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Introduction

Correlation between information entropy
and pore connectivity in oxidic materials
with random disordered porosity

Antigoni G. Margellou, (22 Gerasimos S. Armatas,” Konstantina Kolonia®® and
Philippos J. Pomonis (2 *¢

Pore connectivity is a crucial structural characteristic of porous solids that governs the mass transfer and
diffusion of fluids through them. Information entropy, on the other hand, is a statistical property that can
be estimated for any distribution, including the size distribution of pores in solids. In this work, we
present the first comprehensive study investigating the correlation between the pore connectivity and
the Shannon information entropy of classical pore size distributions of inorganic porous materials.
Experimental data are based on sixteen reported oxidic alumino—phosphoro—vanadate porous solids. All
studied materials exhibit random disordered porosity, as determined by standard nitrogen porosimetry.
Pore connectivity was estimated using the Seaton method, which is based on the hysteresis loop of
nitrogen adsorption—desorption isotherms. Results demonstrate a linear and robust correlation between
the binary information entropy and binary logarithm of pore connectivity. This relationship can be ratio-
nalized by considering the statistical information entropy of independent pore mixing. The physical origin
of the correlation between information entropy and average pore connectivity is attributed to the ran-
dom packing of pores, analogous to the classical problem of random packing of particles. The statistical
base is the heteroscedasticity between the variance and mean parameters of pore size distributions: var-
iance drives information entropy, while the mean drives pore connectivity, as described by the model of
random packing.

adsorption and heterogeneous catalysis, along with extensive
relevant literature.

Pore labyrinths in solids are typical examples of complex
systems consisting of minute voids up to several quadrillions
per unit of surrounding mass. Such pores of variable sizes and
shapes are interconnected in a complex network, and the
connectivity between them governs the mass transfer that
occurs within the internal space of porous materials. Extensive
information about such complex systems has been compiled by
experts in two collective multivolume editions: the “Handbook
of Porous Solids” published in 2002' and the “Handbook of
Porous Materials” published in 2021.> The articles in these
handbooks contain copious data on primary synthesis routes,
specific material properties, virtual modelling of porous sub-
stances, and their applications in separation technologies,
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Pore connectivity (c) has garnered limited attention in the
above-mentioned review articles and specialized studies, and
its potential relationship with the information entropy (IE) of
pore size distributions (PSDs) is practically absent from the
literature. Nevertheless, there are compelling reasons to pursue
this investigation. Specifically, the structural property of pore
connectivity is critical in fields such as chemical engineering®”
and geoscience.®* > In chemical engineering, ¢ controls mass
transfer and fluid diffusion through pore networks, especially
in adsorbents and heterogeneous catalysts,®® which are two
areas of considerable importance for chemo-technological
applications.®” In geoscience, research has largely focused on
the relationship between soil pore connectivity (and, in some
cases, soil entropy) and properties such as water permeability,
pollutant diffusion and microbial ecology, all of which influ-
ence remediation outcomes.®*> However, a possible correla-
tion between ¢ and IE has not yet been systematically
investigated in geoscience or chemical engineering.

In the present study, we restrict our focus to porous adsor-
bents. Although the calculation of pore connectivity for such
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d,"*” the statistical measure of

18,19

materials is not straightforwar
IE can be determined through a relatively simple procedure.
Thus, exploring the potential correlation between IE and ¢ could
enable the estimation of a difficult-to-measure property through a
more convenient approach. Intuitively, a narrow pore size distribu-
tion, for instance, in mesoporous MCM-type materials with uni-
formly sized pores, would exhibit limited pore connectivity. This
narrow distribution would also correspond to low information
entropy, and the reverse would be expected for broader distribu-
tions. However, a quantitative relationship between ¢ and IE
remains unresolved. The present work addresses this gap by
investigating the correlation between pore connectivity and infor-
mation entropy of representative PSDs of materials with random
disordered porosity, characterized using standard nitrogen physi-
sorption measurements.**?!

The article has the following structure: in Section 2, Back-
ground information, we provide important aspects and meth-
odologies employed for calculating the pore connectivity and
information entropy of PSDs. In Section 3, Experimental, we
describe the preparation methods and material characteriza-
tion by nitrogen porosimetry. In Section 4, Results, we compare
the values of information entropy and the related nanopore
entropy obtained from experimental PSD plots to Seaton’s
average pore connectivity (Caverage)- In Section 5, Discussion,
we explore the correlation between information entropy and
nanopore entropy, elucidating their direct relationship with
pore connectivity. Additionally, we present a statistical expres-
sion for the entropy of pore mixing, which is analogous to the
well-established concept of mixing in solutions and propose an
explanation for the observed correlation between pore connec-
tivity and information entropy based on the random packing of
particles (RPP) model. Finally, in Section 6, Conclusions, we
provide a concise summary of the physical implications, con-
sequences, practical applications, and limitations of the study.

