models to adjust operating conditions in real time.

With clear regulatory momentum and documented benefits,
numerous pharmaceutical companies have begun implementing
continuous manufacturing processes.29 Janssen’s continuous
process for the antiretroviral darunavir exemplifies the substan-
tial reductions in operational time and environmental that
impact continuous operation confers.30 By shifting from a con-
ventional batch process to continuous mode, production was
compressed from two weeks to a single day, and the required
space was scaled back from seven rooms to only two.31

Concurrently, a surge of research over the past 20 years has
explored various continuous operations like continuous blending,32

continuous crystallization33 and continuous drying.34 Moreover
real-time monitoring with PAT35–38 and advanced process control

strategies39–41 have been reviewed extensively. Others have explored
interconnected units for end-to-end manufacturing and continuous
plant operation.27 All of the above developments in continuous
manufacturing have been expertly reviewed elsewhere, and readers
are directed there for a more detailed discussion.

Nevertheless, continuing down the road to greener-by-design
pharmaceuticals and agrochemicals require more than merely
developing and integrating continuous versions of existing unit
operations. It demands embracing the autonomy and digital
transformation envisioned by Industry 4.0, in tandem with the
sustainability ethos of Industry 5.0.42 Specifically, Industry 4.0
shifts the focus from manual supervision of automated systems to
autonomous manufacturing powered by real-time data acquisi-
tion and analysis, adaptive process optimization and innovative
manufacturing methods.43,44 Emerging technological frontiers are
poised to transform pharmaceutical and agrochemical manufac-
turing by unlocking new capabilities that extend beyond conven-
tional process intensification. In particular, smart manufacturing
(Section 2) and innovative fabrication methods (Section 3) stand
out as key enablers, offering unprecedented opportunities to
enhance efficiency, precision, and sustainability across the
chemical and pharmaceutical industries.

Smart manufacturing is redefining the production of phar-
maceuticals and fine chemicals by integrating real-time data
acquisition, digital modeling, and advanced purification strate-
gies. Since the FDAs 2004 endorsement of PATs,45 continuous
monitoring has become instrumental during the later stages of
drug manufacturing to ensure consistent product quality. How-
ever, integrating PAT into earlier active pharmaceutical ingredi-
ent (API) synthesis has been impeded by the complexity of
chemical reactions being conducted. The recent miniaturization

Fig. 1 Comparison of conventional batch manufacturing and integrated continuous manufacturing. Top: traditional batch pharmaceutical process, in
which synthesis, purification, blending, granulation, and tableting occur in separate unit operations, often at different locations, with intermediate
storage, testing, and shipping steps extending production timelines to several months. Bottom: continuous manufacturing process integrating all stages,
from synthesis to final tablet coating, into a streamlined, single-site workflow supported by PAT and real-time process control, reducing production times
from months to days. Reproduced from ref. 28, with permission from Springer Nature, copyright 2015.
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of spectroscopic instruments, including benchtop systems, has
broadened the arsenal available to process chemists to monitor
them. Moreover, the integration of PATs with emerging technol-
ogies, such as photo- and electrochemistry, is expanding the
capabilities of fine chemical manufacturing. Finally, the fusion
of PAT with flow reactors and artificial intelligence (AI)-driven
process control is establishing automated reaction platforms
enhancing real-time decision making and operational efficiency.
These aspects are described in Section 2.1.

Traditional process models are essential in designing and
controlling continuous manufacturing systems. Often, these
models are resource intensive and rely on arbitrary parameter
estimation procedures which may result in several limitations
such as poor prediction capabilities and lack of adaptability.
The adoption of digital twins and AI-driven models (presented
in Section 2.2) supports real-time decision-making, allowing
manufacturing systems to dynamically adjust to process varia-
tions and enhance efficiency and sustainability.

Beyond reaction monitoring, smart manufacturing also
extends to downstream processes, where solvent-intensive
separation operations remain a major environmental and
economic concern. While solvent minimization initiatives for
active ingredient synthesis have received considerable attention
(see the dedicated sections in Part 1: Synthetic Frontiers),
purification strategies have often lagged behind in innovation.
Section 2.3 will highlight continuous purification as a testbed
for advanced inline analytics and smart manufacturing, illus-
trating how these methods can cut solvent use and deliver
broader environmental and economic benefits.

Technological innovation is reshaping pharmaceutical
manufacturing, moving beyond traditional mass production
towards more flexible, patient-centered, and data-driven
approaches. Among these advancements, 3D printing is a
disruptive technology poised to transform mass production
into flexible, on-demand, and intrinsically ‘‘smart’’ systems
(Section 3). Beyond rapid prototyping, it enables the fabrication
of complex, customized reactor components (such as novel
static mixers or multi-inlet geometries) that are difficult or
impossible to manufacture using conventional methods. This
is particularly impactful in flow chemistry, where 3D printing
allows the integration of tailored mixing units directly into
reaction channels, enhancing mass and heat transfer, improv-
ing reaction control, and accelerating process intensification.
Moreover, it is a critical step towards the realization of perso-
nalized medicine and point-of-care manufacturing models,
where treatments can be adapted to individual patient needs
and produced closer to the point of use.

The aim of this review is to assess how emerging disruptive
technologies in these critical research areas can enable greener-
by-design pharmaceutical and agrochemical manufacturing.
We will explore the current state of these innovations, pinpoint
existing hurdles, and propose strategic pathways for their
seamless implementation. Importantly, we will showcase rele-
vant case studies where these technological frontiers can shape
how synthetic routes are designed from the outset, and actively
guide and accelerate the adoption of the synthetic strategies

discussed in Part 1: Synthetic Frontiers. To conclude, we will
provide industry-informed perspectives on the transformative
potential of these technologies and the steps needed for
successful adoption across their respective sectors.

2. Smart manufacturing
2.1. Real-time data acquisition

In a recent perspective, Qian and co-workers highlighted that
information integration, dynamic risk assessment, decision-
making support, and the lack of early warning systems are
major barriers to green manufacturing.46 To address these,
inline or online analytical tools, collectively termed as process
analytical technology (PAT), provide comprehensive, real-time
process insights, enabling swift, evidence-based decisions.37 As
emphasized elsewhere, the integration of in situ analytics
through PAT is essential for advancing both the quality and
sustainability of chemical manufacturing at any scale (Fig. 2).47

At the industrial level, PAT keeps critical process parameters
within predefined optimal conditions. It directly leads to
reduced raw material waste (i.e., through less product quality
failure), minimized energy consumption, and enhanced overall
process efficiency and safety. As the sector transitions from
batch to continuous manufacturing, PAT facilitates self-
optimization, scale-up, and fault detection. This enhances
safety, improves operational flexibility, and ensures consistent
product quality throughout production.48 Consequently, PAT
has gained broad endorsement from both regulatory agencies
and the fine chemical industry.45,49–52

At this large scale, PAT enables real-time monitoring and
precise control of both individual unit operations and entire
continuous plants in data-rich environments.35 A milestone
was the first end-to-end continuous manufacturing process
developed by the Novartis-MIT Center for Continuous Manu-
facturing. Multiple PATs (e.g., density meters, UV-vis) were
employed to tightly regulate critical material and reaction
parameters, minimizing disturbances across interconnected
unit operations.53,54 Albeit sustainability was not explicitly
discussed, this flow-based, real-time approach allowed the
mixing, granulation, drying, and tablet compression unit
operations to be merged into a single continuous screw extru-
sion. As a result, the 21-unit operations were reduced to 14, the
residence times were shortened from 300 to 47 h and solvent
consumption was minimized all while ensuring consistent
product quality. In follow-up work, Benyahia et al. used a
plant-wide dynamic model of a continuous pharmaceutical
pilot plant to refine process design, decrease impurities and
lower E-factor.55 In agrochemical settings, probes and sensors
are also permanently integrated into production infrastructure
at predefined control points, enabling continuous monitoring
of critical process parameters and product attributes. The Bayer
Production Network provides a striking example, with over
4000 PAT installations and more than 40 dedicated Near
InfraRed (NIR) spectroscopy systems embedded across its
manufacturing sites.

Review Article Chem Soc Rev

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
4/

20
26

 1
1:

20
:0

0 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cs00930h


This journal is © The Royal Society of Chemistry 2026 Chem. Soc. Rev., 2026, 55, 675–713 |  679

On the lab and pilot scale, the primary focus of this section,
PAT creates a data-rich environment that supports modelling
and automation. Amongst numerous benefits, it shortens
optimisation cycles (thus cutting waste), minimizes human
error and provides detailed insights on reaction mechanisms
(i.e., real-time kinetics or the detection of unstable intermediates).
Its use in this small-scale context is by no means mandatory,
yet the sustainability gains are tangible, especially as smart-
manufacturing strategies take hold. PAT is particularly well suited
to continuous-flow synthetic protocols, a topic explored in greater
detail in Part 1: Synthetic Frontiers. It is crucial to emphasize,
however, that PAT operates within the chemical constraints
of a given process. It does not alter the intrinsic nature of
the chemistry involved. For instance, if process optimization is
conducted exclusively using inherently toxic solvents or petro-
chemical feedstocks (Part 1: Synthetic Frontiers), PAT may
improve control, efficiency, and data transparency, but it cannot
overcome the fundamental sustainability limitations of these
choices. The technology is only as green as the synthetic chemistry
it monitors. Classic analytical equipment readily available to
offline analysis can be adapted for real-time monitoring in
continuous-flow setups. Among these techniques, infrared spec-
troscopy, particularly Near-Infrared Spectroscopy (NIR), is widely
applied for real-time analysis.56 Unlike FTIR, which probes funda-
mental molecular vibrations in the mid-infrared region, NIR
analyzes overtone and combination bands, making it especially
effective for tracking bulk properties such as moisture content,
concentration, and blend uniformity. Its non-destructive nature,
rapid acquisition, and ease of automation make NIR a robust tool

for continuous process control. Complementing IR-based meth-
ods, Raman spectroscopy offers distinct advantages, especially in
aqueous or alcoholic media where –OH groups interfere strongly
with IR but scatter weakly in Raman.57 Raman also operates
reliably over a broad range of temperatures and pressures and
has acquisition times comparable to FTIR, making it suitable for a
wide range of reaction conditions.

UV-vis absorption spectroscopy, while more limited in struc-
tural resolution and prone to signal overlap, remains useful
for reactions involving chromophoric species.58 Its versatility
and simplicity continue to support its use in kinetic profiling
and reaction tracking. Benchtop nuclear magnetic resonance
(NMR) provides structural information with minimal sample
preparation.59 While lower in sensitivity and resolution than
high-field NMR, benchtop systems remain attractive for real-
time monitoring of well-resolved species, especially when com-
plemented by other techniques.

In contrast to spectroscopic methods, HPLC/UPLC physi-
cally separates components before detection (e.g., via UV, ELSD,
CAD, or MS), enabling accurate quantification even in complex
mixtures.60 Though slower (5–30 min acquisition time), it is
well suited for reactions with longer residence times or where
immediate feedback is not critical. Importantly, HPLC/UPLC is
increasingly integrated into PAT frameworks. For example, in
2024, Cai et al., through the real-time application of HPLC-MS,
investigated how palladium(II) species suppress epimerization
during Buchwald–Hartwig C–N couplings used to synthesize a
RORg inhibitor.61 Crucially, HPLC allowed the authors to
resolve temporal trends in substrate consumption and product

Fig. 2 Overview on how PAT enhances sustainability throughout the value chain, from small-scale research to process development and large-scale
manufacturing. Reproduced from ref. 47, with permission from the American Chemical Society, copyright 2022.
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formation, revealing that epimerization correlates with Pd
speciation.

As seen in Table 2, each analytical technique presents
limitations, and the lack of a universal analytical tool poses a
significant challenge in monitoring multistep syntheses and
complex reaction mixtures. Nonetheless, using multiple meth-
ods in tandem has significantly advanced the sustainable
development of drugs and agrochemicals.37,62–82 Below we
showcase recent examples where PAT facilitated greener flow
synthesis of pharmaceutically and agriculturally relevant
compounds.

Zhang and co-workers introduced a compact, reconfigurable
continuous-flow platform for end-to-end API synthesis and
formulation employing advanced PATs, such as inline FTIR,
to regulate temperature, pressure, and flow rates thereby redu-
cing waste (Scheme 1).83 For instance, real-time monitoring
during diphenhydramine hydrochloride synthesis improved
API yield to 82% while curbing solvent use. With reconfigurable
modules operating in continuous mode, the platform accom-
modated APIs with diverse chemical profiles (e.g., lidocaine
hydrochloride, diazepam, fluoxetine hydrochloride), reducing

reaction times from hours to minutes. Its modular configu-
ration facilitated cross contamination-free transitions between
APIs, ensuring product quality in adherence to U.S. Pharmaco-
peia standards. Another related study was reported by Gilmore
and co-workers and featured online FTIR and NMR analytics for
continuous rufinamide synthesis.84

Kappe and co-workers also developed a modular, reconfigurable
continuous-flow platform integrating FTIR, NMR and UPLC, to
optimize an organometallic multistep reaction.85 The process
involved deprotonating tert-butyl propionate with lithium
diisopropylamide (LDA), reacting the resultant enolate with 4-
fluorobenzaldehyde, and quenching with water to form the
desired aldol product. FTIR recorded the ester peaks rapid
disappearance at 1730 cm�1, confirming 490% deprotonation
within 3.9 seconds of residence time. A 43 MHz benchtop
NMR tracked 4-fluorobenzaldehyde conversion every 43 seconds,
capturing intermediate formation and product concentration,
while online UPLC, equipped with automated subsampling
and dilution, distinguished the desired product from diastereo-
mers. This approach afforded 70% yield and 4.2 g h�1 produc-
tivity upon scale-up, showcasing how PAT integration drives

Table 2 A comparison guide on PAT selection

FTIR Raman UV-vis NMR HPLC/UPLC

Sensitivity Good Good Good Fairb Excellent
Time efficiencya B15 s B15 s 30 s–1 min 42 min 45 min
Quantification method Calibration Calibration Calibration Direct Integration Calibration
Mixture resolution Fairc Fairc Fairc Faire Goodd

Impurity detection Poor Poor Poor Faire Goodd

Sampling Flow through Flow through Flow through Flow through Sample loop f

Structural information Good Good Poor Good None

a Average analysis time observed in literature. b Steadily improving. c Multicomponent regression analysis might be necessary. d Depending on
method and column selection. e Depending on nuclei, structure, and analysis time. f Automation and inline integration is possible.

