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Organic solvents and fluorinated Li-salts is the basis of lithium-ion battery electrolytes, and it has
remained unchanged for decades despite significant drawbacks such as thermal instability and high
vapour pressure. One alternative is ionic liquid (IL) based electrolytes. However, the mechanism(s) that
govern ion transport in IL based electrolytes, a property crucial for battery performance, is not yet fully
understood. We here suggest a novel approach to model the ionic conductivity of ILs themselves; using
symbolic regression (SR) to find analytical expressions derived from free volume theory (FVT). Using
molecular descriptors as model inputs, we find several FVT-based models that show high correlations:
R? = 0.97 and R? = 0.94 for the training and validation set, respectively, for an experimental dataset of
22 ILs measured in-house. Moving towards a significantly larger dataset, using data on 338 ILs from 125
publications, we find that our best model has a significantly higher spread in prediction accuracy but still
shows appreciable performance for many ILs (R? = 0.76 and R? = 0.73 for the training and validation set,
respectively). Overall, the FVT derived models perform best for “good” ILs, i.e. with well-dissociated ions,
and worse for those ILs with strong ion—ion interactions. Using data from many publications impacts
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model performance, likely due to significant variations in e.g. impurities and dryness, as well as experi-
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1 Introduction

The discovery of new materials has always been a cornerstone
of scientific and technological advancement. One of the most
transformative technologies during the last decade, the
lithium-ion battery (LIB), required a fundamental understand-
ing of intercalation electrodes, electrolytes and electrode/elec-
trolyte interphases before successful realisation." Today it
powers everything from mobile electronics to electric vehicles
and is becoming increasingly important to efficiently make use
of renewable energy. Improving and understanding the electro-
lyte remain one key challenge of LIBs, but the overall composi-
tion has in fact not changed much during the last two-three
decades.” Yet, current LIB electrolytes, all relying on organic
solvents, fluorinated Li-salts, and various tailored additives,
suffer from thermal instability and high vapour pressures,
amongst other drawbacks.>™®

One alternative is to increase the Li-salt concentration to ca.
3-5 M, i.e. highly concentrated electrolytes (HCEs), or to resort
to ionic liquid (IL) based electrolytes.”® These types of
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electrolytes have shown to offer several advantages, such as
improved high voltage performance, suppressed dendrite
growth when using lithium metal anodes, and overall a higher
level of safety.'®'

Ionic interactions will have strong influence on the electro-
Iyte properties and the ion transport in these types of electro-
Iytes. In conventional, ca. 1 M Li-salt in organic solvent based
electrolytes, ion transport is mainly governed by a vehicular
mechanism,"? but in HCEs and IL-based electrolytes the solva-
tion shells are less stable and not always even definable, why
other conduction mechanisms come into play.**™*°® Looking at
IL-based electrolytes in particular, the mechanism(s) that gov-
ern ion transport is not yet fully understood. One hypothesis is
that ions migrate by jumping between voids.'” This is sup-
ported by free volume theory (FVT), which has been used to
describe transport phenomena in various glass formers, includ-
ing ILs."872°

According to FVT, voids appear in liquids due to thermal
redistribution of a free volume v;. Given a critical volume v and
a factor y, accounting for overlapping voids, molecules diffuse
when a nearby void reaches a critical value yv;. The diffusion
coefficient of the molecules is related to the free volume with a
temperature dependence according to

D o VTexp (—%) (1)
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Combining this with the Nernst-Einstein equation for con-
ductivity:
2
ng~D
o= 2
ks T (2)

for a concentration n of charge carriers with charge g (kg
represents Boltzmann’s constant), ionic conductivity can be
related to the free volume according to:

o X g’ exp (—ﬁ) (3)
kB\/T Ve
This expression assigns an explicit temperature dependence to
the ionic conductivity by the factor 1/+/T, but the free volume v;
will also be a function of temperature.