Background information
Pore connectivity

Pore connectivity (c) is a comprehensive physical property of
porous substances that quantifies the number of empty paths
(pore channels) connected to a single void. Its determination
for chemically homogeneous substances (such as porous silica
and alumina) with structured porosity was not feasible until the
early 1990s. Then, Seaton and co-workers proposed a tractable
method for determining average ¢ values based on the hysteresis
loop observed during nitrogen physisorption measurements.”**!
Other methods for assessing pore connectivity were developed
based on computer models that constructed viral pore networks
in accordance with experimental nitrogen physisorption data. For
example, Mayagoitia et al.'®"” proposed the dual-site-bond model
(DSBM) that provides the distribution of connectivities among the
pores of various sizes. It has been demonstrated by Armatas and
Pomonis® that the mean connectivity (Cmean) Of the pore networks
of silicate materials, calculated using computer models such as
DSBM, closely aligns with the average pore connectivity (Cayerage)
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determined via Seaton’s method. For this interrelation, see S.I.-1.
Relevant studies have typically focused on the effect of pore
connectivity on the apparent diffusion coefficients of molecules
absorbed into porous solids. For instance, Meyers et al.® demon-
strated that the pore diffusivity of ribonuclease through silica
particles in liquid chromatography separation columns is corre-
lated with the pore connectivity of silica.

In the present work, the average pore connectivities of
sixteen (16) alumino-phosphoro-vanadate mixed oxidic porous
solids®*>* are estimated using the Seaton’s method."*™’
Details about the estimation of relevant pore connectivities
and their similarities with those observed in trees and neurons
are provided in ref. 23 and 24.

Information entropy

This concept, initially proposed by Shannon in 1948,'% is a
mathematical/statistical expression that can be applied to any
distribution, quantifying its dispersity.

N
H=- Zpi log, (pi), (1)
1

where p; (i = 1...N) is the fractional probability of each
component of the distribution subject to the constrain

N
> pi = 1. The original study investigated the propagation of
1

an electromagnetic telecommunication signal, and it was
observed that as the signal travelled away from the emission
point, it became progressively broader and more entropic. The
choice of logarithmic base b may vary depending on the
application. Base ‘“2”’ corresponds to units of “bits” (or “shan-
nons”), base “e”’ to “nats” (or “natural units”), and base “10”
to “dits” (or ‘‘decimal digits”). Interconversion is trivial
because 1 dit = 1.44 nats = 3.32 bits.

The fundamental concept of information entropy, which is
applicable to a wide range of problems beyond information
theory, quantifies the level of uncertainty associated with an
event. Rare or unlikely events (e.g., an earthquake) are more
surprising and therefore more informative than that of routine
ones (e.g., tomorrow’s sunrise). Alternatively, rare events, being
less certain, require more information to be understood than
common occurrences:

Low probability event == Surprising event —— Valuable
new information =—— High information entropy.

High probability event === Unsurprising event = Lim-
ited new information === Low information entropy.

Fhionnlaoich and Guldin'® proposed a thoughtful modifica-
tion of formula (1) to obtain an assumption-free nanoparticle
entropy (E), which is suitable for describing a wide range of
nanoparticle size distributions. They introduced formula (2)
to account for the width of measuring bin and nullify its
influence on H.

E = € x bin width 2)

The significance of this correction lies in the fact that as the
bin width decreases, the number of observations (i) in formula
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(1) increases, and, as a result, the values of H increase expo-
nentially. The application of formula (2) eliminates such
effects, provided that the number of observations () is suffi-
ciently large. In the present work, the calculation of informa-
tion entropy (H) and the corresponding nanopore entropy (E)
was performed using formulae (1) and (2) applied to the PSDs
of the studied porous solids.

Experimental
Preparation of materials

The porous materials used here have been studied before and
include sixteen (16) mesoporous alumino-phosphoro-vanadate
mixed oxides of the general formula Al, o,P,Vy, where x,y =0, 5,
10, and 20.>>* The full formula involves substantial amounts
of oxygen to balance the valencies of Al, P and V, but a precise
oxide-based formula is not fully established, and thus, the
abbreviated version is more convenient to use. All materials
Al;oP,V, with some of their properties are shown in Table 1.
S.I.-2 has some additional informative properties of these
materials.

The method of preparation is as follows: calculated amounts
of Al(NO;);-9H,0, H3;PO, and V,05 (dissolved in 10 mL of
NH,OH) were dissolved in 120 mL of water, and ammonia
was added while stirring until a pH of 9.5 was attained. The
formed gel was then dried slowly at 110 °C for 24 h, cooled,
ground and finally heated at 600 °C for 6 h. For more details,
see ref. 22-24. The parent material Al;y,PoV, has the typical
structure of amorphous Al,O;, and the addition of P at a
constant concentration of V, and vice versa, noticeably increases
the specific surface area and specific pore volume (see Table in
S.I.-2). This enlargement of surface area is due to the heteroa-
toms of P and V that disrupt the crystallization habit of

Table 1 Collective data for AlypoPxV, samples. Pore connectivity (Caverage)
was estimated according to the Seaton’s method. Information entropy
H(2) was estimated from the PSD plots according to formula (1), with
logarithmic base b = 2 (bits). Notation H(2) (48-0.5) bits means "H
estimated with log base 2 using n = 48 p; values with bin width =
0.5 nm expressed in bits”. Nanopore entropy E(2) is the value of H(2)
corrected according to formula (2) £ = e-(bin width)

Connectivity H(2) (48-0.5) E(2) = é®.0.5

Sample Caverage (bits) (nm)

Al5oPoV, 6.5 3.70 20.22
Al100P5Vo 12.3 3.81 22.58
Aly0P10Vo 11.2 4.59 49.25
Al160P20Vo 14.0 5.06 78.80
Al1oPoVs 5.8 3.42 15.28
AlyooP5Vs5 7.0 3.84 23.26
Al160P10Vs 9.1 4.58 48.76
AlyoP20Vs 9.6 4.97 72.01
Aly40PoVio 5.8 3.26 13.02
Al160P5V10 7.8 4.04 28.41
AlyoP10V1o 10.5 4.86 64.51
Aly0oP20Vi0 15.0 5.40 110.70
Al160PoVao 10.6 4.80 60.75
AlyoP5Vao 9.0 4.53 46.38
Al 5oP10Va0 10.9 5.03 76.47
Al1oP2Vao 15.2 5.41 111.82
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alumina, and as a result, the materials develop an amorphous
structure with enhanced porosity. This in turn influences the
pore connectivity (c), as shown in Table 1.