Scheme 1 Reconfigurable continuous-flow platform using online FTIR for multistep API synthesis. The system enables rapid switching between
synthetic routes, illustrated here for the preparation of Lidocaine hydrochloride (top) and Diazepam (bottom). Each workflow combines controlled
heating stages, inline phase separations, and real-time FTIR monitoring to track key functional-group transformations and ensure consistent product
quality. Adapted from ref. 83.
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data-informed optimization, real-time parameter tuning, and
reduced impurities.

However, it is important to distinguish between such
reaction optimization, typically performed at the laboratory or
pilot scale, and the sustained optimal operation required in a
manufacturing environment. The two phases differ signifi-
cantly in goals and timeframes: optimization seeks to identify
the best reaction conditions, usually through iterative adjust-
ments under tightly controlled settings. In contrast, once the
process is transferred to production, the role of PAT evolves.
Rather than guiding discovery, PAT in manufacturing serves as
a real-time feedback system to ensure that the pre-established
optimal conditions are consistently maintained. It enables
process control, rapid fault detection, and assurance of product
quality at scale, where robustness and reproducibility become
critical. Recognizing this distinction is essential to properly
frame the role of PAT across the development-to-production
continuum.

A major obstacle to broader PAT adoption in multistep
processes is the sheer complexity of implementing and manag-
ing it across each reaction stage. Bourne and co-workers tackled
this by devising a telescoped continuous-flow platform to yield
an aryl ketone hydroisoquinoline derivative (C-5), using a single
online HPLC instrument for in-depth monitoring.86 Their
process combined a Heck coupling, intramolecular cyclization,
and acid-catalyzed hydrolysis. Daisy-chained multipoint sam-
pling valves at each reactor outlet facilitated sequential ana-
lyses of individual reaction profiles, including aryl bromide
conversion and vinyl ether and ketal intermediates. HPLC data
guided adjustments to residence times, reagent stoichiome-
tries, and temperatures. For instance, PAT revealed vinyl ether 3
formation was optimal at 125–140 1C with less than 14-min
residence times, while controlling TsOH equivalents was critical
for high yields in the final hydrolysis. After 14 h of optimization,
the telescoped process furnished an 81% overall yield. Most
importantly, relying on a single HPLC instrument significantly
reduced setup complexity and costs without sacrificing detailed
process insights.

Another hurdle for PAT to overcome is monitoring highly
viscous fluids in continuous-flow mode, as stagnant boundary
layers near sensors can slow response times. Veser and co-
workers addressed this by testing the performance of inline real
time FTIR in five flow configurations: horizontal flow, vertical
flow, static mixer, horizontal nozzle, and vertical nozzle.87

The static mixer and nozzle setups improved response times
by disrupting boundary layers and assisting fluid exchange at
the expense of higher pressure drops. Among these, the hori-
zontal nozzle yielded the fastest response. Computational fluid
dynamics (CFD) simulations corroborated these observations,
highlighting how flow dynamics and sensor placement affect
data accuracy and system efficiency in high-viscosity processes.

Kappe and co-workers developed a multistep continuous-
flow synthesis of Mesalazine, deploying different PATs in each
reaction stage management (Scheme 2).88 The sequence com-
prised of three telescoped steps: nitration, hydrolysis and hydro-
genation. In the nitration step, inline NMR spectroscopy
quantified the ratios between 5-nitro-2-chlorobenzoic (5N-2ClBA)
to its undesired 3-nitro-2-chlorobenzoic (3N-2ClBA) isomer at
different stoichiometries and temperatures, following a published
procedure.89 An NMR signal was recorded every 12 s while an
indirect hard model (IHM) addressed signal overlap with less than
5% concentration uncertainty, ensuring optimal regioselectivity.
For the hydrolysis of 5N-2ClBA to 5-nitrosalicylic acid (5-NSA),
UV-vis spectroscopy acquired 2 s spectra, tracking reaction pro-
gress in real time. A data driven neural network (NN) model was
trained on B35 000 spectra obtained by systematically ramping
the reactor temperature from 20 to 210 1C, spanning 0–100%
starting material conversion. This enabled rapid, accurate opti-
mization of alkaline hydrolysis conditions with minimal errors, an
impressive feat given that NN-based concentration predictions
required only 1.4 ms per spectrum. For the final hydrogenation
step, inline FTIR tracked the loss of nitro stretching bands
(B1530–1350 cm�1) and the rise of amino bands (B3300–
3400 cm�1), allowing swift detection of deviations. A partial least
squares (PLS) regression model delivered concentration estimates
with o5% error for all reaction components. A final UHPLC
analysis at the process endpoint confirmed a 79% overall assay
yield and a throughput of 1.6 g h�1. Collectively, these PAT tools,
combined with data analytics and advanced modelling improved
process efficiency, flagged impurities, illustrating their synergistic
role in modern flow chemistry.

PATs are also broadly compatible with emerging technol-
ogies such as photochemistry, electrochemistry and biocataly-
sis. For instance, Ley and co-workers employed inline FTIR
spectroscopy for the photochemical continuous-flow conver-
sion of oxadiazolines to non-stabilized diazo compounds under
a 310 nm UV lamp.62 FTIR spectroscopy played a critical role in
detecting the CQO stretch of methyl acetate at 1746 cm�1 and

Scheme 2 Integrated continuous-flow route to mesalazine (5-ASA). The process converts 2-chlorobenzoic acid (2ClBA) into 5-nitro-2-chlorobenzoic
acid (5N-2ClBA) via nitration monitored by inline NMR. Subsequent alkaline hydrolysis produces 5-nitrosalicylic acid (5-NSA), tracked by inline UV-Vis
spectroscopy. The final catalytic hydrogenation step yields mesalazine (5-ASA), and inline IR is used to follow the reduction. Product quality and
conversion are verified through online UHPLC analysis. Adapted from ref. 88.
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the product NQN stretch at 2040 cm�1, allowing precise
assessment of conversion efficiency. This approach enabled
safe and efficient generation of volatile diazo species with an
80-min residence time at 10 1C, but also facilitated their
immediate application in metal-free C(sp2)–C(sp3) cross-
coupling reactions with boronic acids to prepare muscle-
relaxant Baclofen in good yields.

More recently, George and co-workers progressed a
continuous-flow metallaphotoredox C–O coupling from a small
tubular reactor to a Taylor Vortex Reactor with the aid of inline
FTIR real-time monitoring.90 The substrate scope included the
antidepressant fluoxetine and an intermediate of the tubercu-
losis drug Delamanid with throughputs as high as 11 kg day�1.

Beyond photocatalysis, electrochemistry can also benefit
from PAT, particularly the electrochemical Birch reduction, which
is a commonly employed protocol (Fig. 3).91 George and colleagues
applied a battery of real-time spectroscopy techniques including
FTIR, Raman, and absorbance-transmittance-excitation Emission
Matrix (A-TEEM) spectroscopy in the continuous-flow Birch reduc-
tions of naphthalene derivatives.92 Herein, FTIR tracked the con-
sumption of reactants and product formation, while Raman and
A-TEEM helped identify elusive reaction intermediates and pro-
duct fingerprints. These PATs assisted in optimizing electrolyte
and proton source concentrations ultimately achieving 98% selec-
tivity for the single ring reduced product. Notably, the authors
scaled up the protocol for a Ropinirole intermediate, leading to
95% yield and 114 g day�1 productivity. Other electrochemical
examples such as silane oxidation93 and C(sp3)–H amidation94

have employed inline FTIR under continuous-flow conditions,
while Cantillo and colleagues95 described a spinning
electrode reactor equipped with online UV-vis for scalable
electrochemistry.

Perhaps PAT’s most significant impact on sustainable man-
ufacturing lies in its ability to generate data-rich environments
that support modelling, digitization, and, critically, reactor
automation. In this context, Jensen’s Group fabricated an
autonomous robotic flow platform for synthesizing Sonidegib,
combining multiple PATs (LC-MS, FTIR, and UV-vis) with
Bayesian optimization to telescope three reaction steps: nucleo-
philic aromatic substitution (SNAr), nitro reduction, and amide
coupling (Fig. 4).96 For the SNAr step, researchers conducted 25
initial experiments to broadly map the parameter space, with
FTIR monitoring the disappearance of the C–F bond signal and
LC-MS tracking product yields and impurities. Subsequently, a
Bayesian Gaussian Process Regression (GPR) model steered the
optimization by iteratively refining temperature (70–120 1C),
residence time (2–10 min), and base concentration (1–3 equiv).
This positive feedback loop resulted in a SNAr yield of 93% with
o0.1% impurities. In the following step, FTIR measured the
nitro-to-amine conversion at a o5% validation error, allowing
dynamic adjustments to the Pd/C catalyst loading and hydro-
gen pressure, which ensured steady conversion and high selec-
tivity. Finally, LC-MS helped suppress guanidinium impurities
during the amide coupling, achieving an overall purity of
499%. The fully autonomous system reached a throughput
of 1.8 g h�1 and 89% overall yield, illustrating the synergy of

Fig. 3 Electrochemical Birch reduction monitored by PAT. (a) Schematic of the electrochemical Birch reduction of an aniline, leading to an intermediate
relevant to the synthesis of Ropinirole hydrochloride. (b) Representative inline Raman spectra collected during the reaction, with characteristic vibrational
bands of reactants and intermediates. (c) Excitation-Emission Matrix fluorescence map acquired during the process, showing the evolution of fluorescent
species as a function of excitation and emission wavelengths. Reproduced from ref. 92, with permission from the American Chemical Society,
copyright 2022.
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advanced PATs, machine learning, and automation in efficient
API production.

More recently, Slattery et al. unveiled RoboChem, an auto-
mated system designed to optimize, intensify, and scale-up
photochemical processes.97 Integrating inline NMR with a capil-
lary photoreactor equipped with tunable LEDs, RoboChem
employs Bayesian optimization to iteratively refine reaction con-
ditions, achieving over 95% yields and boosting space-time yields
by up to 500% across various photocatalytic transformations.
Beyond these instances, numerous additional PAT-driven auton-
omous reactors have been documented, as recently reviewed.98,99

Despite ongoing challenges such as sensor reliability in
viscous flows, complex data handling, and the absence of
a universal PAT, these technologies remain influential in
advancing sustainable production. Future endeavors will likely
center on integrating PAT more closely with digital innovations,
thereby enhancing sensitivity, resilience, and speed while
moving closer to fully automated systems.100 In such systems,
PAT will supply the real-time feedback essential for process

self-optimization and control thus laying the groundwork for
the next wave of modelling and AI-based process management.

2.2. Next-generation digital models

2.2.1. Role of mathematical models and digital twins. As
alluded to previously, arguably PATs greatest contribution to
sustainable manufacturing is the creation of data-rich environ-
ments. This is particularly relevant for production facilities
operating multiple, often semi-parallel, manufacturing cam-
paigns per year across different products, where maximizing
asset utilization and optimizing production scheduling are
critical to overall efficiency and profitability. In order to transi-
tion to continuous manufacturing, a comprehensive under-
standing and coordination of each unit operation is necessary
to safeguard efficiency and product quality. One way to accom-
plish this is through digital mathematical models which act as
virtual representations of the manufacturing process. These
models map single or series of units operations, relevant

Fig. 4 Autonomous reactors featuring PAT feedback for self-optimization. (a) Schematic of the integrated flow system combining inline FT-IR, LC-MS,
and NMR for real-time analysis and closed-loop decision making. (b) Optimization workflow showing the reaction parameters explored and the multi-
objective Bayesian algorithm used to maximize yield and productivity while minimizing reagent consumption. (c) Photograph of the full experimental
setup, illustrating automated sampling, photochemical reactor modules, and the PAT-driven feedback loop. Panels (a) and (b) are reproduced from
ref. 96, with permission from the American Chemical Society, copyright 2022. Panel (c) is reproduced from ref. 97, with permission from Science,
copyright 2024.
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equipment, and material flows, often integrating physical,
chemical, and thermodynamic data.101

Based on their reliance on physical principles, models can
be categorized into three classes: first-principle, data-driven,
and hybrid models.102 First principles models are derived from
the fundamental underlying physical, chemical, thermody-
namic, and flow phenomena which typically integrate into the
mass, energy, momentum, and population balance equations.
Data-driven models are built based on the input-output behavior
of a process whereas hybrid models can combine features both
from first principles and data-driven models. A mathematical
model can be represented by a single or a set of equations,
typically algebraic, ordinary differential, or partial differential
equations. Additionally, depending on their intended scope,
mathematical models can be built to capture the dynamics or
steady state behavior of a process.

Mathematical models play a crucial role in decision-making
and process optimization, supporting the design, operation, and
control of chemical and industrial processes.103 One of their key
functions is evaluation, allowing for the prediction of process
behavior under various conditions to assess feasibility and
performance. They also enable optimal design by facilitating
the development of cost-effective and sustainable processes and
plants. Another important application is scale-up, where models
assess the scalability of a process and optimize its performance
for industrial implementation. Additionally, they contribute to
process and plant-wide control, ensuring safe, resilient, and
sustainable real-time operation. Beyond these operational
aspects, mathematical models assist in calculating inventories,
predicting and optimizing environmental impacts to support
sustainability assessments. Furthermore, they enhance fault-free
operation by detecting process faults and predicting mainte-
nance needs, ultimately improving reliability and efficiency.