Experimentally and at a macroscopic level, the electrolyte is
indeed commonly characterised mainly by its ionic conductiv-
ity, in many cases for the simplicity in contrast to any attempt to
fully account of its ion transport properties. For ILs there are
some rules of thumb that relate (ion) transport dynamics to the
molecular structure of the ingoing ions, but with claims that
over 10'® ILs exist it has proven difficult to find general
relations.”* Considering how crucial adequate ion transport is
for battery performance it is of considerable interest to under-
stand structure-property relations in ILs, as well as all electro-
lytes, better. Here modelling approaches become indispensable.

Upon this base, we here aim to build models that relates the
ionic conductivity to the molecular structures of the IL ions, as a
stepping stone towards understanding the ion transport better
and eventually constructing similar models for IL-based LIB
electrolytes, i.e. Li-salt doped ILs.>** Previous modelling of ion
transport of ILs can roughly be divided into two approaches;
those that use molecular dynamics (MD) simulations and extract
transport properties from the dynamics,”>”® and those that
construct predictive, often analytical, models directly from a set
of descriptors.?** Recently however, there has been a significant
shift towards machine learning (ML) methods, with models
based on support vector machines (SVMs), random forests
(RFs) and many versions of neural networks (NNs).**7® While
NN approaches often generalise well and offer very accurate
property predictions, they are generally not constrained by any
physical laws and require large amounts of data. When training
data is scarce, NNs are prone to overfitting, they may learn the
training examples extremely well, yet fail to generalize to unseen
data. Modern NNs are typically over-parameterized, giving them
sufficient capacity to capture not only the meaningful structure of
the problem but also incidental fluctuations, noise, or rare
coincidences present in the training set. This primarily degrades
their ability to interpolate reliably within the domain spanned by
the available data. In contrast, difficulties with extrapolation arise
even for well-regularized models, simply because they are asked
to predict outside the region represented in the training set.
Overfitted models can therefore appear highly accurate during
training while failing to capture the genuine physical trends
required for robust predictive performance. Physics-Informed
NNs (PINNs) address these problems by incorporating known
physics in the models, which has shown to improve predictive
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performance for out-of-distribution data.’”*® However, the map-
ping between input features and predictions remain complex. A
viable modelling alternative, and the one we apply here, is to use
symbolic regression (SR), a supervised ML method which tries
to find mathematical expressions that best explain data ie.
analytical models that are directly interpretable and further-
more can be constrained to fulfil dimensional requirements and
physical laws.

2 Methods

Overall, three steps were applied: collecting and constructing
datasets, computing molecular descriptors, and running the
actual SR searches.

2.1 Collecting and constructing datasets

Two different datasets were considered, one with only 22 different
ILs, all provided by Solvionic for the study by Nilsson-Hallen
et al,*® and one with 338 ILs collected from the database
ILThermo.*®*' The first dataset consists of only 176 data points,
whilst the second has 3933. For simplicity and w.r.t. end-use for
battery application only aprotic ILs were considered. For both
datasets, the measurement records were grouped per IL, using
their IUPAC names as identifiers. To facilitate the computation of
molecular descriptors, the IUPAC name was parsed to SMILES
strings, one for each ion. For details, see Note 1 in the SI.

For the first dataset, all ILs were of the highest available
purity (99.9% or 99.5%) and used as received. The dataset
included cations from imidazolium, ammonium, pyrrolidinium
and piperidinium families, combined with the anions [BF,],
[PFe] ™, [Tf], [FSI]” and [TFSI] . For each IL, the ionic conduc-
tivity was measured in steps of 10 K from 298.15 to 368.15 K
using dielectric spectroscopy, yielding 10~ '-10" mS cm™ . For
experimental details, see Nilsson-Hallen et al.*®

The second dataset is more diverse, with data originating
from 125 publications and ILs based on no less than 169 cations
and 66 anions. Although a majority of the ILs were based on
imidazolium and pyridinium cations, or other ring structures
with nitrogen atom(s), the dataset also included ILs based on
cations with different forms, such as phosphonium, cyclopro-
penium and sulfonium cations. For several ILs, there were more
than one publication source; only the one with the lowest
reported ionic conductivities was included, on the assumption
that those correspond to the purest ILs. The ionic conductivities
covered a much wider range, 10 °>-10> mS cm ™" at temperatures
between 210 and 571 K.