Characterization by nitrogen porosimetry

Specific surface area (S,) (m”* g~ ') and specific pore volume (V)
(em?® g~") were determined by standard nitrogen adsorption-
desorption porosimetry at 77 K, measured over the relative
pressure range 0 < (P/P°) < 1, as described previously.*>** The
corresponding adsorption-desorption isotherms, e.g. Vn adas =
Sf(PIPy) and Vy, aes = f(P/P,), are reproduced in S.I.-2. The
standard BET (Braunauer-Emmett-Teller) methodology was
employed for the estimation of surface area (Sp), and the BJH
(Barrett-Joyner-Halenda) algorithm was used for calculating
PSD, ie., (dV/dD) (cc g ' nm ™) = f(D) (nm), as shown in
Table S.I.-2. Details about nitrogen porosimetry and the BET
and BJH methods can be found in literature.?®*!

Pore connectivities

The average pore connectivities (Caverage) fOr the sixteen
Al;ooP,V,, (x, y = 0, 5, 10, and 20) materials are given in S.L.-2
and reproduced in Table 1. They were estimated from the
hysteresis loops of the nitrogen adsorption-desorption iso-
therms shown in S.I.-2, using the method proposed by Seaton
and co-workers.”*™*®> Some short relevant comments and typical
fitting results in the range of 0.3 < (P/P,) < 0.6 are shown in
S.I.-3 and discussed more extensively in ref. 23 and 24.

Information entropy

Information entropy H(2) and nanopore entropy E(2) were
calculated according to formulae (1) and (2) using the binary
logarithmic base (b) = 2 (indicated by the number in parenth-
eses). For H(2), we employed forty-eight (n = 48) points in

n
H = —> " p;log,(p;), chosen as follows: across the D axis of
1

desorption isotherms dV/dD = f(D) shown in S.I.-2, forty eight
equidistant points were selected in the range 2.5 < D < 26.5
(nm). This corresponds to a bin width, BW = (26.5 — 2.5)/48 =
0.5 nm. A measuring stick of size 0.5 nm was chosen purposely
since it corresponds roughly to the size of N, molecule, which
upon adsorption covers 0.162 nm? or a circle with a diameter of
0.45 nm.

At each of those 48 D; values, e.g. Dy, D,, D5 .. .Dgg, there are
48 values of (dV/dD),, e.g. (dV/dD),, (dV/dD),, (dv/dD)s, .......

48
(dv/dD)ss. Then ratios of (dV/dD)l./Z (dV/dD), are the p;
1

values, that is, the fractional probability of each component of
48

distribution subject to the constrain ) p; = 1. The values of
1

nanopore entropy (E) were calculated according to formula (2).
The results for both H(2) and E(2) are summarized in Table 1.
It is noted that E has units similar to bin width, i.e., nanometres
(nm), while H is dimensionless, but depending on the logarith-
mic base b, it may be expressed in “bits” (for b = 2), nats (for b =
e) or “dits” (for b = 10).

Phys. Chem. Chem. Phys.
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Additionally, we calculated two sets of H and E values using
logarithmic base b = 10 (dits) and b = e (nats) with similar bin
width of 0.5 nm for comparison purposes. These additional
values are mentioned as H(10), E(10) for b = 10 and H(e), E(e) for
b = e. Additionally, for b = e (nats), we estimated additional sets
of H'(e) and E(e) values with bin width = 1 nm (not 0.5 nm). In
that case, 24 equidistant points were chosen across the D axis

24
and B.W = (26.5 — 2.5)/24 = 1 nm, p; = (dV//dD), / S (dV/dD),
1

24
and ) p; = 1. Rest calculations of H’s and E’s are as above.
1

All additional results are collected in Table S.I.-4. It is
observed that the two datasets for b = e (nats) in Table S.I.-4,
estimated for n = 48 p; values and bin width = 0.5 nm, on the
one hand, and n = 24 p; values and bin width = 1.0 nm, on the
other hand, exhibit a difference between the H(e) and H'(e)
values since the number of employed points is different, i.e.,
48 for H(e) and 24 for H'(e). The difference is nullified for E(e)
and E'(e), as anticipated from formula (2). This exercise
of alternative calculations shows that the obtained results
are free of miscalculations due to the number of employed
measurements.

It is mentioned that the calculation of PSDs and of pore
connectivity is performed by considering cylindrical, random,
and disordered pore geometries that are common for inorganic
materials like aluminates or silicates.>>*' Besides, the present
Al-P-V materials are neither expected to provide nor have they
provided any indications of elongated or ordered pore geometry
in previous studies®>%). It is understood that, as suggested by
Seaton,'*? switching from a cylindrical to a slit-pore model may
shift the absolute values of PSD (mean size and spread) and
connectivity in a uniform fashion. However, this is not expected
to fundamentally alter the qualitative correlation between the
obtained data. Besides, such a switch has no physical basis in
the present case and may only apply to carbons or pillared clays
possessing slit-like pores.