A recent review by Destro and Barolo104 has highlighted the
essential role of mathematical models in fostering innovation
and ensuring consistent quality throughout the manufacturing
lifecycle of pharmaceuticals. Notably, these models increasingly
incorporate environmental indicators (e.g., process mass inten-
sity, E-factor) to evaluate sustainability across various unit
operations from synthesis, dosage to packaging and logistics.
Indeed, mathematical models have been an integral component
of various ICH guidelines (Q8, Q9, Q10).18–20 This regulatory
momentum, coupled with projected economic benefits, has
amplified interest in mathematical models for pharmaceutical
research.105–107 In this context, Gani et al. introduced a frame-
work for selecting optimal reaction pathways in pharmaceutical
manufacturing, featuring a series of modeling workflows to
identify possible reaction routes, monitor processes, simulate
operations, evaluate outcomes, optimize strategies, and inform
real-time decisions.108

The advent of industry 4.0 and the inherent digital trans-
formation consolidated even further the role of mathematical
models in real-time decision making and operation and
unveiled a new class of high-fidelity mathematical models
referred to as digital twins (DT) (Fig. 5). A DT is a virtual replica
of a process or a plant able to leverage PAT data and deliver

real-time insights and foresights allowing more effective and
resilient operation and most importantly enhanced quality and
emissions control.109,110 DT consist of three core components:
the virtual component utilizes real-time process simulation and
optimization models (e.g., MATLAB, COMSOL, gPROMS, Aspen-
Tech) to conduct comprehensive system analyses, the physical
component conducts data collection through human–machine
interfaces (HMI) and machine–machine interfaces (MMI) (i.e.,
OPC, Modbus, MQTT) facilitating seamless information flow
between equipment and control systems, and finally, the data
management component relies on internet-of-things (IoT) plat-
forms (i.e., Predix, Mindsphere, SEEQ) for secured connectivity,
analytics, and scalable storage. The ability to access real time
data, pertaining to the inputs (e.g., feed concentrations, flow
rates, temperatures) and outputs (e.g., product concentration,
purity, side products) along with their dynamic variations,
allows the DT to predict more accurately and reliably key
performance indicators and critical quality attributes (e.g.,
productivity). This ultimately improves performance compared
to conventional modelling approaches, while minimizing mate-
rial use and reducing waste.

For instance, DTs employed in continuous direct compression
lines accurately predicted critical product attributes such as tablet
composition, weight, thickness, and hardness supporting steady-
state analysis, dynamic response prediction, and process risk
minimisation.111 Furthermore, DTs can detect equipment faults,
such as contamination in a bioreactor, thereby minimizing down-
time and enhancing reliability. Incorporating integrated flowsheet
models further enhance DT capabilities by simulating inter-
actions between material properties, equipment status, and
operating conditions, thus enabling sensitivity analysis,112,113

design-space identification,114 and process optimization.115,116

Currently, the vast majority of DT models lack real-time adapt-
ability to changes in the physical system but advancements in
their data management components promise to unlock their full
potential. Indeed, forecasts suggest DT implementation could
elevate pharmaceutical productivity by 150–200%. As a result,
the use of DT technologies in pharmaceutical manufacturing
industry is growing rapidly with an expected compound annual
growth rate of 31.3% by 2034.117

2.2.2. The rise of artificial intelligence and machine learning.
Over the last decade, AI has witnessed exponential growth pow-
ered by a paradigm shift in computational power and an unpre-
cedented need for advanced data analytics. AI opened new
avenues for a broader adoption of the digital transformation
and laid the ground for more effective processes and products,
and greener-by-design strategies.118–122 The most recent progress
and growth opportunities are spearheaded by deep AI, physics-
informed AI, and generative AI. AI implementation heavily relies
on ML models that analyze extensive datasets to uncover insights,
detect patterns, forecast outcomes, and make real-time process
adjustments. These capabilities are the hallmark of smart and
sustainable manufacturing where data-driven decision-making
and automation improve efficiency and optimize production
processes.123 It should be stressed, however, that AI adoption,
as of yet, does not automatically deliver greener chemistry
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outcomes; rather these depend on whether sustainability metrics
are explicitly embedded in the datasets and objectives guiding
model development.

In both the pharmaceutical and agrochemical sectors,
embracing AI has potential to fuel efficiency, accuracy, and
scalability (Fig. 6a).124 Although AI has been primarily used in
drug discovery and clinical studies,125–132 its role extends to
critical manufacturing processes. A recent FDA whitepaper
(FDA 2023)133 identifies four key AI applications in drug pro-
duction: process design optimization, advanced process control
(APC), smart monitoring and maintenance, and trend analysis.
These align with the five process approaches (structure, energy,
synergy, time, and data) outlined by Van Gerven134 and Lopez-
Guajardo.135 In particular, the ‘‘data’’ approach stipulates the
integration of information and expertise to refine process
control (Fig. 6b), a role AI can aptly fulfil across the entire
manufacturing lifecycle (Fig. 6c). Consequently, AI-driven inno-
vations form the backbone of Industry 4.0.

AI capabilities have led to the development of hybrid models
that blend parametric and nonparametric methodologies.136

For instance, ML algorithms (XGB, kNN, NN, RF, DT, LR, and
PLS) and hybrid physical ML models have been used to predict
drug solubility in binary solvent mixtures (Fig. 7).137–140 In

tableting, artificial neural networks (ANNs) can model multiple
outputs more effectively than traditional multivariate
analysis.141 ANNs have also demonstrated a predilection for
correlating material specifications with in vivo drug perfor-
mance, as recently demonstrated by a single layer model with
five hidden nodes.142 Finally, ML models were developed to
predict the life-cycle environmental impact of chemicals,143,144

laying the ground for more effective greener-by-design pro-
cesses, particularly in the pharmaceutical and agrochemical
sector where new chemical entities are continuously discovered
and introduced.

However, reliable predictions require large, high-quality
datasets.145,146 For instance in computer-aided tetrosynthesis
(CAR), tools such as Synthia and IBM RXN, have shown consider-
able promise in proposing plausible synthetic routes.147,148 How-
ever, these tools often inherit historical biases and overlook
modern green chemistry principles. A telling example is the CAR-
designed synthesis of IM-204, a herpes (HSV) antiviral.118 Although
the AI-generated route achieved a threefold yield increase over
literature reports, it recommended 41 mol% Pd(OAc)2 for Suzuki
coupling, and HATU for amide, conditions that are suboptimal
from both a green and scale-up perspective. These reflect the
limitations of current CAR datasets and scoring functions, which

Fig. 5 Overview of a digital twin framework linking the physical process, the virtual plant, and cloud-based data management. Real-time and historical
data from PAT tools, sensors, and plant operations are transmitted to the cloud for storage and analysis. The virtual plant uses these data for modelling,
scenario analysis, real-time optimization, and decision support. Insights and predictions are visualized through an online dashboard, enabling continuous
comparison between the physical and virtual systems.
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prioritize feasibility over sustainability. Consequently, while CAR
tools mark a significant step forward, their practical use in
pharmaceutical manufacturing relies, at least for the present, on
expert oversight to ensure safe and sustainable outcomes.

To continue advancing towards reliable and autonomous
machine learning models in synthesis planning and beyond,

the incorporation of domain-specific knowledge is essential to
ensure process stability, efficiency, and regulatory compliance.149–152

Combining advanced PATs with physical processes can address
challenges like data scarcity, scalability, and interpretability.153–155

For instance, a hybrid method improved control in continuous
dry granulation by coupling a first-principles roll compaction

Fig. 6 AI-enabled strategies for modern process development. (a) Hierarchical overview of synthetic API process development, from route mapping and
narrowing to scouting, selection, and subsequent process optimization. Green highlights indicate opportunities where AI-driven tools can enhance
decision making, accelerate route design, and improve starting points for future projects. (b) Illustration of a digitalized process-development workflow,
showing how sensor data, automated control, and cloud-based AI systems integrate to optimize operations and support manufacturing decisions.
(c) Conceptual data and knowledge framework for Process Intensification 4.0, linking structural, operational, and digital domains to energy, space, data,
and time efficiency. Reproduced from ref. 124, with permission from the American Chemical Society, copyright 2009.

Fig. 7 Summary of the main categories of machine learning models, i.e., supervised, semi-supervised, reinforcement, and unsupervised learning,
organized by the type of input/target variables and typical tasks (classification, regression, clustering, value estimation, or policy learning).
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model with an NN-based ribbon milling model with partial least
square regression for real-time PAT measurements.156 Other
advantages of these hybrid models are a broader knowledge base,
greater transparency in the modelling process, and cost-effective
model development.157,158 However, successful dataset integration
to conventional ML models requires thorough data pre-processing,
including noise reduction, normalization, and feature selection.

To address this limitation, deep learning (DL), a transfor-
mative subset of ML, can be deployed. DL enables hierarchical
learning from complex, high-dimensional datasets by automa-
tically extracting features from raw data. Consequently, it can
uncover intricate patterns standard ML might overlook.159 For
instance, Krumme et al. applied a DL neural network to
monitor a wet granulation line in solid dosage production.160

The model approach managed seven critical process parameters
(e.g., API mass flow, liquid feed rate, dryer conditions) and
tracked eight quality attributes, such as API content, particle
size distribution, and loss on drying. Utilizing near-infrared
spectroscopy, the model achieved a calibration error of less than
10%, demonstrating precise monitoring and control of complex
and noisy pharmaceutical formulation datasets.64,161

Furthermore, due to DL’s capacity to automatically extract
features without explicit engineering, it outperforms other ML
algorithms in prediction accuracy.162 For instance, convolu-
tional neural networks (CNNs) excel in image analysis (segmen-
tation, classification, and object detection) by extracting both
high- and low-level features from modern in situ imaging
probes.163–166 These architectures comprise of specialized
layers for (a) feature extraction, (b) pooling for dimensionality
reduction and (c) fully connected layers for classification or
prediction. However, training CNNs is resource-intensive so
models like AlexNet, GoogLeNet, and ResNet with 8, 22, and
152 layers, respectively are based on existing knowledge to
minimize data and computational demands.

Recurrent neural networks (RNN) represent another power-
ful class of DL networks designed for sequential or time-series
tasks including optimization167 and process control.168,169 In
contrast with the traditional feedforward NNs, RNNs feature
feedback loops that provide memory-like behavior, effectively
modelling temporal dependencies.

Likewise, Farkas and colleagues employed advanced RNN
variants (NARX and LRNN) to build a digital twin for low-
dosage continuous powder blending.137 The digital twin com-
prised of three key components: NN models to represent the
blending process, PAT monitoring for data collection and PLS
regression for data processing. By exploiting this digital twin,
they thoroughly defined the blending process design space,
enhancing process understanding and optimization. Notably,
the NARX model was comparable to residence time distribution
models in terms of accuracy and reliability, illustrating how
deep learning techniques can match or outperform traditional
soft sensing models when handling complex, high-dimensional
data.170,171

Recent ML advances have introduced statistical approaches
like Bayesian inference.172 These frameworks quantify how fail-
ure scenarios affect critical product attributes by: (a) assessing

failure probability and severity, (b) modelling probabilistic para-
meter distributions, (c) accounting for mean values, and (d)
addressing uncertainties arising from limited sampling.141,173

Consequently, the models adeptly balance critical product qual-
ity attributes with manufacturing cost, yield, and throughput
objectives. For example, Treitler and colleagues applied Bayesian
modelling to predict failure rates in drug manufacturing eluci-
dating probabilistic impurity distributions with respect to pre-
defined acceptance criteria.150

Similarly, Bayesian Neural Networks (BNNs) extend ML and
DL capabilities by addressing uncertainty quantification.152 By
representing probability distributions over weights, BNNs capture
both aleatoric (data-driven) and epistemic (model-driven) uncer-
tainties, enabling more robust decision-making.154 Building on
this concept, Bayesian Recurrent Neural Networks (BRNNs) fuse
the modelling abilities of RNNs with Bayesian inference enabling
a probabilistic approach to input–output mapping. Unlike tradi-
tional RNNs, BRNNs assign probability distributions to para-
meters, thereby quantifying both types of uncertainty. This
probabilistic modelling improves decision accuracy, mitigates
risks, and increases confidence in predictions.153

Importantly, ‘‘confidence’’, or more precisely the lack of
transparency, is a major issue with AI and ML models as their
decision-making process is often opaque. Explainable Artificial
Intelligence (XAI) seeks to address this shortcoming by employing
surrogate models, sensitivity analyses, and visualization tools, that
clarify how input variables influence outcomes,155,156,174 and these
methods have been also widely applied in industry.130,175–177

Though XAI is still an emerging field,178 its synergy with advanced
AI techniques promises to make ML approaches both trustworthy
and compliant with industry standards.