2.2 Computing molecular descriptors

We used the open-source toolkit RDKit,** which given a SMILES
string can compute many molecular descriptors and take
different conformations into account. The conformer genera-
tion was done using what is considered the best-performing
freely available conformer generator,”® the ETKDG method,
based on a distance geometry algorithm that also leverages
experimental torsion angles and uses chemical constraints.**
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Table 1 The descriptors available for the SR search

Descriptor Symbol Unit
Temperature T K

van der Waals (vdW) volume % A®
Radius of gyration R A
Inertial shape factor z ptA?
Asphericity A N/A
Eccentricity E N/A
Spherocity index { N/A
Norm of dipole moment u CA
Gini coefficient (of charge distribution) G N/A

We ran energy minimizations using the MMFF94 force field to
obtain the lowest energy conformer, to subsequently be used for
computing the molecular descriptors that require geometrical
information.”> To compute partial charges, we combined the
RDKit with the open-source toolbox Open Babel*® and used the
charge equilibration method (Qeq), which has been shown to give
charges that agree well with experimental dipole moments.*’
Finally, we intentionally restricted our set of descriptors to only
those that carry a clear physical meaning, which besides molecular
volume includes shape and charge distribution (Table 1). For
details on how the descriptors are calculated, see Note 2 in the
SI. To distinguish which ion a descriptor refers to, we used the
subscripts ¢ (cation) and a (anion).

2.3 Symbolic regression implementation and runs

The SR implementation used the open-source library PySR*®
and its multi-population evolutionary algorithm that also opti-
mises for unknown scalar constants. In an evolutionary algo-
rithm for SR, analytical expressions are represented by
expression trees, with leaf nodes for the variables and internal
nodes for the operators. An expression tree that computes the
ionic conductivity (o) as a function of three variables and three
operators is schematically shown in Fig. 1. To progress, the
algorithm suggests new expressions by applying mutation
operators to the pool of existing expression trees and then
computes fitness scores based on a loss function. To not have a
growing population of expression trees, the fitness scores were
compared in tournament selections where only the fittest
individuals were kept. By running several populations in

o=(} +@®)-exp(F*)

i &>

Fig. 1 A schematic illustration of an expression tree that computes the
sum of two input variables and subtracts the exponent of a third one.
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parallel, the algorithm becomes more efficient whilst also
promoting a greater diversity in the found expressions.

The ultimate aim was to find generic functions that model
the ionic conductivity as a function of temperature (7), a set of
molecular descriptors (x;), and numerical constants (p;). To find
expressions that are consistent with FVT and eqn (3), we
constructed a template function:

)
L) @

. :f(x|,x2, o) exp( g(x1,x2,..
VT h(T,x1,x2,.

for which SR is used to find the functions f, g and 4. We treat
the free volume in ILs as a more abstract concept than a single
variable vr and use the different molecular shape and charge
descriptors (Table 1) to express the unknown functions. We
choose to use an expression derived from FVT as our template
function as we want to enforce physically motivated models that
fit with the hypothesis of an ion-hopping mechanism governing
ion transport. In principle any type of template function could
be used, for instance the semi-empirical Vogel-Fulcher-Tam-
mann equation. When searching for the functions, only opera-
tors O € {+, —, %, =+, A} are allowed in the expressions, and we
define a complexity C as the sum of the number of operators,
variables and constant scalars used. To not render overly
complicated expressions we set Cpyax = 30.

Since the ionic conductivity has a strong temperature depen-
dency, often across several orders of magnitude, it is beneficial
to use a loss function that handles relative errors when comput-
ing the fitness of an expression. Therefore, we transformed our
targets (y) and predictions (y) to logspace before computing the
root mean squared error (RMSE):

where the sum runs over the N data points. We also computed
the RMSE across individual ILs and added an average of those
RMSEs to the loss. This helps to ensure that the models capture
the temperature dependency of ionic conductivity well.

To further promote useful and physically motivated models,
we made use of dimensional constraints. For ionic conductivities
measured in mS cm ™, eqn (4) must have units mS cm " K%?
whilst functions fand g must divide to a dimensionless quantity.
To promote dimensionally consistent expressions, we penalize
those expressions that do not meet the requirements on f, g and &
by adding an additional term 8 = 10* to the loss. To not be too
restrictive about the search space, however, we do allow scalar
constants to have any dimensionality.