Results

In Table 1, the values of the pore connectivity (Caverage), infor-
mation entropy H(2) and nanopore entropy E(2) are listed
for the sixteen (16) porous materials Al;o,P,V, (x, y = 0, 5, 10,
an d 20). Fig. 1 presents the values of H(2) (upper part) and
E(2) (lower part) as a function of pore connectivity (c), i.e. H(2) =
f(c)-upper part and E(2) = f(c)-lower part.

Similar graphs to those in Fig. 1 are presented in S.I.-5 for all
H(10), E(10) = f(c) and E(e), E(e) = f(c) relationships for compar-
ison purposes.

As can be seen in Fig. 1, both H(2) and E(2) show a strong
positive correlation with pore connectivity, indicating that as
the pore network becomes more interconnected, both the
information entropy (H(2)) and the corresponding nanopore
entropy (E(2)) increase. The corresponding first-order linear
fittings exhibited H(2) = 2.58 + 0.19¢, (R* = 0.68) and E(2) =
—36.54 + 8.90c, (R* = 0.73). If the outlier points are excluded, the
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Fig. 1 Variation in information entropy (H(2)) (upper part) and nanopore
entropy (E(2)) (lower part) as a function of pore connectivity (c). Data are
taken from Table 1. The regression lines read H(2) = 2.58 + 0.19-c (dashed
red line ——— with R = 0.68) and £(2) = —36.54 + 8.90-c, (dashed red
line ——— with R? = 0.73). If the outlier points are excluded, the fitting
lines (not shown) remain almost similar but the correlation coefficients
improve; H(2) = 2.46 + 0.21c, (R?> = 0.86) and E(2) = —42.21 + 9.82c,
(R? = 0.92).

linear fitting lines (not shown) remain more or less similar but
the correlation coefficients improve noticeably, such as H(2) =
2.46 + 0.21c, (R* = 0.86) and E(2) = —42.21 + 9.82¢, (R* = 0.91).
In any case, the relationship is stronger for E(2), suggesting it
may be more sensitive to connectivity variations. Similar corre-
lations are apparent for the data plots H(10) = f(c); E(10) = f(¢);
H(e) =f(c) and E(e) = f(c) and are shown in S.L.-5 for comparison.
These results indicated a strong dependence between the
compared parameters. The subtle physical meaning of this
dependence will be discussed in the next section.

Discussion

As shown in Fig. 1, there is a discreet correlation between pore
connectivity (¢) and information entropy (H) or nanopore
entropy (E), expressed in bits. In Table 2, we transcribed the
numerical data of Table 1 in binary logarithmic values (loga-
rithmic base b = 2). Specifically, the values of pore connectivity
(¢), information entropy (H(2)) and nanopore entropy (E(2))
were expressed as log, ¢, log, E(2), and H(2) — log, E(2) — log,
(bin width) = log, E(2) — log; (0.5) = log, E(2) + 1.

The same transcription of data was also applied to the values
of information entropy H(10)-H(e) and nanopore entropies

This journal is © the Owner Societies 2026
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Table 2 Logarithmic values of pore connectivity (c), nanopore entropy (E)
and information entropy (H) using different logarithmic bases. Notation
E(2)-H(2) indicates that the corresponding values were estimated using
binary bases according to formulae (1) and (2)

H(2) = log, E(2)

Sample Log, ¢ E(2) Log, E(2) +1.0
AliooPoVo 2.70 20.22 4.34 5.34
AlyooPsV, 3.62 22.58 4.50 5.50
Al0oP10Vo 3.49 49.25 5.62 6.62
Al100P20Vo 3.81 78.80 6.30 7.30
AlioPoVs 2.54 15.28 3.93 4.93
AlyooPsVs 2.81 23.26 4.54 5.54
AlooP10Vs 3.19 48.76 5.61 6.61
Al ooP50Vs 3.26 72.01 6.17 7.17
AlioPoVio 2.54 13.02 3.70 4.70
Al;00P5Vio 2.96 28.41 4.83 5.83
AliooP10Vio 3.39 64.51 6.01 7.01
AlioP20Vio 3.91 110.70 6.79 7.79
AliooPoVao 3.41 60.75 5.92 6.92
AlooPsVao 3.17 46.38 5.54 6.54
Al;00P10Vao 3.45 76.47 6.26 7.26
AliooP20Vao 3.93 111.82 6.81 7.81

E(10)-E(e) in Table S.I.-4. The new results are presented in Table
S.I.-6.