Beyond industrial settings, AI has also fueled substantial
automation of academic laboratory workflows. The Ley group,
for instance, created a cloud-based system that interconnects any
laboratory setup via TCP/IP protocols, delivering real-time data
collection and storage that streamline experimentation.64,179

Security challenges associated with the online nature of the
platform are mitigated by strictly controlled departmental net-
work access, user authentication, and IT safeguards. LabMate.ML,
developed by Rodrigues and co-workers, exemplifies a self-
evolving AI engine.180 Employing adaptive random forest models,
LabMate.ML identifies optimal reaction parameters with minimal
initial data requirements. OpenFlowChem161 and Rxn Rover181

are alternative open-source platforms.
While LabMate.ML was an important early demonstration of

a self-evolving AI engine using adaptive random forests, it did
not gain widespread adoption. Similarly, platforms like Open-
FlowChem and Rxn Rover laid the groundwork for networked
lab automation, but the field has since evolved towards more
democratized, robust systems under the banner of ‘‘self-driving
laboratories’’. In this context, the work by Doyle and co-workers
represents a significant advance in data-driven reaction opti-
mization by introducing a robust, generalizable framework for
Bayesian optimization in chemical synthesis.182 Unlike earlier
tools such as LabMate.ML, which focused on model-free learn-
ing with limited uptake in the community, this work builds on
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widely accepted Gaussian process models and open-source,
user-friendly software (EDBO), enabling broad applicability
across both batch and flow systems. The study also emphasizes
Active Learning, now an established paradigm in iterative
chemical optimization, by dynamically balancing exploration
and exploitation across high-dimensional reaction spaces.183

This methodological rigor and real-world applicability go
beyond earlier demonstrations, positioning Bayesian optimiza-
tion as a cornerstone of modern computer-assisted synthesis.184

As a follow up study, Panayides et al. presents a significant
advance in the integration of open-source digital infrastructures
for autonomous reaction optimization in flow chemistry.185

Using Node-RED, the authors developed a cost-effective and
highly customizable dashboard for control and automation of
flow reactors, integrated with Summit, a Python-based machine
learning library, to execute closed-loop Bayesian optimization of
an allylation reaction. This work importantly lowered the barrier
to entry by decoupling from proprietary software and demon-
strating seamless interconnection between hardware, analytics
(HPLC), and ML-based decision-making. Overall, it is now well
acknowledged that the shift towards Gaussian process-based
approaches is a more standardized framework in the field.
Today’s ‘‘self-driving labs’’ combine integrated robotics, inline
analytics, and active-learning optimization strategies with
community-supported tools. These developments signal a tran-
sition from isolated academic demonstrators to robust,

transferable technologies capable of transforming chemical discov-
ery across academia and industry.185 Recent reviews have provided
comprehensive overviews of the rapidly evolving field of machine
learning-guided chemical synthesis and optimization. For readers
seeking a broader context and deeper insight into the integration
of Bayesian optimization, active learning, and self-driving labora-
tories, we refer to these more extensive discussions.98,186–188

It is worth noting that despite the tremendous advantages of
mathematical models, building predictive and reliable models
for both single processes and plants in the pharmaceutical and
agrochemical sectors is often a laborious and challenging
endeavor. Typically, large sets of experimental data are required
for parameter estimations or model training. This translates
into large sets of experiments or repeated experimental cam-
paigns at different scales based on trial-and-error methodolo-
gies or complex design of experiments such as factorial and
Box-Behnken designs. To address these challenges, high-
throughput screening (HTS) methodologies have been increas-
ingly employed. Despite their advantages, conventional HTS
approaches frequently encounter limitations, including opera-
tional costs, substantial labor demands and occasionally low
success rates, restricting broader adoption, not to mention
consideration of green principles.189 Consequently, building
reliable models may be cost prohibitive in terms of resources,
labor, and environmental footprint. This highlights the urgent
need for greener and more effective design of experiments.

Fig. 8 Overview of the MBDoE framework combining experiment design, data collection, parameter estimation, and iterative evaluation of estimation
quality (top). The lower panel illustrates the complementary cycle, where candidate models are proposed, tested, and compared through targeted
experiments.

Review Article Chem Soc Rev

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
4/

20
26

 1
1:

20
:0

0 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cs00930h


This journal is © The Royal Society of Chemistry 2026 Chem. Soc. Rev., 2026, 55, 675–713 |  689

Model-Based Design of Experiments (MBDoE) may overcome
some of these challenges by identifying reduced sets of optimal
experimental campaigns that specifically minimize uncertain-
ties of a selected mathematical model or DT (Fig. 8).190 MBDOE
has notably curtailed experimental effort in automated flow
reactors,191,192 crystallization,193,194 freeze-drying195 and other
unit operations. For example, Van Hauwermeiren et al.
reported a 72% reduction in both experimental time and
material use, which are crucial factor for scarce and costly
APIs.196 Similarly, MBDoE decreased experimental efforts by
70% during tablet lubrication for direct compression.197 How-
ever, the benefits of MBDoE may be significantly affected and
often limited by the quality of the selected model, parameter
correlations, and poor data information content. Recently, a
new method was proposed to address these shortcomings by
combining (a) systematic model selection and discrimination,
(b) evaluation of the data information content based on the
estimability approach, also known as practical identifiability,
and (c) MBDoE.194 This approach successfully built the most
reliable model amongst a set of possible candidates, reduced
model uncertainties and parameter correlations, and, most
importantly, reduced the number of required experiments from
8 (or more) to 2 based on factorial designs. As a side note,
MBDoE can be designed to address multiple objectives and
identify the most realistic trade-offs or compromises, be it cost,
model quality, or environmental emissions, a process known as
multi-objective optimization (MOO).198

2.3. Towards autonomous production

2.3.1. Role of real-time optimization and self-optimization.
A pivotal aspect of chemical manufacturing is process optimiza-
tion, whereby operating and design parameters are systematically

adjusted to maximize positive outcomes (e.g., product quality,
energy efficiency) and minimize undesirable factors like cost,
emissions, and waste. To avoid the resource intensive nature of
trial-and-error experimentation, this optimization is frequently
conducted in silico via advanced methods like nonlinear program-
ming and mixed-integer nonlinear programming (Fig. 9).199,200 In
the pharmaceutical sector these models find application in API
development to optimize yield and material demand,201,202 pro-
cess optimization for drug product manufacturing,203,204 and
managing process uncertainty114,200 amongst others. In addition,
these methods can assess techno-economic objectives, including
capital and operational expenditures,107,112,205,206 life-cycle
assessment,86,112,207 waste-to-product ratio (E-factor),208,209 and
other green metrics.210,211

With the increased need for smart plug-and-play processes
that require minimum supervision, a new class of real time
optimization strategies known as self-optimization has
emerged. This strategy leverages real-time data and advanced
algorithms to dynamically adjust and improve processes auton-
omously (without operator intervention).

As practices shift towards continuous manufacturing, auto-
mation is a subject of considerable interest. Automated opti-
mization platforms typically consist of flow reactors, PAT
instruments (Section 2.1), and self-optimization algorithms
that iteratively propose and test alternative reaction conditions
(Fig. 10). These adaptive algorithms provide real-time, multi-
variate, and multi-objective optimizations, at a fraction of the
cost and time.82,212,213 By eliminating the need for repeated
intervention and reactive corrections, they enable more resili-
ent operation and self-adaptive manufacturing.

It is worth noting that some of the traditional optimization
algorithms can be adapted to self-optimization environments

Fig. 9 Overview of a closed-loop self-optimization cycle integrating algorithmic decision making, automated experimentation, real-time PAT analysis,
and result evaluation. Optimization algorithms propose new conditions, which are executed across various reactor types. Inline PAT tools provide real-
time data for performance assessment, enabling continuous refinement of experimental conditions toward the desired target.
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by incorporating shifting response surfaces. As an illustrative
example, Lapkin and co-workers proposed a methodology that
combines MBDoE with self-optimization for the C–H activated
continuous-flow synthesis of aziridines, rapidly generating
reliable process models under minimal experimental workload
to meet cost, productivity and sustainability goals.214 Earlier,
Reizman and Jensen used feedback DoE to optimize the
alkylation of 1,2-diaminocyclohexane, iteratively refining a
linear response surface model for multiple solvents and ulti-
mately narrowing them from 10 to 1 in just 67 experiments.215

Beyond improving synthetic processes, the effective identifi-
cation of steady-state conditions via real-time optimization and

self-optimization strategies enables shorter yet data-rich sequential
experiments. This approach significantly enhances data collection
efficiency and accelerates process development. Girard and co-
workers exemplified this advantage in their study on the self-
optimization of continuous crystallization of Nirmatrelvir, the
antiviral component of a COVID-19 treatment (Paxlovid). Employ-
ing mixed-integer self-optimization algorithms coupled in con-
junction with iterative DoE, the experiments were strategically
grouped based on similar temperature conditions. This strategy
effectively minimized equilibration times between achievable
steady state conditions, ensuring lower energy consumption,
reduced material waste, and improved process efficiency.216

Two classes of algorithms are popular in the context of self-
optimization, namely: local optimizers applied within a con-
fined experimental region (e.g., Nelder-Mead simplex217,218)
and global optimizers across the entire reaction space (i.e.,
Stable Noisy Optimization by Branch and Fit (SNOBFIT),219

Bayesian optimization182).
Global optimizers manage experimental noise more effec-

tively than local methods. For example, SNOBFIT autono-
mously optimized 4 parameters in a telescoped amide
coupling followed by an elimination reaction for the synthesis
of Osimertinib, a lung cancer treatment.65 The optimization
was complete in just 42 experiments over 26 h. The algorithm can
also achieve purity and yield improvements in multi-step
reactions.220–222 SNOBFIT was recently employed in high-
throughput design-make-test-analyse (DMTA) platforms to com-
plete approximately B900 reactions in 192 h for combinatorial
library synthesis and at-line reaction analysis of bioactive com-
pounds. Notably, reactant and solvent usage was reduced by 90%
compared to fully continuous alternatives (Fig. 10).223 Moreover,
the algorithms capabilities extend beyond reaction optimization,
enabling the refinement of manufacturing aspects such as the
reaction-extraction phase in multistep processes.224

BO offers an alternative global strategy by iteratively build-
ing a surrogate model and acquisition function from existing
data, then refining predictions through targeted experimental
tests.96,97,225,226 This excels at tackling complex problems with
limited function evaluations and can manage experiment par-
allelization. A recent example applied BO to the continuous-
flow optimization of the Buchwald–Hartwig synthesis of pyr-
idinylbenzamide, a pharmaceutical intermediate. Two separate
optimizations were carried out: one seeded with 14 prior data
points and another with only 5. Both converged to the same
optimal conditions (79% yield), but the smaller prior dataset
required 27.6% fewer experiments overall (21 vs. 29 experi-
ments). This counterintuitive result highlights a critical point:
more prior data does not necessarily translate into greater
efficiency, and careful selection of initial data points can be
as important as the optimization algorithm itself.227

To enhance the initial sampling process, Latin hypercube
sampling (LHS) is often applied, generating a diverse and
representative set of starting points, that comprehensively
covers the parameter space with fewer experiments. For exam-
ple, BO with an adaptive expected improvement (BOAEI) algo-
rithm optimized the oxidation of four organic sulfides to

Fig. 10 Combinatorial library synthesis using SNOBFIT for self-optimization.
(a) Conceptual overview of the stopped-flow reaction system used for rapid
combinatorial screening, enabling controlled mixing of multiple reagents and
integration with inline analytical tools (NIR, HPLC-MS, Prep-LC). (b) Schematic
of the automated platform, including reagent preparation, sequential injec-
tion, reaction under high-pressure/temperature conditions, and real-time
analysis within a closed-loop SNOBFIT optimization workflow. (c) Heatmap
representation of the resulting amide library, generated from the combina-
torial reaction of five carboxylic acids with five amines using four coupling
agents across nine reaction conditions (900 total reactions), illustrating
reactivity patterns and optimal conditions discovered by the self-
optimization algorithm. Reproduced from ref. 223, with permission from
the Royal Society of Chemistry, copyright 2022.
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sulfoxides using hydrogen peroxide and phosphotungstic acid
as a catalyst, across four continuous parameters.207 Process
evaluation identified optimal conditions in under 25 experi-
ments and 24 h, yielding up to 25% more yield than conven-
tional one-point screening, for each substrate. Similarly, the
BOAEI algorithm optimized the telescoped synthesis of an aryl
ketone precursor for 1-Methyltetrahydroisoquinoline, reaching
an 81% yield in just 13 experiments within 14 h.86 The
integration of multipoint sampling provided detailed reaction
profiles, ensuring a comprehensive understanding of each step
and streamlining global optimization for multistep syntheses.

BO can also be connected to other optimizers in order to
expedite response-surface mapping and pinpoint global
optima228 and by using Kernel Density Estimation for catego-
rical data, further reduce experimental needs.229,230 Similarly,
Experimental Design via BO techniques like density functional
theory encoding, Gaussian process surrogate modelling, and
expected improvement acquisition are combined to reduce experi-
mental load.182 Finally, incorporating Kernel Density Estimation
for data smoothing enables BO to optimize categorical variables
without converting them into continuous forms.230,231

Other classes of ML techniques have been effectively
employed in self-optimization, leveraging advanced algorithms
to further reduce experimental effort and enhance decision-
making in dynamic environments. For example, Zare and co-
workers combined a long short-term memory model with deep
reinforcement learning (DRL) to self-optimize four two-
component microdroplet reactions by iteratively identifying
optimal flow rates, voltage, and pressure, achieving optimal
results in fewer steps than customary optimization routines.167

Additionally, the deployment of DRL agents based on deep
deterministic policy gradient proved effective as a self-
optimization strategy for flow chemistry.232

Regardless of whether they consider the partial or entire
reaction space, self-optimization protocols can refine a single
performance metric at a time (e.g., single objective optimiza-
tion). For example, Felpin’s group refined multiple single-
objective reactions through tailored experiments,233 while
deMello’s group employed constrained optimization to balance
trade-offs and identify a global optimum.234 However, these
methods often struggle to address conflicting criteria such as
cost minimization and environmental performance.235,236

Multi-Objective Optimization (MOO) algorithms are designed to
find the Pareto front, which captures a set of possible compro-
mises between conflicting or competing criteria. Established
methods like NSGA-II can accurately approximate the front, but
often require substantial computation and expertise to operate,
making them unsuitable for self-optimizing platforms.