We ran PySR in a distributed setting using 32 cores for
72 hours. To ensure that the SR search does not get stuck in a
local optimum of the search space, we ran 8 separate instances
of the SR search in parallel. This will ideally generate a large
pool of candidate expressions with various complexities. To
find the model that best balances accuracy and complexity, we
ran a model selection algorithm that assigns scores to the
discovered expressions. By computing a cost ¢ for each model,
the score function first selects the subset of models that have
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the lowest cost for a given complexity (C). Then, a second subset
of n models that have a cost equal or within a maximum 5% of
the lowest cost achieved are considered. For these n models, a
score (S) was computed by taking the derivative of the negative
logarithmic cost with respect to complexity:

0
5= ~5¢(oge) (6)
The highest scoring model was then considered the best. To
align with our desire to promote models that are performant
when it comes to capturing the temperature dependency of
individual ILs, the cost was defined as the average of RMSEs
computed across every IL in the dataset.

3 Results and discussion

We start by showing and discussing the performance of the
two best models, one for (i) - the in-house dataset — and one
for (ii) - the large dataset collected from ILThermo - before we
continue to explore how the models compare and perform for
different types of ILs.

3.1 In-house dataset

For this dataset, our best model has a complexity C = 27 and is
given by:
Vepa—ity
(cho — Ap1((Ge — p2)(Ea + (¢ —173))71)67 Tps—ps

0= \/T (7)
and is thus a function of many properties: asphericity (4), van
der Waals volume (V), Gini coefficient (G), eccentricity (E),
spherocity index ({), norm of the dipole moment (1) and the
temperature (7). The numerical values p; are all positive and
given in Table S1. The model predictions (osg) show a good
agreement with the experimental targets (dexp), both for the
training (R* = 0.97) and validation (R*> = 0.94) set (Fig. 2). The
similar prediction accuracies indicate that the model does not
overfit. Furthermore, the model predictions for four different
ILs [Nj116][TFSI] (orange), [CoCiIm][PF¢] (light blue), [Pyri4]-
[OTf] (dark blue) and [N,,,3][FSI] (green) show how it captures
the temperature dependencies well across the dataset (Fig. 3),
with smooth predictions across the temperature ranges,
another sign that it does not overfit. The latter can partly be
attributed to the comparatively limited expressiveness of an
analytical model. Combining the SR search with the template
function in eqn (4) helps to find physically motivated expres-
sions - one of the major reasons for choosing SR over NN,
which often overfit in the limited data regime as the number of
model parameters in a NN often will exceed the number of data
points in the training set, increasing the risk to memorize data
without capturing true correlations."’

As for the expression that constitute the found model
(eqn (7)), we highlight that the molecular volume of the cation
is larger than the norm of the dipole moment of the anion for
all ILs in the dataset. This means that the exponential captures
the expected positive correlation between ionic conductivity
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Fig. 2 Measured ionic conductivities vs. the model predictions computed
using eqgn (7), found by SR applied to the inhouse dataset. Orange circles
indicate training data, whilst blue triangles represent validation data.
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Fig. 3 Measured ionic conductivities (markers) and model predictions

(solid lines) found using eqn (7) for a selection of four ILs plotted against
temperature.

and temperature, and also suggests that ILs with larger cations
have lower conductivities, which is consistent with structural
diffusion. Furthermore, the model indicates that the molecular
structure is important in determining the magnitude of the
ionic conductivity, as molecular asymmetry is captured by the
asphericity, eccentricity, and spherocity index in the pre-factor.
As a higher asphericity indicates a more asymmetric ion, a
higher eccentricity a more elongated ion, and a higher sphero-
city index a more spherical ion, the model suggests that ILs
with bulkier and more asymmetric ions have lower ionic
conductivities. It is a rather complex interplay, though, as ILs
with more elongated anions and a high charge delocalization
on the cation (by the Gini coefficient), appears to give higher
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conductivities. While the size of the dataset limits the extra-
polation possible, the excellent prediction accuracy indicates
that an ion-hopping mechanism is responsible for the ion
transport in these ILs.