In Fig. 2, we plotted the data in Table 2. The corresponding
first-order fitting relationships are given by formulae (3) and (4)
with a very strong correlation coefficient R* = 0.924. The single
out-of-trend point at the right-middle section of all sub-figures
has not been considered. This outlier corresponds to sample
Al;0oP5V,, exhibiting higher ¢ and lower H values. This can be
attributed to its lower-than-expected D,,,, and FWHM, as seen
in Table S.I.-2 and Fig. 5.** This, in turn, leads to a lower

@ log,E

@ H(@®) ’

log,E or H(2)

3 Il 'l
2 3 4 5

Iogzc average

Fig. 2 Plots obtained from the data in Table 2. The regression lines have
the form log, E(2) = —1.276 + 2.091-log, ¢, (dashed red line ——— with
R? = 0.924) and H(2) = —0.277 + 2.092-log, ¢, (black line with R? =
0.924). The out-of-trend point in the right-low-middle section has not
been considered.
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entropy value. This discrepancy may originate from some
experimental mishap during sample preparation. The plots
for the remaining 15 samples fifteen samples follow the below
relationships:

Log, E(2) = —1.276 + 2.091-log, ¢ (3)

H(2) = —0.277 + 2.092-log, ¢ (4)

The above relationships (plots based on log,) exhibit very
a strong correlation coefficient of R*> = 0.924. Similar results
(R* = 0.921 for plots based on log;, and R* = 0.926 for plots
based on loge) are obtained if decadic or natural logarithms are
used instead of binary logarithm, as shown in Fig. S.I.-7. All R*
values are practically similar as expected, with differences
attributable to the rounding of decimal points during calcula-
tions. The outcome establishes a strong correlation between
the logarithm of pore connectivity (log,c) and information
entropy H(b) as well as the logarithm of nanopore entropy
log E(D) expressed in logarithmic base b = 10 (dits), e (nats) or
2 (bits).

Nevertheless, although correlations based on » = 10 (dits)
and e (nats) are mathematically as good as the ones based on
b = 2 (bits), the latter offers a more profound interpretation
of the relationship between connectivity and entropy. For
instance, it reflects the binary questions Q a lilliputian traveller
(say a nitrogen molecule) in the pore labyrinth needs to ask the
Genie to find its way at a crossroad (site) with ¢ connections
(bonds). This is equivalent to counting the number of connec-
tions. The number of binary questions Q is related to ¢ by the
simple formula Q = log,c, as exemplified in Fig. 3. If the
connections are ¢ = 8 = 2°, then three questions are needed.
Similarly, for ¢ = 16 = 2%, four questions are necessary, for ¢ = 4 =
22, two questions and finally for ¢ = 2 = 2*, just one question is
needed.

By introducing Q = log,c, formulae (3) and (4) can be
re-written as follows:

H G

Fig. 3 Site Sgis connected to eight neighboring sites A, B, C, D, E, F, Gand
H, which, for the sake of simplicity, are laid at the 8 (= 2°) vertices of a cube.
The best strategy for a traveller at S8, seeking its way to a ‘correct’
destination G, is to ask the Genie binary questions Q. Three questions
and answers are needed: (Q1) up or down? (A1) down, (Q2) back or front?
(A2) front; (Q3) left or right? (A3) right.
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log, E(2) = —1.28 + 2.09-log, ¢ = —1.28 + 2.09 Q ~ 2Q — 1

(5)
H(2) = —0.28 + 2.09-log,c = —0.28 + 2.09 Q ~ 2Q  (6)

The above results show that for porous materials, like the
ones in the present case, the estimation of information entropy
(H) and nanopore entropy € also yields the value of pore
connectivity (c). This relationship becomes apparent irrespec-
tive of the expression of H, logE and logc in the logarithmic
form of base b = 10, e, or 2. By employing base b = 2, an
additional opportunity arises to formulate binary questions Q
(ves—no) for counting ¢ and establishing a relationship between
¢ and information entropy parameters £ and H. These experi-
mental findings are modelled as follows.

If a porous sample exhibits an average pore connectivity of
¢ =8=23% asillustrated in Fig. 3, which is a typical value for the
present materials (see Table 1), the corresponding logarithm
of binary nanopore entropy would be log, E(2) = 4.99 (as per
formula (5)). Similarly, the binary information entropy of PSD
is H(2) = 5.99 (as per formula (6)) and the binary questions are
Q = 3. Similarly, if ¢ = 16 = 2%, the binary questions are Q = 4,
while log, E(2) = 7.07 and H(2) = 8.01. For ¢ = 4 = 2%, Q = 2,
log, E(2) = 2.90 and H(2) = 3.89. Finally, for c =2 = 2", Q = 1,
log, E(2) = 0.81 and H(2) = 1.80. These results are summarized
in Table 3.

The corresponding idealized linear relationships H(2) =
f(log c), log, E(2) = f(log, ¢) and Q = f(log, ¢) are as follows:

Log, E(2) = —1.27 + 2.073 x log, ¢ (7 ~ 5)
H(2) = —0.26 + 2.07 X log, ¢ (8 ~ 6)

Q = lOgZ c, (9)
and therefore,

Q ~ H(2)2 ~ log, E(2)/2 + 0.5 (10)

Entropy of pore mixing

Formula (1) that provides the values of information entropy (H)
bears similarities with the well-known relationship describing
the entropy of mixing (ASmixing) in solutions.?* When various
independent components (A, B,...) are mixed to form a
solution, the entropy of mixing is given by

Table 3 Modelled values of pore connectivity ¢ = 2", binary logarithm
logz ¢, binary questions Q, binary information entropy H(2), and binary
logarithm of nanopore entropy log, £(2)

Pore con-  Binary Binary Information Binary logarithm of
nectivity ¢ = logarithm questions entropy H(2) nanopore entropy
2" log, ¢ Q (bits) log, E(2)

16 = 2* 4 4 8.01-8 7.07-7

§=2° 3 3 5.99-6 4.99-5

4=27 2 2 3.89-4 2.90-3

2=2" 1 1 1.80-2 0.81-1
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ASmixing = —R(Xa x Inxs + xg X Inxg +...) = —RZx; X Inx;