In contrast, Thomson sampling efficient multi-objective (TS-
EMO), a machine learning based approach is purpose-built for
global MOO scenarios, where function evaluations are inherently
costly. It was reported that TS-EMO can cut experimental require-
ments by 50% relative to standard single-objective algorithms,
fostering dynamic data re-evaluation and active learning.224 More-
over, this method was successfully applied to optimize a Sonoga-
shira synthesis of Lanabecestat (AZD3293), achieving optimal

conditions within just 13 h.224 This eliminated the need for
additional experiments when downstream work-up specifications
changed, significantly reducing the consumption of high-value
catalytic reagents during process development. In the same study,
TS-EMO identified 18 Pareto-optimal solutions in a 65-h, 109-
experiment multi-step Claisen-Schmidt condensation and separa-
tion process, optimizing key objectives such as purity, space–time
yield, and reaction mass efficiency.224 Moreover, it converged on
the Pareto front within 68 and 78 experiments, respectively, when
optimizing space-time yield and E-factor of SNAr and N-
benzylation reactions.237 TS-EMO also adeptly tackled both dis-
crete (solvent, ligand) and continuous (temperature, residence
time, concentration) variables, autonomously optimizing SNAr
and Sonogashira reactions in 18 and 22 h, despite the challenges
posed by localized low space-time yields.238

To predict and gauge the performance of these autonomous
approaches, in-silico benchmarking tools like SUMMIT and
OLYMPUS are commonly utilised. SUMMIT assesses an array
of algorithms to streamline industrial reaction steps, substan-
tially cutting down on experimental overheads.239 OLYMPUS
furthers this by considering experimental noise, constructing
response surfaces for different scenarios and examining multiple
algorithms in real-time (Fig. 11).240 Applying Olympus, the Bourne
group benchmarked multiple MOO algorithms, including TS-
EMO, ParEGO, EIM-EGO, NSGA-II, and BS-TESMO to pinpoint
optimal Sonogashira conditions with fewer experiments. Such
tools augment and reduce resource consumption, yielding more
sustainable manufacturing.241

2.3.2. Role of process and plant wide control. Beyond
optimization, mathematical models can deliver sustainable, robust,
and viable options to control common unit operations of the
pharmaceutical and agrochemical sectors such as crystallization,
drying, thin-film processing, granulation, and compaction,242–248

by managing input materials, monitoring critical parameters, and
continuously assessing critical product attributes.40 However, most
research addresses these unit operations in isolation. While target-
ing localized production bottlenecks may be cost-effective, it raises
overall development expenses and resource use.

Achieving environmental and operational excellence
demands a holistic and hierarchical plant-wide control strategy
which can effectively reconcile optimization and stabilization
requirements at different segments of the plant (Fig. 12a).53,249

This may include combining reaction-purification and upstream
and downstream operations. By integrating such an advanced
control and optimization framework, operational disturbances
like product quality deviations can be promptly resolved250 and
environmental footprints, production times, and operational
costs can be reduced relative to batch processes in real-time.251,252

A common approach for plant-wide control involves PID
controllers.53,244,253 These feedforward networks perform ade-
quately, but often struggle with prolonged dead times, necessitat-
ing extensive detuning to maintain stability. Model Predictive
Control (MPC)252,254–258 and hybrid MPC-PID controllers256,259,260

offer stronger performance and flexibility.203–205 For example, MPC
surpasses PID in controlling the outlet mass flow of feeders and
blenders grappling with mass flow disturbances.261,262
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Recent dynamic plant-wide models incorporate mass and
energy balances, population balance equations, thermody-
namics, and unit correlations (Fig. 12b). Some archetypical
systems contain over 10 000 differential and 2000 algebraic
equations.55,263,264 At the Novartis-MIT Center for Continuous
Manufacturing, Barton and co-workers developed a hierarchi-
cal plant-wide control structure, that uses dynamic models for
parametric sensitivities in control loops, accurately predicting
system behavior during start-up and shutdown.100,249 In this
same end-to-end system, an MPC strategy with the quadratic
dynamic matrix control (QDMC) algorithm efficiently managed
plant-wide dynamics.258,265 QDMC’s computational efficiency
and independence from system dimensionality make it suitable
for real-time oversight of high-dimensional processes. To over-
come this challenge, Stochastic MPC factors in the probabilistic
distribution of uncertain parameters, offering greater flexibility
than traditional worst-case MPC. A novel fast SMPC algorithm
unites the input-output framework of QDMC with generalized

Polynomial Chaos (gPC) theory for efficient uncertainty propa-
gation and improved control.265 Meanwhile, Multivariate
Statistical Process Control (MSPC) enables simultaneous mon-
itoring and optimization of interconnected variables, though it
cannot directly regulate processes.266,267

Importantly, successful plant-wide control hinges on real-
time process data to identify trends, pinpoint correlations, and
detect faults, transforming raw information into actionable
insights. Thus, integration of in-process control tests (e.g.,
weight, hardness), PAT tools (e.g., Infrared Spectroscopy) and
univariate/multivariate data analytics are essential to reinforce
control strategies in continuous manufacturing.160

As a final point to consider, startup and shutdown opera-
tions in continuous manufacturing plants can generate sub-
stantial waste due to dynamic transitions and inherent
deviations from steady state performance and targeted quality
attributes.55 Startup may require several residence times before
steady-state conditions (e.g., flowrate, temperature) are

Fig. 11 Overview and benchmarking of the OLYMPUS platform for experiment planning. (a) Structure of the OLYMPUS framework, highlighting its four
core modules, i.e., planners, surfaces, emulators, and datasets. Each module supports experiment planning through optimization tools, analytical
benchmark surfaces, probabilistic emulators, and curated experimental datasets. (b) Parity plots comparing experimentally measured versus emulator-
predicted outcomes for representative reactions, including alkoxylation, benzylation, SNAr, and Suzuki couplings. High correlation coefficients
demonstrate the accuracy of OLYMPUS emulators in reproducing experimental behavior. (c) Example performance curves for random-search
optimization across different reaction surfaces (alkoxylation, benzylation, SNAr, and Suzuki coupling). The plots show how impurity or yield metrics
evolve with increasing numbers of evaluations, illustrating the benchmarking capabilities of OLYMPUS for assessing optimization strategies. Reproduced
from ref. 240, with permission from IoP Science, copyright 2021.
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achieved leading to significant waste. Similarly, shutdown
operations often leave behind considerable residual material,
further contributing to environmental burdens. Recently, several
model-based optimal control alternatives of a multistage contin-
uous crystallizer were developed and benchmarked showing a
reduction of startup time and waste by up to 80%.268 Similarly,
novel optimal shutdown strategies have been effective in convert-
ing nearly 80% of the residual material into on spec product.269

2.4. A case study on sustainability: the role of continuous
purification

Purification is among the most resource- and waste-intensive
stages in the downstream processing of pharmaceuticals and
agrochemicals given its high solvent consumption and environ-
mental impact. The most employed purification techniques
include crystallization, chromatography, membrane separation
and liquid–liquid extractions. Despite the broader move towards
continuous processes, batch separations remain the norm, largely
due to relatively low initial investment and operational
versatility.112,270 The latter is especially important in the pharma-
ceutical sector, where a diverse drug portfolio demands an equally
varied range of purification techniques. However, batch methods
often entail prolonged processing times, batch-to-batch
variability,27 and inefficient impurity removal, which collectively
drive up solvent usage. The extent of resource consumption as
well as their process efficiency depends on the specific batch
method, as reflected in their PMI values (Fig. 13a). Batch crystal-
lization (PMI 100-210) provides precise purity and particle-size
control and resists clogging, but suffers from batch-to-batch
variability.33,271–273 Batch chromatography (PMI 170-310) excels
in enantiomeric purification but is affected by limited throughput
and high resin costs stemming from inefficient utilization of the
stationary phase.274–277 Membrane-based batch purification (PMI
240-660) effectively processes larger molecules (4500 g mol�1),
but requires high solvent volumes and frequent membrane
replacement.278–280 Lastly, liquid–liquid extraction (LLE) benefits

from mild conditions, but has substantial space and energy
requirements alongside disproportionately large PMI values (up to
3200).281–283

Over the past two decades, continuous purification has gained
traction, driven by the desire for better product consistency, shorter
lead times, and lower PMI7,282 with much research and develop-
ment now focused on chiral pharmaceutical separations.284 Beyond
higher throughput and reduced contamination risk, continuous
purification methods fit smoothly into end-to-end manufacturing,
eliminating offline bottlenecks and human intervention, features
particularly beneficial for reactive or unstable intermediates.285

They are particularly suited for multistep continuous-flow synth-
esis, a topic explored in greater detail at Part 1: Synthetic Frontiers,
where inline purification techniques (i.e., phase separation, immo-
bilized reagents, and nanofiltration) not only reduce solvent use
and manual handling but also enable seamless integration of
complex transformations.286,287 This positions continuous purifica-
tion as a key enabler of autonomous manufacturing and, by
extension, Industry 4.0. This section thus explores the operational
and environmental benefits of continuous purification, demon-
strating how smart manufacturing principles of real-time analytics
and advanced process control can transform the purification
process.

2.4.1. Integration of inline crystallization process. Crystal-
lization represents a key purification and isolation step that
bridges API synthesis with drug formulation. Indeed, over 90%
of commercial APIs undergo at least one during their manu-
facturing process (Fig. 13b).288 The bulk of these crystallizations
are performed in stirred batch reactors which often exhibit limited
control over nonlinear crystallization kinetics, resulting in batch-
to-batch variability.272 In contrast, continuous crystallization pro-
cesses, characterized by operation under steady-state conditions,
enable precise control of the supersaturation profile. This
enhanced process stability contributes significantly to improved
product consistency and quality compared to conventional batch
methods.289,290 Economically, continuous crystallization also

Fig. 12 (a) Flowsheet of a fully integrated continuous pharmaceutical pilot plant, illustrating upstream synthesis, liquid-liquid extraction, crystallization,
solid handling, extrusion, and tablet coating operations. The diagram highlights the interconnected unit operations and sequential processing required to
convert raw materials into coated tablets. (b) Plant-wide mass flow diagram showing the major input and output streams, including solvents, reagents,
excipients, product, and waste. This schematic emphasizes how material flows are distributed across the pilot plant and supports holistic process
monitoring and optimization. Reproduced from ref. 249, with permission from the American Chemical Society, copyright 2012.
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presents substantial advantages, offering potential manufacturing
cost reductions of up to 40% relative to batch processing.291

A prominent continuous crystallization technique is the
Mixed Suspension Mixed Product Removal (MSMPR) crystallizer,
where a well-mixed crystal slurry is continuously withdrawn while
fresh supersaturated feed is introduced, maintaining near-constant
operating conditions.292 It is important to note, that although
referred to as continuous, these units often feature prolonged
residence times under controlled stirring rather than a strictly
continuous feed and discharge.293 The technique is scalable and
offers reduced operational costs, while inherent limitations, such
as low per-stage yield or clogging, can be mitigated through process
modeling and cascade configurations.294

In a recent study, Mazzotti and co-workers investigated the
continuous crystallization of L-glutamic acid (LGA), an amino
acid precursor of neurotransmitter glutamate.295 LGA exists in
two polymorphic forms, the metastable aLGA and the thermo-
dynamically stable bLGA, each with distinct solubility and
handling characteristics. Conventional batch approaches

struggle with polymorphic control with aLGA dissolving and
reprecipitating as bLGA. Additionally, the strong tendency of
aLGA to agglomerate causes poor suspension stability and
clogging.

To address these issues, single and two-stage (cascade)
MSMPR crystallizers were tested. The cascade configuration
outperformed the batch operation, yielding up to 73% bLGA at
4.4 kg m�3 h�1 with a PMI of 200. When solvent recovery was
implemented, it was further reduced to 5.7. The cascade
sequence also displayed 55% higher yields compared to the
single MSMPR. To effectively monitor the continuous process,
various PAT tools were considered. Their suitability was deter-
mined by using tp/ta as an assessment metric, where tp is
process duration and ta is analyzer time. When tp/ta o 1, the
PAT tool is unsuitable as the analysis time exceeds the process
time, preventing timely intervention. Both Raman (tp/ta E 10)
and UV-vis spectroscopy (tp/ta 4 10) accurately distinguished
between aLGA and bLGA thus facilitating stable continuous
operation.296

Fig. 13 Comparison of batch and continuous purification techniques and their impact on PMI. (a) PMI ranges for common purification operations, with
the general improvements associated with continuous processing relative to batch. (b) Schematic comparison of batch versus continuous crystallization,
illustrating differences in slurry handling and product withdrawal. (c) Batch chromatography with fraction collection contrasted with multi-zone
continuous chromatography, enabling steady-state separation and improved solvent efficiency. (d) Batch membrane filtration compared with a
continuous membrane system that maintains constant permeate and retentate flow. (e) Batch liquid-liquid extraction versus a continuous counter-
current extraction setup, enabling enhanced mass transfer and reduced solvent use.
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Seidel-Morgenstern and colleagues demonstrated similar
advantages by implementing enantiomeric preferential crystal-
lization (PC) for L-threonine, an essential amino acid common in
dietary supplements. Batch crystallization of a mixture of D-/L-
threonine in water tends to co-crystallize the undesired counter-
enantiomer. Two alternative setups were explored to alleviate this
issue: a single gram-scale MSMPR unit and a coupled pair
featuring liquid-phase exchange.297 After excluding startup
phases, the study tested four scenarios at various temperatures
and residence times. At 38 1C and t = 46.5 min, the coupled
MSMPR system doubled productivity to 6.3 g h�1 L�1 while
maintaining 499% enantiomeric purity. Additionally, its PMI fell
to 4.1 from a batch benchmark of 7.3. This drop was largely
attributed to the lower solvent consumption enabled by continu-
ously exchanging liquid phases between the two MSMPR cham-
bers. Notably, the coupled configuration reduced process
interruptions, bolstering steady-state operation.