3.2 Large dataset
For this dataset, our best model is given by:

Repr—Rap3+ps
- Aaps
. poplEce TG, pe—p7

VT

®)

This model has a complexity C = 25 and is a function of the
properties: eccentricity (E), radius of gyration (R), Gini coeffi-
cient (G), asphericity (A) and temperature (7). The numerical
values p; are all positive and given in Table S2. The spread in
prediction accuracy is significant for both the training (R* =
0.76) and validation (R*> = 0.73) set, although the intensity peak
that indicates where most data points lie is centred around the
ideal prediction line (Fig. 4 and Fig. 5). Examples of ILs that the
model capture the ionic conductivity trend well for include
[Psss1a][Hex]| (orange), [Nyog][TFSI| (light blue), [BMIM][PF]
(green) and [S,,,][TFSI] (dark blue) (Fig. 6). This indicates that
the model has generalised to a relatively diverse set of ILs, here
displaying good performance for both phosphonium-,
ammonium-, imidazolium- and sulfonium-based ILs. Yet, the
model struggles to cover all ILs in the dataset. This could
indicate that FVT is not a suitable description for all ILs, or
that the molecular descriptors we use are insufficient to
describe the shape and size of the voids that drive molecular
diffusion. It should be noted, though, that the relation for ionic
conductivity as derived from FVT (eqn (3)), only is a propor-
tional one, not aimed to predict any absolute values. If the
model can capture the temperature dependency of ionic con-
ductivity reasonably well for an IL, that could still be indicative
of an ion transport governed by the formation of sufficiently
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Fig. 4 Measured ionic conductivities vs. the model predictions for the
training set, computed using eqgn (8) found by applying SR to the large
dataset.
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Fig. 5 Measured ionic conductivities vs. the model predictions for the
validation set, computed using eqgn (8) found by applying SR to the large
dataset.
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Fig. 6 Measured ionic conductivities (markers) and model predictions
(solid lines) found using eqgn (8) for a selection of four ILs plotted against
temperature.

large voids, even if that model would have significant devia-
tions in absolute terms.

The expression that constitutes the model (eqn (8)) looks
quite different as compared to the one found for the in-house
dataset (eqn (7)). The model indicates that cations with more
elongated shapes tend to yield ILs with higher ionic conductiv-
ities, which is somewhat counter-intuitive, as one might expect
asymmetric and/or bulky ions to diffuse more slowly. However,
elongation is a different structural attribute from overall asym-
metry, and ions that are extended along a single axis may, in
fact, diffuse more readily despite not being particularly sym-
metric. Why only the eccentricity appears in the pre-factor is
hard to say, but it is possible that our upper bound on the
model complexity, Cpax = 30, do not leave much room for the
SR search to explore complex expressions in both the pre-factor
and the exponential. For the in-house dataset the best model
found yields accurate predictions despite featuring a simple

Phys. Chem. Chem. Phys.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp04143k

Open Access Article. Published on 19 January 2026. Downloaded on 1/20/2026 10:34:09 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

expression in the exponential, but the considered ILs were
limited both in number and diversity. When the SR search for
the large dataset instead finds an expression with a more
complex exponential term, this suggests that the conductivity
response to temperature can vary significantly between different
ILs and that the radius of gyration of both the cations and the
anions influence this, but with opposite signs, which suggests
that whilst bulkier cations lower the conductivity, large anions
increase it. This has previously been attributed to the fact that
larger anions render weaker interionic interactions.”® The
denominator in the exponential features a measure of anion
asymmetry, the asphericity, combined in the same term as a
description of charge delocalization in the anion, the Gini
coefficient. Higher asphericity indicates a more asymmetric
anion and a higher Gini coefficient corresponds to a more
imbalanced charge distribution. As this term increases, the
denominator becomes smaller, which corresponds to a lower
ionic conductivity. Since a more imbalanced charge distribution
should make it easier for the anion to form stronger ionic
interactions, thus lowering the ion mobility, it is reasonable that
anions with higher Gini coefficients would give ILs with lower
ionic conductivities. Overall, this suggests that both the shape
and charge distribution of the anion play important roles in
determining the ionic conductivity of ILs. We also emphasize that
both the numerator and the denominator in the exponential
remain positive for all ILs in the dataset, ensuring the expected
positive correlation between temperature and ionic conductivity.