(11)

where R is the gas constant and x; is the mole fraction of
component . If we apply a methodology similar to that applied
for the derivation of eqn (11) for solutions,> we can obtain a
comparable relation for the mixing of pores, considering them
independent of each other. Let us assume a collection of N
pores, where N is a very large number of the order of Avogadro’s
number. In the present case, the pore numbers per unit mass
(N per g) are in the range of ~10'®, as shown in the footnote of
Table S.I.-2 (calculations not shown). This huge collection of N
pores is differentiated according to their size and measurement
stick. The measuring stick corresponds to the size of the
N, molecule, which upon adsorption onto pores necessitates
a diameter of ~0.5 nm or its multiples. This assumption
was also used for the estimation of information entropy (H)
according to formula (1). The first group (N,) comprises pores
with diameter D, ranging from 0.5 to 1.0 nm, the second group
(Ng) corresponds to diameters Dg ranging from 1.0 to 1.5 nm,
and so on up to 50 nm, which is the upper limit of pore size
determined via nitrogen adsorption porosimetry. The fraction
of pores in each segment is p, = Na/N, pg = Ng/N, ... p; = Ni/N,
respectively. These ratios are precisely the p; values used for the
estimation of information entropy using formula (1). Then, by
mixing all these N pores in an imaginable matrix of N sites, the
number of significantly different arrangements corresponds to
the probability (W) of the system, given as follows:
W= L!., (12)
Na!Ng!. ..

and the corresponding thermodynamic entropy of pore mixing
will be

ASmixing of pores — —kxInW =k x IHL

NA!Npg! (13)

Formula (13) is the classical Boltzmann’s equation that
expresses the change in thermodynamic entropy during mixing
processes. After applying a simplifying technique, which
includes the Stirling’s approximation and multiplication by
the number of particles N, we can calculate the change in the
entropy of the entire system compared with that of the
unmixed case.

n
ASmixing of pores = _kB X N x Zpi 1npi
1

n
:—1.44><R><Zp,-lnpl- (14)

1
where i = A, B..., R=kg X N is the classical relation between the
physical constants (R = 8.31 ] mol™* K, kg = 1.38 x
107> J K ', N = 6.023 x 10** mol "), and parameter 1.44 =
log,(e) is the conversion factor from In to log,.

The above thermodynamic entropy for i = 1.... n groups of
species of total number N is analogous to the binary informa-
tion entropy (H(2)) of the same distribution of species. While
the thermodynamic entropy is due to the positional uncertainty
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of species, the Shannon information entropy, given by formula
(1), describes the compositional uncertainty of the N collection
of species. Thus, the similarity between formulae (1) and (14)
may be expressed in the form:

H(2) = =" pi x 10g,(pi) ~ —ASmising of pores/ (1.44 x R)
1
(15)

The H(2) parameter for the present collection of porous
materials is given by the relation 6 ~ 8; for instance, H(2) =
—0.26 + 2.07-log, c. If this formula is simplified to the form of
H(2) ~ 2log,c, then formula (15) can be expressed in the
following form:

H(2) ~ 21og, ¢ ~ —ASmixingofpores/(1.44 X R)

or —ASpixingof pores ~ 2.88-R x log, ¢ (16)

All parameters in formula (16) are in binary form. Conver-
sion into the natural logarithm form yields a simpler formula:

2R x Inc =R x H(e) ~ or —ASpixingof pores (17)

A similar relationship S = k x H is established in statistical
mechanics, linking the macroscopic properties of a system to
the microstates of its constituent particles. Information entropy
quantifies the uncertainty of these microstates. In the present
case, for c = 16, 8, 4 and 2; H(2) = 8, 6, 4, and 2 bits (see Table 3);
H(e) = 2.30 x H(2) = 18.4, 9.2, 4.6 and 2.3 nats, and the entropy
of pore mixing —AS = 46.1, 34.6, 23.1 and 11.5 J K %, respec-
tively, which are reasonable outcomes. Unfortunately, as far as
we know, there are no relevant theoretical or experimental
values in the literature for comparison.

Explanation of the relationship between connectivity and
information entropy

An explanation for the observed correlation between pore
connectivity and information entropy of PSD may be traced in
the field of statistical physics, referred to as the random
packing of particles (RPP). The relevant literature is extensive.
This operation reflects too the entropy of random pore mixing
described in the previous section. Hence, we focus here on
some works referred to the effect of particle size**>° and the
spread of particle distribution®**' on the number of neighbouring
particles (n).

As shown by Liu et al.,*® in a random collection of spherical
particles, a robust correlation exists between the average number
of neighbouring particles (n) and normalized particle size () (see
Fig. 3). This analysis compiled data from multiple studies®®°
based on the collections of spherical particles with normal (N) or
log-normal (LN) distributions, different distribution widths (o)
and varying strengths of interparticle adhesion (Ad). Remarkably,
regardless of the distribution type (N or LN), its spread (o),
or adhesion strength (Ad), the neighbour number scales with
the particle size according to n ~ *. This result reflects the fact
that large particles have more neighbours (connections) than
small ones.