2.4.2. Continuous purification via chromatography.
Industrial-scale continuous purification of APIs has likewise
been advanced through simulated moving bed (SMB) chroma-
tography, widely employed for chiral separations. SMB is a
multi-column system that periodically switches inlet and outlet
streams to simulate countercurrent flow between the solid
adsorbent and the mobile phase (Fig. 13c).298 Although SMB
outperforms batch chromatography in terms of productivity,
solvent consumption (i.e., up to 2.5 times lower),299 and raw
material use, its multi-zone configuration complicates design
and optimization.300,301

As an illustrative example, Pais et al. implemented a pilot-
scale inline SMB system to separate four stereoisomers of
nadolol, a nonselective b-blocker for hypertension and angina
pectoris.302 Optimizing solvent composition through advanced
simulation tools proved crucial in balancing separation effi-
ciency, throughput, and solvent use. Switching from pure
methanol which yielded 0.33 g L�1 h�1 at a 26.1 L g�1 solvent
consumption to a mixture of methanol/acetonitrile/diethyla-
mine (25/75/0.1, v/v/v), increased productivity by 133% and cut
solvent consumption by 63%. This improvement was reflected
in a PMI of 9.62, in stark contrast to typical batch values of 100–
210. Importantly, the target stereoisomer was recovered with
100% purity.

Crucial to optimizing the separation efficiency of the system
was the integration of inline and real-time PAT. UV-vis and NIR
spectroscopy (estimated tp/ta E 103) monitored concentration
profiles, ensuring high purity without offline HPLC delays.
Mass spectrometry (estimated tp/ta E 102–103) tracked solvent
composition to prevent adsorption equilibrium shifts. This
data on critical process parameters was integrated into a feed-
back control system to maintain optimal separation efficiency
and system performance.

Beyond PAT, process control techniques such as MPC are
integral to continuous purification, and especially SMB chro-
matography, due to the system’s inherent nonlinearity and
multi-zone complexity. The advent of AI and ML is bound to
increase MPC efficiency as highlighted in Section 2.2. For
instance, Chang-Ha et al. developed a ML dynamic model to

optimize the commercial-scale SMB separation of C10–C14

n-paraffins from kerosene, which are vital feedstocks for deter-
gents, plasticizers, and solvents.303

The existing industrial process used zeolite 5A with n-
pentane at 177 1C and 24 bar to ensure sufficient diffusion,
optimized using a conventional dynamic model. However,
limited data and the nonlinear behavior of adsorption, com-
bined with complex flow and feed interactions, challenged the
model. Its reliance on simplified assumptions (ideal plug flow,
constant velocity, uniform particles) failed to capture real fluid
dynamics, pressure changes, and mass transfer limits.

To overcome these limitations, an ML approach was imple-
mented using real industrial data to enhance predictive accu-
racy and optimize impurity removal. Initially, several ML
algorithms, including random forest, ANN and DNN were
evaluated to identify the most suitable for the process in
question. Among these, random forest emerged as the most
effective, offering the highest predictive accuracy when hand-
ling high-variance data, particularly for forecasting aromatic
content in n-paraffin products. Despite its high accuracy, it is
worth noting that the random forest decision-making process is
non-transparent (black box), a major limitation in the highly
regulated pharmaceutical sector. Explainable Artificial Intelli-
gence analysis promises to address this issue as discussed in
Section 2.2. While no dedicated PAT instrument was present,
key parameters such as p-xylene concentration in the flush zone
were tracked to guide impurity removal. As a result, overall
process performance improved significantly, achieving 99.6%
purity with recovery rates of 95.7% (nC10), 88.9% (nC12), and
81.6% (nC14). The SMB process was also sustainable with a PMI
value of 13.6. These findings underscore the growing synergy
between machine learning algorithms and continuous purifica-
tion strategies.

2.4.3. Implementation of membranes into continuous pur-
ification processes. Crystallization and chromatography are the
most commonly employed processes for industrial-scale con-
tinuous purification, particularly when separating components
with similar properties. Despite their efficacy, both methods
can be relatively complex or suffer from low throughput,
prompting interest in alternatives. Continuous membrane-
based processes generally use less energy, occupy smaller
footprints compared to batch methods, and allow for high
solvent recovery while still delivering up to 95% product yields
(Fig. 13d).304,305

A key membrane-based technique is nanofiltration, which
selectively separates solutes by molecular size, charge, and
hydrophobicity.306 Nanofiltrations are well suited for removing
organic impurities, endotoxins, and multivalent salts during
drug purification. Nevertheless, fouling, suboptimal chemical
resistance, and limited membrane lifespans pose significant
hurdles. In addition, although long-term operating savings may
offset initial investment costs, the high cost of this technique is
a challenge for small-scale applications.307,308

In response, Livingston and colleagues developed a two-stage
nanomembrane cascade to remove genotoxic 4-dimethylamino-
pyridine (DMAP) from roxithromycin, a broad spectrum
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antibiotic.309 The separation system was based on the molecular
weight differences between DMAP and roxithromycin (837 g mol�1

vs. 122 g mol�1). The system was optimized under varying flow
rates and transmembrane pressures (5–30 bar). At pressures above
6 bar, roxithromycin rejection approached 99.2% with only 22%
DMAP rejection. Under optimized conditions, 1 m3 of industrial
stream was purified in 40 h at an estimated 99.4% yield, although
the outlet flow still contained 0.5 kg m�3 DMAP.

From a sustainability standpoint, the process was benchmarked
against five batch and continuous purification scenarios. Single-
stage batch diafiltration exhibited PMI of roughly 1400, mainly due
to excessive solvent use, whereas optimized two-stage batch pro-
cesses, despite full solvent recovery, remained between PMI 200
and 300. By contrast, a continuous two-stage cascade without
solvent recovery reduced PMI below 200, and the same system
with 100% solvent recovery achieved a PMI of 21, reflecting higher
product yields and a smaller environmental footprint.

2.4.4. Hybrid approaches (membrane/liquid–liquid extraction).
To address the challenges of fouling, suboptimal chemical
resistance, and limited lifespans continuous membranes face,
researchers have explored hybrid methods. One promising
approach involves integrating membranes with LLE, a
technique that selectively separates compounds based on their
differential solubility in immiscible liquid phases (Fig. 13e).
Membrane-based LLE systems reduce solvent use and shorten
processing times by employing selective membranes to separate
solutes without direct phase contact.310 However, these methods
typically require fine-tuning of flow rates and solvent compositions,
making them less amenable to drug discovery workflows, large
chemical libraries, or variable solubility profiles. Consequently,
their broader adoption may be hampered by the complexity of
automating multi-solvent, high-throughput processes.

For instance, Alcázar and colleagues developed a membrane-
based continuous LLE process for a fully autonomous, end-to-
end process.311 Their streamlined approach involved generating
organozinc reagents from readily available alkyl halides, prior to
performing Negishi coupling for broad (hetero)aryl halide func-
tionalization. Consequently, 54 target molecules were produced
comprising of a 30-member combinatorial list of indazole deri-
vatives and a 24-compound medicinal chemistry library focused
on mGluR2 NAMs, a promising class of antidepressant
compounds.

Conductivity-based membrane LLE was employed to detect
the interface between the organic (non-conductive) and aqu-
eous (highly conductive) phases, simplifying separation and
avoiding emulsions. A Tecan liquid handler automated the
phase separation, eliminating manual intervention, while
mass-triggered preparative HPLC and LC-MS enabled auto-
mated purification, compound identification, and fraction
collection. Additionally, an automated evaporator removed
solvents during post-purification, and a liquid handling system
reformatted the purified compounds for high-throughput
screening. This fully automated workflow minimized reagent
loss, enhanced reproducibility, and eliminated pre-evaporation
steps, significantly improving overall process performance and
environmental sustainability.

3. Innovative fabrication through 3D
printing

The previous section examined how smart manufacturing
transforms continuous processes through real-time data acqui-
sition, advanced analytics, and AI control systems to minimize
waste and ensure high product quality. All of the examples
focused on mass production. Innovative fabrication techniques
like 3D printing offer a paradigm shift, one that emphasizes
customization, rapid prototyping, and personalized small-scale
manufacturing. Indeed, 3D printing is widely hailed as one of
the 20th century’s most transformative technologies, reshaping
numerous manufacturing sectors. For example, 3D printing
enables the fabrication of lightweight components to improve
fuel efficiency,312 supports product customization without
major cost increases,313 and allows for decentralized produc-
tion due to its compact size,314–320 reducing dependence on
global supply chains.

In contrast to conventional subtractive manufacturing,
where cutting, drilling or milling removes excess material from
a bulk to attain the desired product, 3D printing follows an
additive paradigm, layering materials in sequence along the x,
y, and z axes.321–327 This rich and diverse field, sometimes
termed as additive manufacturing, encompasses several tech-
niques that differ in starting materials, deposition methods,
and resultant product characteristics (see Box 1).321,322

Box 1. Standard steps involved during 3D printing.
All 3D printing approaches share key production stages:328–331

� Conceptualization: creating the initial design using computer-aided software (CAD)
� Conversion: exporting the design to a printer-readable format (commonly .stl), which encodes dimensions, placement and orientation. This step often
involves detecting and correcting errors or resolution loss using specialized software.
� Equipment setup: configuring parameters (movement, speed, temperature) in G-code, the command language of 3D-printers. Although many devices auto-
generate G-code, operators often refine it manually, making this a semi-automated step with significant user input.
� 3D printing: sequentially depositing layers by precise head and build-plate in the xy and z directions. The total print time depends on the chosen technique,
machine capabilities, object size, operational parameters, and resolution.
� Object finishing: removing surplus material or support structures and performing any required post-processing (cleaning, polishing, sanding).
This standardized workflow of 3D printing, from digital design to post-processing, not only ensures reproducibility and customization but also aligns closely
with the principles of greener-by-design process development. In pharmaceutical applications, these advantages translate into smaller footprints, reduced
solvent use, and intensified synthesis or purification steps, paving the way for sustainable, modular, and agile manufacturing systems.
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Each method offers distinct advantages in resolution, mate-
rial compatibility, and cost, topics thoroughly explored else-
where and beyond the scope of this review. Nonetheless, Fig. 14
briefly outlines the 3D printing methods most pertinent to
pharmaceutical manufacturing.

3.1. 3D printing trends

The fine chemical sector is emerging as one of the most
dynamic and swift adopters of 3D printing.333–337 In the context
of chemical production, 3D printing has enabled the design
and fabrication of bespoke components that are difficult or
impossible to achieve through conventional manufacturing tech-
niques, and that can be used to enhance both batch and
continuous processes.338 These include 3D-printed flow reactors
with precisely engineered geometries for tailored residence time
distribution, heat and mass transfer efficiency, and integrated
sensing. Additionally, additive manufacturing has been applied to
create structured catalyst supports, static mixers, and column
packing materials with fine-tuned porosity and surface area. For
example, Cronin and Burke’s work on 3D-printed reactionware
has enabled compact, modular setups for multi-step synthesis,
facilitating process intensification, automation, and integration
with analytical tools.339 Similarly, Pérez-Ramı́rez and co-
workers340 and Kappe and co-workers341 have demonstrated
how metal additive manufacturing could be harnessed for robust
flow hydrogenations involving highly exothermic reactions, offer-
ing superior heat transfer and structural stability. Van
Summeren342 and Zogg and co-workers343 have brought these
innovations into the industrial field, using custom 3D-printed
reactors and inserts to solve scale-up challenges for highly
exothermic reductions and heterogeneous hydrogenations.
Another notable example by CSIRO’s FloWorks underscores the
potential of metal additive manufacturing in catalysis. They
fabricate static mixer scaffolds from robust metals such as

titanium and stainless steel followed by 3D coating with catalytic
metals including Pd and Ni, to enable efficient hydrogenations in
flow.344,345 Compared to polymer 3D prints used in early develop-
ment, metal-based prints like titanium or Inconel better with-
stand industrial conditions through greater thermal conductivity,
solvent resistance, and mechanical durability. These attributes
facilitate strong catalyst adhesion and reactor–catalyst integration,
enabling levels of process intensification that are generally unat-
tainable with polymeric systems.

A very recent and interesting direction is the 3D printing of
catalysts themselves for fine chemical manufacturing. Here,
Vilé and co-workers integrated atomically dispersed catalytic
layers onto 3D-printed static mixers, combining the advantages
of single-atom catalysis with structured flow design for efficient
and selective hydrogenations.346 In a follow-up study, the same
authors developed self-standing, photocatalytically active struc-
tured catalysts via high-resolution photopolymerization, directly
embedding single-atom catalytic functionality into the printed
material.347 This eliminated the need for washcoating, improved
adhesion, and offered a scalable, one-step manufacturing route
for advanced structured catalysts. Thus, 3D printing is redefin-
ing reactor design by blurring the line between reactor and
catalyst to enable compact, high-efficiency catalytic systems.