To better understand where the model fails, we categorize
ILs based on both their cation and anion, averaging the RMSE
(computed per IL across a temperature range, in logspace) for
each category (Fig. 7). The combination of a triazolium cation
and a sulfonate anion shows the highest error, owing to a single
IL: [,MPrTr|[Tos]. In the original study providing the

Borate -

Carbanion

Carboxylate
Halide/Pseudohalide
Inorganic fluoroanion
Oxoanion
Perfluoro-sulfonate
Phosphate/Phosphonate
Sulfonate

Sulfonylimide
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experimental data, the authors do note that the tosylate anion
gave an IL with a significantly higher relative viscosity and lower
ionic conductivity as compared to analogous ILs based on other
anions, such as [NO;]™ and [BF,] . They attribute this to strong
n-1 interactions between the aromatic rings of the tosylate
anion and the triazolium cation.’ Considering how our model
predicts the ionic conductivities of other ILs in the study to a
much higher accuracy, it appears that it fails to capture these
strong interactions. This could also explain why the model
performs worse for ILs based on morpholinium, which can
form strong ionic interactions as the ether groups act as dipole
sites. In line with the observed error, this effect is particularly
strong for polarizable anions such as dicyanamide, a pseudo-
halide. Similarly, both the phosphonium-carbanion and the
phosphonium-halide/pseudohalide ILs report comparatively
low ionic conductivities, attributed to strong association, and
these are two other example of where our model fails to make
accurate predictions.’>*® Strong interactions do render poor
ILs, often classified by the amount of deviation from ideal
behaviour in a Walden plot, commonly attributed to the for-
mation of neutral ion-pairs.>* Cations with long alkyl chains can
have similar effects, as dispersive forces may create a meso-
scopic structure with small, localized charge regions separated
by neutral domains. This could be another reason for why our
model fails for the morpholinium group, which include cations
with alkyl chains of up to nine carbons.’®

As our FVT-inspired model builds on the Nernst-Einstein
relation (eqn (2)) that assumes non-interacting ions, our model
should in principle, by design, be less accurate for all ILs with
strong interactions. Although the SR approach allows for con-
siderable corrections to eqn (3) using a more general Ansatz
(eqn (4)), it is likely quite hard to have a single model accurately
capture the ionic conductivity of ILs that appear in very

o
ot

) — — [\)
o o o o
RMSE (per IL)

Fig. 7 A heatmap showing how the average RMSE (computed per IL across a temperature range, in logspace) differ across different types of ILs. In the
vertical direction the ILs are classified based on their anion category, and on the horizontal based on their cation type.
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Fig. 8 Measured ionic conductivities vs. the model predictions for the in-
house dataset using eqn (7) (orange circles, found by SR applied to the in-
house dataset), and eqn (8) (blue triangles, found by SR applied on the large
dataset).

different regions of a Walden plot, it will be more accurate for
ILs closer to the ideal Walden line. The ILs with the small
lithium and potassium cations are also very far from ideal ILs;
most ILs consist of bulky organic cations.

Although it might seem discouraging that the model has not
managed to accurately describe the ionic conductivity of all ILs
in the dataset, it is important to reflect on what this means.
Clearly, searching for expressions inspired by FVT using SR do
not yield a model than generalise across the entire dataset.
However, the model still works very well for many ILs, with less
accurate predictions primarily observed for non-ideal ones.
This suggests that the SR approach can capture fundamental
correlations that apply to the more idealised systems.
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To strengthen this belief, we explore how all eight found
models of complexity C = 25 compare. Our SR implementation
is inherently stochastic and there is no guarantee that different
runs will yield similar models, especially if there would be no
clear underlying relationships in the data. Yet, looking at how
the models differ in their predictions, we find that they agree to
a high extent, both for very accurate predictions such as the
ones for [HPy|[TFSI], and for considerably less accurate exam-
ples like [4MPrTr][Tos] (Fig. 9). Instead of a case where each SR
search overfit to different chemical motifs, the discovered
models converge to make similar predictions. Importantly, this
shows that our models capture fundamental correlations and is
a testament to the robustness of the SR approach.