This journal is © the Owner Societies 2026
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Similar findings were reported by O’Donovan et al.,”” where
theoretical calculations showed that the average contact num-
ber z (~connections) of spherical particles of a certain size
follows systematic relationships with normalized radius (7),
area (@ ~ r?) and volume (v ~ 7°) across different size
distributions (monodispersed, bidispersed, uniform, Gaussian
and log-normal). The resulting scaling formulae take the form:
(number of normalized neighbours or contacts) ~ f(normal-
ized radius)* ~ f(normalized area)’ ~ f(normalized volume)",
where exponentsa > 1, b ~ 1 and ¢ < 1.

These results can be summarized as follows: a random
collection of spherical particles, initially isolated, gradually
approach each other until contact is established. Each contact
point represents a connection c. Naturally, larger spheres form
more connections due to their greater surface area. If D;
denotes the diameter of the i-th sphere, with surface area
A; oc D/, and the connectivity depends solely on the exposed
surface area, then one would expect ¢(D;) oc kD;*. However, not
all surface area is available for contact; hence, the relationship
is generally expressed as c(D;) oc kDf with o < 2 or in
logarithmic form log(c) ~ olog(D).

By replacing random spherical particles with a distribution
of random-size spherical pores, the above arguments lead to
the same outcome: large pores exhibit more connections,
whereas smaller pores exhibit fewer connections. In other
words, materials with a larger maximum diameter (Dy,.,) in
their PSD are expected to show a higher average connectivity. In
the present case, the experimental data between the average
pore connectivity (Caverage) (Table 1) and the maximum diameter
(Dmax, nm) of PSD (Table in S.I.-1) are related by a power law
(formula (18)), such as ¢ oc kD", predicted theoretically.

¢ = 0.98 (Dmax) "’ (18)

With a very strong correlation coefficient R*> = 0.897. The
relevant plot is shown in Fig. 4-upper left. The exponent 1.07
appears smaller than the exponents obtained in previous
studies®®®” referring to solid particles. In those cases, the
surrounding medium (assumed air or vacuum) does not influ-
ence the packing. However, in porous materials, the medium
surrounding the pores is a solid mass forming pore walls.
Therefore, the available packing space for smaller pores around
a larger one is diminished. Consequently, formula (18) expresses
the fact that the values of pore connectivity (c) correspond roughly
to Do, €xpressed in nm. For example, if Dy, = 1, then ¢ &~ 0.98,
if Dax = 2, then ¢ =& 2.06, if Dy, = 4, then ¢ & 4.32, if Dy = 8,
then ¢ ~ 9.07 and if Dy, = 16, ¢ & 17.04.

Another important parameter of particle size distribution is
the standard deviation o¢. Its effect on the number of neigh-
bouring particles (n) in packed particle studies remains
ambiguous®® and depends on the model applied. In relevant
works of Clusel et al.*' and Cronin et al.,*” there is a discussion
on the effect of the spread of log-normal packing distributions
on the resulting number of neighbouring particles (see Fig. 9 in
ref. 32). Theoretical results, obtained from molecular dynamics
simulations and model predictions,*! show that the probability
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of the density of neighbours for packings with log-normal size
distributions of mean = 1 becomes wider and flatter and its
maximum moves to larger values as the standard deviation (o)
increases from 0.01 to 0.3. This means that as sigma increases,
there are more neighbours of variable sizes next to each other.
In the present case of pores, the FWHM of PSD is strongly
related to pore connectivity (¢) according to formula (19)

¢ =3.72 x (FWHM)%® (19)
with a correlation coefficient R* = 0.929. The plot is shown in
Fig. 4-upper right. Relation (19) has a stronger correlation
coefficient than relation (18) ¢ = f(Dmay)- It is of great interest
that regression analysis, separating the effect of D, and
FWHM on connectivity, yields

€ =2.63 X (Dmay)™?® x (FWHM)"*® (20)

with correlation coefficient R* = 0.933 (3D plot is shown in
Fig. 4-lower left part). However, the exponent a = 0.28 of Dy, is
not statistically significant because of the probability value
p = 0.41, while exponent b = 0.46 of (FWHM) is statistically
significant because of p = 0.027. This analysis implies that
FWHM appears as the true driver since it explains better the
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¢ development by stronger relation (19) even without the Dypax
effect given by weaker relation (18). On the same token, Dax
looks important, because it correlates with ¢ according to (18),
but that happens mostly because it is correlated with FWHM.

The strong interdependence between Dy, and FWHM is
critical for establishing the relationship between pore connec-
tivity and information entropy. This dependence is described
by the formula (21):

FWHM = 0.076 X (Dpay)"*" (21)
with a correlation coefficient R> = 0.924 (Fig. 4-lower right part).
As shown in S.1.-8, the experimental PSDs correlate well with
ideal Gaussian distributions. Therefore, D,,,, and FWHM of the
experimental PSDs (see S.I.-2) correspond to the mean value
and variance of normal distributions, respectively. As pore
distributions move to larger Dy« values, they become gradually
broader. In this case, D,y drives pore connectivity because of
the increased number of connections of each pore, as shown by
formula (18). At the same time, FWHM drives information
entropy because of the increased number of fractional prob-
abilities (p;) in formula (1).
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Fig. 4 Graphical presentation of regression results described by formulae (18), (19), (20), and (21): upper left: log(c) = 1.07-log (Dmax) — 0.01, (R? = 0.897);
upper right: log(c) = 0.62-log (FWHM) + 0.57, (R? = 0.929); lower left: log(c) = 0.42 + 0.28:10g(Dymay) + 0.46-log(FWHM) (R? = 0.933). The plane tilts more
strongly along the FWHM axis, confirming that log (FWHM) is the dominant predictor of log(c); and lower right: FWHM = 0.076-(Dpnay)1.913 (R? = 0.924).
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Fig. 5 Top: Correlation between binary information entropy (H(2)) and
FWHM by a power-law H(2) = 2.99 x (FWHM)%288 with correlation
coefficient R?> = 0.94. Bottom: Correlation of nanopore entropy (E(2))
and FWHM via the linear relationship £(2) = —7.19 + 12.30-(FWHM) with
R? = 0.966.