In terms of applications to formulated products, early research
predominantly used off-the-shelf 3D printing materials to fabri-
cate simple monolithic drug products with rather basic shapes,
often overlooking pharmaceutical quality standards.348–354 How-
ever, the field has swiftly progressed to (a) engineering complex
constructs (e.g., hollow, multi-layer, multi-material), (b) develop-
ing sophisticated release profiles (e.g., prolonged or pulsatile),
(c) targeting diverse administration routes (oral, ocular, auricular,
vaginal)355–362 and (d) targeting the development of temporally
evolving structures (4D printing).357,363 At present, much indus-
trial and academic interest regarding the use of 3D printing

Fig. 14 Additive manufacturing techniques employed in pharmaceutical production. The schemes illustrate four commonly used additive manufactur-
ing modalities: (i) material extrusion, in which molten material is deposited layer-by-layer; (ii) Vat photopolymerization, where a photo-curable resin is
selectively hardened using light; (iii) binder jetting, involving selective deposition of a binding liquid to join powder particles; and (iv) powder bed fusion,
where powder layers are fused by localized thermal energy to build the desired structure. Reproduced from ref. 332, with permission from Wiley,
copyright 2019.
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focuses on personalized medicine.348–351 Personalized medicine is
a medical approach that tailors every treatments phase – from
diagnosis to therapy – to the specific genetic, physiological, or
pathological profiles of individual patients or patient
subgroups.364–366 Specifically, 3D printing is a critical enabler of
personalized medicine through:367–371

� Customized design and composition: this improves
patient adherence through appealing shapes and sizes, plus
tailor-made colors, flavors, and textures.
� Enhanced treatment safety: this enables features like

embedded Braille, aiding identification for patients with
disabilities.
� Precise and personalized drug dosing: this optimizes

therapeutic efficacy by adjusting dosages and drug combina-
tions to individual patient needs.
� Co-formulation of multiple APIs: this incorporates multi-

ple APIs with distinct release kinetics into a single dosage form.
� Complex release patterns: this prevents burst effects,

enables zero-order release in prolonged matrices, and promotes
rapid dissolution of poorly soluble drugs.

Beyond personal medicine, numerous studies have high-
lighted the versatility of 3D printing. A single printer can
fabricate a wide spectrum of dosage forms, including capsules,
tablets, suppositories, vaginal rings, implants and inserts,
accommodating various administration routes.333,370 Moreover,
3D printing extends beyond drug production by enabling the
creation of custom testing devices (e.g., Franz diffusion cells) and
organ-on-a-chip platforms, which are particularly useful in
research settings.372–374 Scientists have also paired 3D printing
with conventional production processes to yield innovative hybrid
methodologies. One example is the production of bilayer tablets
featuring a standard injection-molded prolonged-release layer and
a customizable Fused Deposition Modeling (FDM)-printed
immediate-release layer.375 This hybrid setup permits the admin-
istration of a second customized drug dose or even a different API,
each with its own release kinetics. Another approach merges 2D
inkjet and 3D printing to combat substandard or counterfeit
medicines.376,377 Recent developments further broaden the scope
of 3D printing. 3D Bioprinting combines cells, growth factors,
and other bioactive substances that evolve into tissues or organs
over time,378,379 while 4D printing furnishes objects capable
of changing shape in response to external non mechanical
stimuli.354,357,363,380–382 Concurrently, artificial intelligence is
increasingly being investigated to expedite development by redu-
cing trial-and-error screening.383 The transformative scope and
versatility of 3D printing have drawn major investment across
sectors, with industrial use falling into two main areas: large-scale
production and small-scale, on-demand manufacturing (persona-
lized treatment).

3.2. 3D printing for large-scale manufacturing

The first application of 3D printing in industrial settings has
followed the traditional one-size-fits-all approach mass produc-
tion model (Fig. 15, top).370 As 3D printing is inherently
designed for precision and complexity rather than mass

replication, the technology has undergone significant evolution
to meet the particular needs of mass production.

One notable example is ZipDose, a formulation platform
pioneered by Aprecia using MIT-licensed technology.387,388

ZipDose yields ‘‘powder-like’’ formulations of well-established
APIs and excipients, featuring a highly porous architecture that
rapidly disintegrates in the oral cavity using minimal liquid or
saliva. Even at high API loads, these rapidly dispersing tablets
retain sufficient strength for packaging in crush-resistant cav-
ities possessing a distinct advantage over both freeze-dried and
conventional orally disintegrating tablets. Aprecia’s manufac-
turing process uses standard powder blending and liquid
binder preparations in a specialized 3D printing process.
A key technological leap was separating and immobilizing the
powder and liquid stations while moving the build modules
underneath them in a circular pattern which enabled near-
continuous production in a single facility. Later generations of the
equipment transitioned from a linear design to a circular platform
to further minimize space requirements, while clinically-certified
construction materials, easy cleanability, and integrated process
controls ensured regulatory standards were met. As proof of
concept, Aprecia produced high-dose systems containing 1g of a
cardiometabolic drug. These disintegrated swiftly both in vitro
and in vivo. Their first commercial offering was Spritam, a high
dose levetiracetam product for epilepsy. Albeit Spritam comprised
of an established API and common excipients, the approval
process was complex as it was classified as a new dosage form.
Nonetheless, it was quickly vetted through clinical studies, con-
firming bioequivalence to immediate release levetiracetam in 33
healthy volunteers.

Building on ZipDose, Aprecia has since unveiled ZipCupTM,
an orodispersible system.389 The outer sections are shaped like
nested cups, into which the API formulation is enclosed and
sealed. This design accommodates diverse payloads and forms,
including granules and enables various release profiles.

Other companies have also ventured into large scale 3D
printing for pharmaceuticals. Triastek Inc. launched the MED
formulation platform, capable of producing 150–200 000 units
daily for clinical trials or high-volume manufacturing.389–392

MED is a hybrid system, that fuses elements of hot melt
extrusion with 3D printing to continuously convert powder
feeds into a softened or molten state, bypassing the need
for pre-prepared filaments. With parallel modules for feeding,
mixing, and printing MED can craft multi-compartment, multi-
drug structures. Over 70 products have undergone in vitro, and
several have advanced to human trials under the brand 3DmS
(3D Microstructure for Modified Release) targeting oral, gastric
and colonic release. Examples include several open-source
products like T19 (rheumatoid arthritis), T20 (cardiovascular
and clotting disorders), T21 (ulcerative colitis), T22 (pulmonary
arterial hypertension) and D23 (primary immunoglobulin A
nephropathy).

Similarly, Laxxon Medical introduced SPID (Screen Printed
Innovation Drug), a manufacturing platform inspired by
flatbed screen printing methods common in textiles and
electronics.376,393–395 Here, a screen mesh deposits semi-solid
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paste onto a flat substrate, with drug shapes dictated by a
blocking stencil. The platform has successfully produced var-
ious acetaminophen tablet forms with hardness comparable to
commercial equivalents. Moreover, SPID can finely control
drug internal structure, facilitating heterogeneous distribution
of APIs and excipients and thus sophisticated release profiles.
SPID is touted as highly scalable, potentially producing 12 000–
40 000 units at once without significant process modifications.
Laxxon aims to extend drug patents and facilitate the relaunch
of generic APIs in a manner akin to Spritam with potential
disease targets including epilepsy, diabetes, rheumatoid arthri-
tis, and prostate carcinoma. Beyond SPID, Laxxon Medical is
focusing its R&D endeavors on 3D printing additional medica-
tions such as levodopa and dapsone, with elaborate shapes,
and embedded anti-counterfeiting features.

Notably, 3D printing advances are not confined to therapeu-
tics. The nutraceutical company Nourished employs a proprietary
large-scale printer with seven simultaneous printheads to con-
struct layered vegan supplements enriched with active ingredients
like probiotics, vitamin B12, and calcium. Customers are able to
customize their 3D-printed supplements by choosing from 28
constituents or completing an online questionnaire.396–398

3.3. 3D printing for personalized small-scale manufacturing

Undoubtedly, 3D printing’s greatest promise is in relocating pro-
duction hubs from large industrial sites to hospitals and neighbor-
hood pharmacies (Fig. 15, bottom). This paradigm shift replaces
the traditional mass-manufacturing model with customization,
yielding several advantages. For instance, pharmaceuticals worth
around US$283 billion currently require cold-chain storage and
transport, a burden that decentralized production could notably
lessen. Central to this concept is the simplification of pharmaceu-
tical compounding, a cornerstone of personalized medicine.399–401

In compounding, pharmacists prepare tailor-made medications
when off-the-shelf products are inadequate. Traditionally, com-
pounding entails: (a) assessing patient-specific dosage and ingre-
dient sensitivities amongst other factors (b) weighing and mixing
APIs with excipients, (c) adjusting characteristics like flavor or

texture for greater compliance, (d) meeting quality standards, and
(e) packaging and labeling the final product. By automating many
of these steps (e.g., weighing, mixing, and packaging), 3D printing
can reduce human error and production time, while in principle
enabling performances not attainable through conventional com-
pounding techniques. Furthermore, a single 3D printer can custo-
mize the type, quantity, and strength of multiple APIs in one
dosage form; modify excipients to avoid allergens or improve
palatability; and tailor product design, physical properties, and
release kinetics.

Several companies have begun capitalizing on this burgeon-
ing market. FabRx Ltd., for example, offers M3DIMAKERTM, a
modular 3D printer compatible with FDM, Drop-on-demand
Piezoelectric Ejection (DPE), and Single-Sided Extrusion (SSE)
printheads.375 A key feature is its suite of Process Analysis
Technologies (PAT), which enable real-time quality monitoring
through weighing and imaging systems, Raman confocal micro-
scopy, and near-infrared spectroscopy.358,402–404 Such nondestruc-
tive PAT are economically essential given the small-scale nature of
personalized medicine. In tandem, FabRx’s M3DISEEN software
applies AI-driven modeling to predict printability and product
quality.405 Through, academic collaborations, FabRx has demon-
strated the M3DIMAKERTM’s versatility in furnishing a multitude
of dosage forms, shapes and flavors, with a particular emphasis
on SSE-manufactured chewable medications for pediatric
use.406–408 These include hydrocortisone and isoleucine formula-
tions for adrenal insufficiency and maple syrup urine disease
respectively as well as chewable forms containing citrulline,
isoleucine and valine to treat short-chain enoyl-CoA hydratase
deficiency and ornithine transcarbamylase deficiency. These 3D-
printed drugs have demonstrated efficacy comparable to custom-
ary compounded treatments, while improving patient adherence.

As an alternative to M3DIMAKERTM, CurifyLabs has intro-
duced Pharma Printer another SSE 3D printer likely due to the
inherent stability of this technique.409–413 Pharma Printer has
already been operated in two Nordic university hospitals by
personnel with no prior 3D printing experience.414 In a recent
multi-site study spanning 30 pharmacies in eight European

Fig. 15 3D-printing equipment used across different production scales. The top row shows systems designed for large-scale industrial pharmaceutical
manufacturing, while the bottom row highlights compact or benchtop 3D-printing units suitable for decentralized or on-demand drug production.
Reproduced from ref. 384–386, with permission from Elsevier, copyright 2025.
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countries, Pharma Printer manufactured propranolol hydro-
chloride tablets of varying strengths using CuraBlend, a GMP-
certified excipient base.413 The manufacturing process followed
a standardized 4-phase protocol, certifying each batch through
non-destructive PAT quality checks (weighing, NIR, and
HPLC).415,416 Additionally, the printer integrates built-in mix-
ing and direct blister-pack filling, while CurifyLabs supplies
predefined device settings, quality dossiers, and automated
digital batch records for a more automated and streamlined
operation.

Other noteworthy players include CELLINK, which renewed
its partnership with AstraZeneca for drug discovery;417 Vitae
Industries and Craft Health which are developing pharmaceutical-
grade printers;418,419 DiHeSys is collaborating with Harro Höfliger
on FlexDosePrinter for oral-dispersible films;420 and 3DForMe,
a DPE-based printer from the University of Bari and
PharmaLabor.421–423 All of the aforementioned companies supply
‘‘inks’’ or formulation development services to ensure uniform
product quality. Although such standardization contradicts the
core tenet of 3D-printing, namely end-user customization, it is
essential for pharmacists, as extensive on-site product testing
cannot be pursued within pharmacies. Indeed, concerns over
pharmacist liability, the absence of established guidelines, and
quality control are commonly cited reasons for the hesitant
adoption of 3D printing in community pharmacies.424 In
response, recent research focuses on validating the 3D printing
process and implementing non-destructive quality checks to
reassure all stakeholders.425,426

In conclusion, the compact footprint, flexibility, and versa-
tility of 3D printing present an enticing path to automating the
production of small, highly personalized batches of therapeutics
at the point of care, be it hospitals or pharmacies. Yet, lingering
questions regarding the regulatory environment, operational
logistics, and cost-efficiency persist. Ultimately, whether this
approach will fully meet stakeholder expectations, including
financial viability for industry participants, remains to be seen.

4. Outlook and future perspectives

The convergence of continuous manufacturing, smart analytics,
digital modeling, and advanced fabrication techniques is
unlocking new opportunities for innovation in pharmaceutical
and agrochemical production. As these technologies are increas-
ingly deployed in tandem, their individual strengths are not
merely additive but synergistic, accelerating development time-
lines, enhancing process control, and contributing to more
sustainable manufacturing practices across the value chain.

Central to this transformation is the role of data. While the
current discourse often emphasizes the abundance of data, in
practice, the success of AI-driven optimization and process
control strategies hinges far more on data quality. Today,
predictive models are typically introduced late in development,
once a process has already been optimized through conven-
tional means. This practice diminishes their potential to mean-
ingfully impact decision-making during critical stages.