To further test if the model from the large dataset has
captured the relevant physics we cross-test it on the smaller
in-house dataset and compare vs. the model represented by
eqn (7). Unfortunately, it does not achieve the same prediction
accuracy and tends to underestimate the ionic conductivities
(Fig. 8). A possible/plausible explanation is that although the
model performs best for more ideal ILs, the exposure to less
ideal ILs during training has given it suboptimal performance
across the board. Indeed, the loss function guiding the SR
search punishes models that completely ignore a subset of ILs,
and instead rewards those that display decent performance for
many ILs. Especially, as discussed above, the large dataset
contained several ILs with strong interionic interactions and
low ionic conductivities, why it is reasonable to expect that the
SR search tried to find models that adapted at least somewhat
to these data, which could manifest itself as underestimations
of the ionic conductivities.

On a more general note, the difficulties of dealing with
experimental data sourced from 125 different publications
should not be underestimated. In many cases, the database
used to construct the dataset, ILThermo, has reported ionic
conductivities that are multiple times or even magnitudes
higher than other data for the same IL. These differences can
likely be explained by variations in sample purity or dryness,
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1000 / T (K1)

2.8 3.4

Fig. 9 The model prediction differences across eight independently discovered SR models of complexity C = 25, for an IL the model gives accurate
predictions for (left, [HPy][TFSI]) and an IL that the model fails to describe (right, [4MPrTr][Tos]). The shaded areas give the prediction ranges, the solid lines

represent the mean predictions and the circles are experimental data.
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which is known to have a considerable effect on the physical
properties of ILs.”®®” When several publications had data on
the ionic conductivity of a specific IL, our rule of always
choosing the data series with the lowest reported ionic con-
ductivities could help filter out less pure ILs, but for many there
is only one publication and set of data.

4 Conclusions

FVT and SR have been used to find a set of analytical models
that describe the temperature-dependent ionic conductivity of
ILs, with molecular descriptors related to the shape and charge
distribution of the ions as model inputs. For a dataset collected
under controlled measurement conditions, SR proved itself as a
performant modelling alternative, giving an analytical model
with a good prediction accuracy across all 22 considered ILs
without overfitting. This highlights the advantage of using SR
in the limited data regime where conventional ML methods
often overfit.

Moving to a considerably larger dataset collected from the
database ILThermo, SR found symbolic models that could
capture the temperature dependency of many ILs, but with a
relatively high spread in prediction accuracy. Grouping the ILs
based on their constituent ions, we observe that the model
performs better for more ideal ILs. When ionic interactions
become stronger, or long alkyl chains create mesoscopic order-
ing with large neutral domains, the model predictions become
less accurate. It appears difficult to capture the conductivity
behaviour of ILs with very different amounts of ion pairing in a
single model, at least when enforcing an expression consistent
with FVT. It is likely that the diversity of the two datasets had an
impact on the model performance even for more ideal ILs, this
as the best model for the larger dataset tends to underestimate
the ionic conductivities of the smaller dataset and does not
achieve the same performance as the first model. Allowing for a
model with multiple terms, each one consistent with the
expression in eqn (3), could perhaps allow the model to general-
ise better. This would, however, come at the expense of model
complexity.

The lack of control we had over the large dataset is also
believed to be a contributing factor to the spread in prediction
accuracy. As even trace amounts of water or other contaminants
are known to affect the ionic conductivity, the model perfor-
mance should in practice be limited by the variation in sample
purity. This further points towards controlled, in-house mea-
surements, as the ideal setting for SR. However, there is a
strong argument for reusing data when possible, and in future
studies it would be interesting to address the issues that arise
from dealing with data from multiple sources.

Finally, the present models and the SR approach we have
designed are most useful stepping-stones towards also model-
ling the ionic conductivities of IL-based electrolytes for LIBs,
but as we then must expect strong ionic interactions by the
introduced lithium cations there is at the same time no simple
blue-print solution.
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