Indeed, as shown in Fig. 5, binary information entropy (H(2))
and FWHM are related by a strong power law H(2) = 2.90 x
(FWHM)"?%° with correlation coefficient R* = 0.933. The binary
nanopore entropy (E(2)) is also related to FWHM via an excel-
lent linear relationship E(2) = —7.19 + 12.30-(FWHM) with R’
= 0.96.

The net result is that the pore connectivity of random-size
pores and the entropy of their distribution move in a parallel
way and their interrelation is physically justified.

Heteroscedasticity

In statistics, the parallel growth in variance with the mean of a
distribution is termed heteroscedasticity and is common
in natural growth processes, fragmentation and aggregation
systems.’>*? In the present case, as the pore domain size
increases, the distribution broadens, which means that larger
pore sizes are less uniform and show greater size dispersion.
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Fig. 6 Upper part: Schematic depicting the principle of heteroscedasti-
city. As Gaussian distributions move to larger mean values, their variance
increases. Lower part: Depiction of the heteroscedasticity of experimental
parameters D,y and the difference between the lower (blue dots ---e) and
upper limits (red dots e) of the FWHM of PSD (data in S.I.-2). The results are
shown in the form of cones employed in the literature for similar statistical
cases. In the x-axis are the Do values (nm). In the y-axis, the total range of

FWHM (nm) is shown by the vertical dashed thin lines (---). The cone-
shaped scatterplot is characteristic of heteroscedasticity and defined by
the low and upper limits of FWHM. The two dashed red (=———) and blue

(=== lines act as guides for the eye.

In Fig. 6-upper part, the general concept of heteroscedasti-
city is depicted in a simplified version. In Fig. 6-lower part, the
heteroscedasticity of the experimental data Dy,,x and the range
of FWHM (not its single value) are shown.

In conclusion, the increase in Dy,.x drives connectivity, as
shown by formula (18). The parallel increase in FWHM (Fig. 4)
drives information entropy as per formula (1). As a result, the
two parameters move in tandem as expressed by formulae (5)
and (6) as long as the corresponding PSDs exhibit hetero-
scedasticity.

The above discussion leaves several questions unanswered.
These include the kind of relation between pore connectivity
and pore entropy in materials with ordered or quasi-ordered
porosity, which often exhibit homoscedasticity, that is, a simi-
lar mean but different variance of pore size distributions.
Another point of interest is the relationship(s) between pore
connectivity and pore anisotropy and/or pore length. A meth-
odology for estimating these two quantities has been detailed
previously by our team and can be found in the relevant
bibliography. Additionally, there is a possible relationship
between (pore) entropy and (pore) anisotropy, a dependence
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that has emerged in different systems and fields like geology,
medicine and astronomy. These queries necessitate further
research work.

Conclusions

In this study, we demonstrated that the Shannon information
entropy (H) of pore size distributions in oxidic alumino-phos-
phoro-vanadate porous solids with random disordered porosity
is strongly correlated with the average pore connectivity (c)
of the porous network. Pore connectivity was estimated using
the Seaton’s method, which relies on the hysteresis loop of
nitrogen adsorption-desorption isotherms. The relationship
between H and ¢ becomes apparent when expressed in the
binary logarithmic form H(2) = A + Blog,(c). The results are
consistent for other logarithmic bases b = 10 or e. However,
employing the binary base (b = 2) offers a conceptual advantage
since binary (yes-no) questions Q can be used to count the
number of connections (Q = log,(c)). The outcome aligns with
the statistical expression of the thermodynamic entropy of pore
mixing (ASmixing of pores); Which parallels the classical paradigm
of mixing in solutions. While thermodynamic entropy (AS)
reflects the positional uncertainty of species, information
entropy (H) describes their compositional uncertainty.

The physical meaning of this correlation lies in the analogy
between a random collection of connected pores and the well-
established models of random packing of spherical particles.
Importantly, the proposed relationship suggests that pore con-
nectivity, a property that is difficult to determine, can be
conveniently estimated via information entropy (H) or nano-
pore entropy (E), which can be derived from any pore size
distribution plot. This is valid only for truly disordered pore
systems.

The statistical base of the correlation between information
entropy (IE) of pore size distributions with average pore con-
nectivity (Cayverage) is the heteroscedasticity observed between the
variance (~ full width at half maximum, FWHM) and the mean
(~ maximum diameter, Dy,,,) of pore size distributions: the
variance (~ FWHM) directly affects information entropy (IE).
The mean (& Dpy,,) directly affects pore connectivity, as
revealed by the model of random packing of spherical particles.

Extension of similar studies to materials with ordered
porosity, such as MCMs, zeolites or MOFs, or even with semi-
ordered porosity, that represent most non-ordered systems, as
well as in materials possessing slit-like pores like carbons of
pillared clays, is needed in order to understand the application
and the limits of the present observations.
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