However, by integrating PAT and advanced experimental design
methodologies earlier in development, more relevant and
actionable data can be captured from the outset. This shift
enables richer insights and more effective process optimization
strategies throughout the development cycle.427,428

Nonetheless, this transition is not without its challenges.
Many industrial environments remain encumbered by data silos,
fragmented knowledge management systems, and concerns over
data confidentiality. These factors hinder collaboration and limit
the generalizability of models trained on academic or public
datasets when applied to the far more complex, variable, and
specialized conditions of real-world manufacturing. Bridging this
gap requires a multifaceted approach. One key strategy is to better
expose academic researchers to industrially relevant, data-rich
experimentation during their training, either through research
exchanges or through collaborative programs. In parallel, the
pharmaceutical and agrochemical industries can support this
evolution by openly sharing non-competitive data, including nega-
tive results that are typically underreported but highly informative
for algorithm training and model generalization.429 Initiatives
such as the Open Reaction Database exemplify how structured
community efforts can contribute to high-quality, standardized
datasets that are critical for the development of robust, general-
izable predictive models.430

Technologies like federated learning have already shown
promise in drug discovery contexts.431 While not yet widespread
in manufacturing, these frameworks offer a path forward to
unlock cross-sector collaboration without compromising pro-
prietary data.432–434

Even with improved datasets and model architectures,
hybrid approaches that integrate algorithmic predictions with
expert intuition will remain essential, and, especially in tightly
regulated environments, human oversight is crucial, not only
for compliance but also for interpreting the outputs of complex
models in context.

Nevertheless, the need for flexible, adaptive manufacturing
platforms is growing rapidly, particularly as pharmaceutical
pipelines diversify. With increasing investment in complex
molecules such as peptides, oligonucleotides, and antibody-
drug conjugates, manufacturing strategies must evolve to
accommodate distinct production requirements while main-
taining agility. Modular, ‘‘modality-agnostic’’ systems are par-
ticularly promising in this regard, allowing for the rapid
reconfiguration of production lines and seamless integration
of Quality by Design principles. Each module can be indepen-
dently validated, scaled, and optimized, reducing both devel-
opment time and regulatory risk.435

In parallel, the optimization of the chemistry underlying the
production of high-value fine chemicals has become increas-
ingly important. The strategies articulated here contribute to
this effort, but several challenges continue to constrain pro-
gress. Continuous manufacturing, for instance, often suffers
from sensitivity to recipe variations, mixing inefficiencies, and
heat transfer limitations, factors that can compromise the
control of critical quality attributes such as crystal size, mor-
phology, polymorphism, and purity. These attributes, in turn,
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have direct implications for drug efficacy, safety, and down-
stream processing characteristics. To address these limitations,
future research must focus on the simultaneous optimization
of product characteristics, process configurations, and opera-
tional parameters. Such a comprehensive approach will ensure
that economic, regulatory, and environmental objectives are
met. This includes fine-tuning crystallization recipes and out-
comes (e.g., solvent selection, particle size distribution), identi-
fying optimal technologies (e.g., MSMPR, fluidized beds,
tubular or segmented reactors), and optimizing dynamic opera-
tions such as startup and shutdown conditions to ensure
consistent, on-spec production trajectories across the phase
diagram.

The ultimate objective is the realization of fully autono-
mous, integrated digital manufacturing platforms. These
would be capable of executing continuous screening and opti-
mization workflows through robotic systems, automating tasks
like sample extraction and injection into analytical platforms
(e.g., HPLC), and integrating all hardware, software, data pro-
cessing, and visualization tools within a centralized supervisory
framework. Such platforms will represent a major leap towards
the concept of digital chemistry at scale.

In this evolving technological landscape, 3D printing is
emerging as a transformative tool. Once confined to rapid
prototyping, additive manufacturing now enables the fabrica-
tion of complex reactor geometries that enhance mixing, heat
transfer, and mass transport, particularly relevant in photo-
chemical and electrochemical processes where conventional
equipment may be inadequate.436 These advantages extend
beyond efficiency to scalability and decentralization. By
enabling just-in-time production of custom parts or even active
ingredients near the point of use, 3D printing has the potential
to make supply chains more resilient, lower transportation
costs, and improve access in underserved regions. In a context
where contract development and manufacturing organizations
(CDMOs) are playing an increasingly central role, additive
manufacturing also offers a competitive edge in demonstrating
responsiveness and technical sophistication.

The future of pharmaceutical and agrochemical production
will undoubtedly be shaped by the rise of connected and
intelligent plant operations. As digital infrastructure matures,
manufacturers are beginning to integrate real-time PAT sys-
tems, digital twins, and advanced control algorithms into
cohesive production environments. These ‘‘smart’’ plants can
monitor operations continuously, detect deviations early, and
in some cases, self-correct to maintain optimal performance.
Importantly, such connectivity enables not just unit-level con-
trol but end-to-end optimization across entire production lines
and networks. Yet, smart manufacturing of APIs and finished
pharmaceutical products still plays only a modest role in
commercial-scale production. Most manufacturing remains
rooted in conventional processes and equipment, often oper-
ated in a partially batchwise manner. Nevertheless, significant
progress has been made in developing new methods for process
design, control, and intensification. Techniques such as PAT
and digital twins are central to this shift, enabling both high-

fidelity monitoring and real-time correction, thus ensuring
tighter quality control and process efficiency.

Looking ahead, several developments are anticipated to
redefine the manufacturing landscape: first, the implementa-
tion of newly designed, intensified processes at commercial
scale; second, the widespread adoption of PAT and digital twins
for superior quality control and online optimization; third, the
integration of 3D printing for patient-specific formulations;
and finally, the contribution of modular design and engineer-
ing to accelerate and scale continuous manufacturing. These
connected operations offer advantages that extend far beyond
productivity. They serve as critical enablers that can bring the
synthetic innovations discussed in Part 1: Synthetic Frontiers
into real-world production. A prime example is the multige-
neration development of belzutifan (Fig. 16), where PAT and
modelling were not merely supportive tools but instrumental in
driving sustainable process transformations.75,128,437–447

In the first-generation commercial synthesis, a notable
implementation of PAT and modelling tools was the flow
photochemical benzylic bromination step.443 Inline NMR, UV
sensors, and LED actinometry enabled real-time conversion
tracking, while photon flux modelling guided photon dose
control and reactor scaling. This allowed the elimination of
overbromination impurities and reduced reaction time from
hours to minutes. These tools collectively eliminated overbro-
mination impurities and reduced reaction times from hours to
minutes. However, a downstream Ru-catalyzed dynamic kinetic
resolution (DKR) introduced a disproportionate burden in
terms of cost, precious metal usage, and E-factor, compounded
by separate solvent handling steps.445 These and other ineffi-
ciencies ultimately prompted Merck to redesign the synthesis.

In the second-generation route, PAT and modelling were
deeply integrated to support a transition to biocatalysis, earth-
abundant metals, aqueous media, and process intensification.447

A key transformation was the dioxygenase-catalyzed benzylic
hydroxylation that replaced Pd/C oxidation.438,441 This step was
enabled by a suite of PAT tools (e.g., dissolved oxygen probes,
inline FTIR, and gas-flow sensors) that controlled oxygen levels,
while kLa and Njs modelling informed scale-up and optimized
mass transfer within a water/1-octanol biphasic system. This
reduced enzyme loading, minimized process volumes, and elimi-
nated hazardous solvents. Further downstream, the Ru-catalyzed
DKR was replaced with a Keto Reductase (KRED) process through
enzyme evolution and PAT-enabled process development.439

In situ FTIR, dissolved oxygen probes, and real-time imaging
revealed that oxygen mass transfer and indanone dissolution
are sequentially rate-limiting, and that 1-octanol plays a critical
role in preventing indanone aggregation, maintaining particle
size, and improving reaction conversion. Beyond real-time reac-
tion tracking PAT also provided mechanistic insights which
facilitated the process development of an efficient and robust
biocatalytic transformation.

In the final SNAr step, PAT (UPLC with EasySampler) was
used to map hydrolysis impurity formation and support the
switch from formamide to water as solvent.440 Detailed kinetic
profiling revealed sensitivity to CO2 evolution, prompting
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headspace pressure and nitrogen sweep adjustments. While no
formal mechanistic model was used, PAT-guided empirical
optimization, controlled phenol deprotonation and minimized
hydrolysis. The aqueous SNAr was coupled with a reactive
crystallization that allowed direct isolation of the API without
extraction or solvent exchange. This eliminated multiple pur-
ification steps and exemplified solvent minimisation using
water as the reaction and isolation medium.

Across both generations of development, PAT and modeling
were not passive monitoring tools but fundamental enablers of
deep process innovation. The second generation process shor-
tened the linear sequence from 16 to 9 steps (a 44% reduction),
increased overall yield from 4% to 26% (a 46-fold improve-
ment), and cut PMI by over 75%, from 2039 to 508.447 This
includes a 34% PMI reduction compared to the generation one
commercial route. The impact on solvent use was even more
striking: total organic solvent consumption was reduced from
B1400 to B261 liters (81% reduction), while toxic and

genotoxic solvents were nearly eliminated. Consequently, by
minimizing waste, optimizing resource use, and facilitating
sustainability assessments smart manufacturing lays the foun-
dation for a more responsible and resilient chemical manufac-
turing sector.

To fully realize these benefits, however, several systemic
challenges must still be overcome. Regulatory frameworks need
to evolve to accommodate emerging technologies while preserv-
ing safety and efficacy standards. The introduction of ICH Q13
guidelines on continuous manufacturing is an encouraging
development, but further clarity and standardization will be
required for technologies like AI-based control and additive
manufacturing.

Talent development is equally critical. The sector will
increasingly rely on professionals with T-shaped skillsets: indi-
viduals who possess deep expertise in one area, combined with
a broad understanding of related fields. These individuals
must also exhibit strong learning agility and openness to

Fig. 16 Evolution of the synthetic route to belzutifan, highlighting the progressive redesign from long medicinal chemistry sequences to increasingly
efficient manufacturing processes. Generation 1 introduces a streamlined 5-step route and a fully continuous key transformation, while Generation 2
exploits biocatalysis, telescoped operations, and water-based SNAr chemistry to further intensify the process. These advances were enabled by modern
development methodologies, including digitalized workflows, PAT-guided optimization, DoE-driven understanding, and data-centric decision making,
which together allowed rapid identification of superior conditions and robust scale-up strategies. The resulting improvements in yield, PMI, organic
solvent use, and reduction of chlorinated/amide/ether solvents demonstrate how integrated innovation in chemistry, engineering, and digital tools can
transform the sustainability and manufacturability of an API. Adapted from ref. 446 and 447.
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technological change. Academic institutions and industry alike
will need to collaborate closely to foster such profiles through
curricula that balance specialization with interdisciplinary
fluency.

Lastly, economic factors will play a decisive role in deter-
mining the pace of technological adoption. Although many
innovations promise long-term cost savings and performance
gains, their implementation often entails significant upfront
investment. As such, companies must weigh the return on
investment carefully, particularly given the uncertainties inher-
ent in drug development. Strategic partnerships can play a key
role in reducing risk, sharing knowledge, and accelerating
implementation through access to best-in-class technologies.

In summary, the scientific and technological frontiers
explored in this review present a compelling vision for the
future of pharmaceutical and agrochemical manufacturing.
Embracing these innovations is not merely a strategic advan-
tage: it is a necessity. In an era of growing scrutiny and complex
societal demands, the industry must commit to continuous
innovation, deep collaboration, and bold integration of emer-
ging tools. Only through such efforts can it deliver safer, more
sustainable, and more accessible products for the patients and
communities it serves.
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139 J. Wollschläger and F. Montanari, Digit. Discov., 2024, 3,
1749–1760.

140 A. D. Vassileiou, M. N. Robertson, B. G. Wareham,
M. Soundaranathan, S. Ottoboni, A. J. Florence, T. Hartwig
and B. F. Johnston, Digit. Discov., 2023, 2, 356–367.

141 R. Schenkendorf, X. Xie, M. Rehbein, S. Scholl and
U. Krewer, Processes, 2018, 6, 27.

142 M. F. Simões, G. Silva, A. C. Pinto, M. Fonseca, N. E. Silva,
R. M. A. Pinto and S. Simões, Eur. J. Pharm. Biopharm.,
2020, 152, 282–295.

143 Y. Sun, X. Wang, N. Ren, Y. Liu and S. You, Environ. Sci.
Technol., 2023, 57, 3434–3444.

Review Article Chem Soc Rev

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
4/

20
26

 1
1:

20
:0

0 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://www.visiongain.com/digital-twin-technology-in-pharmaceutical-manufacturing-market/
https://www.visiongain.com/digital-twin-technology-in-pharmaceutical-manufacturing-market/
https://www.fda.gov/news-events/fda-voices/fda-releases-two-discussion-papers-spur-conversation-about-artificial-intelligence-and-machine
https://www.fda.gov/news-events/fda-voices/fda-releases-two-discussion-papers-spur-conversation-about-artificial-intelligence-and-machine
https://www.fda.gov/news-events/fda-voices/fda-releases-two-discussion-papers-spur-conversation-about-artificial-intelligence-and-machine
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cs00930h


This journal is © The Royal Society of Chemistry 2026 Chem. Soc. Rev., 2026, 55, 675–713 |  707

144 D. Zhang, Z. Wang, C. Oberschelp, E. Bradford and S. Hellweg,
ACS Sustainable Chem. Eng., 2024, 12, 2700–2708.

145 D. L. Galata, L. A. Mészáros, N. Kállai-Szabó, E. Szabó,
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and T. Durig, Pharmaceutics, 2024, 16, 317.

360 S. Narala, A. A. A. Youssef, S. R. Munnangi, N. Narala,
P. Lakkala, S. K. Vemula and M. Repka, Drug Delivery, 2024,
21, 1543–1557.

361 S. K. Patel, M. Khoder, M. Peak and M. A. Alhnan, Drug
Delivery Rev., 2021, 174, 369–386.

362 I.-R. Turac, A. Porfire, S. Iurian, A. G. Crisan, T. Casian,
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S. Gaisford, G. Pérez, A. W. Basit, P. Cabalar and
A. Goyanes, J. Pharm., 2020, 590, 119837.

406 A. Goyanes, C. M. Madla, A. Umerji, G. D. Piñeiro,
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