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Understanding the flexibility of protein—nucleic acid complexes, often characterized by atomic
B-factors, is essential for elucidating their structure, dynamics, and functions, such as reactivity and
allosteric pathways. Traditional models such as Gaussian network models (GNM) and elastic network
models (ENM) often fall short in capturing multiscale interactions, especially in large or complex
biomolecular systems. In this work, we apply the Persistent Sheaf Laplacian (PSL) framework for the
B-factor prediction of protein—nucleic acid complexes. The PSL model integrates multiscale analysis,
algebraic topology, combinatorial Laplacians, and sheaf theory for data representation. It reveals topolo-
gical invariants in its harmonic spectra and captures the homotopic shape evolution of data with its
non-harmonic spectra. Its localization enables accurate B-factor predictions. We benchmark our
method on three diverse datasets, including protein-RNA and nucleic-acid-only structures, and
demonstrate that PSL consistently outperforms existing models such as GNM and multiscale FRI (mFRI),
achieving up to a 21% improvement in Pearson correlation coefficient for B-factor prediction. These
results highlight the robustness and adaptability of PSL in modeling complex biomolecular interactions
and suggest its potential utility in broader applications such as mutation impact analysis and drug design.

1 Introduction

Proteins and nucleic acids, including DNA and RNA, are some
of the most essential building blocks of life. Proteins are
involved in many vital processes, including cell signaling, gene
regulation, transcription, and translation. Some of the key
functions of proteins are binding (e.g., to DNA in DNA poly-
merase), catalysis (e.g., DNA polymerase catalyzing DNA repli-
cation), acting as molecular switches (e.g., GTPases catalyzing
GTP hydrolysis, in turn switching “off”” cellular processes), and
providing structure to cells and organisms (e.g., actin, collagen,
keratin, and silk)." Nucleic acids frequently act in conjunction
with proteins to carry out important functions, such as gene
expression and the storage and transmission of genetic
information.>> One of the most notable protein-nucleic acid
complexes is the ribosome, mostly composed of RNA in addi-
tion to many smaller proteins, which synthesizes proteins and
connects amino acids into polymer chains.® Another key
complex is RNA polymerase, an enzyme that carries out
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transcription, the process of synthesizing RNA using a DNA
sequence, or template.

Protein rigidity and flexibility are both crucial for protein
structure and function.®” Protein rigidity gives rise to the three-
dimensional (3D) structure of proteins, and this 3D structure
determines protein functions."® Protein flexibility plays a role
in particular protein functions’ like folding and interactions
with other molecules, including nucleic acids. Nucleic acid
flexibility is crucial for other biological processes, such as the
role of DNA and RNA flexibility in packing as well as interac-
tions between nucleic acids and proteins.>® While there has
been extensive study of protein flexibility in recent decades,’
historically, much research on the flexibility of biomolecules
primarily considered flexibility in the context of molecule
motion and interaction. However, due to the discovery that
proteins undergo thermal fluctuations even in neighborhoods
of their native conformations (i.e., folded states), flexibility is
now understood to be an intrinsic property of proteins."*'*

There are multiple experimental approaches to measuring
the flexibility of biomolecules, including X-ray crystallography,
nuclear magnetic resonance (NMR), and single-molecule force
experiments.’® Protein flexibility, which can be measured by
the B-factor, also called the Debye-Waller factor or temperature
factor, is defined using the mean displacement of a scattering
center during X-ray diffraction due to the thermal motion of
atoms.'® In addition to giving insight about the flexibility of
atoms and amino acids in a protein structure, the B-factor also
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provides information about other protein functions, including
the protein’s thermal motion, activity, and structural stability."”

Due to the significant differences in proteins and nucleic
acids, models attempting to analyze the flexibility of protein—
nucleic acid complexes must account for this variability. For
instance, amino acid residues and nucleotides—the building
blocks of proteins and nucleic acids, respectively—have differ-
ent length scales, and thus multiscale models such as PSL are
advantageous for capturing this information.*"'® Many existing
models for flexibility analysis utilize only one scale parameter,
limiting their applicability on molecules with interactions over
a wide range of scales. Notable examples include the aniso-
tropic network model (ANM)" and Gaussian network model
(GNM),*°>* which are types of elastic network models (ENMs)
and are some of the most popular methods for protein flex-
ibility analysis.** > ENMs treat the protein as a network, where
the nodes are represented by the amino acid residues.'**"%7>°
The first few eigenvalues of the network connectivity matrix
reveal the long-time dynamics of proteins and can be used to
predict B-factors. This process allows for the analysis of large
proteins whose dynamics at large time scales would be intract-
able to traditional molecular dynamics (MD) simulations.**"*°

The Gaussian network model typically outperforms the
anisotropic network model in predicting B-factors,***' and
GNM has also been shown to be about one order more efficient
than other existing flexibility analysis models.*® Despite its
advantages and popularity, GNM experiences difficulty in mak-
ing predictions for many large biomolecules.*** Park et al.*"
conducted extensive experiments applying GNM to predict B-
factors on sets of relatively small, medium, and large protein
structures. Although GNM achieved better results than normal
mode analysis (NMA) on these data sets, it was unable to
accurately predict B-factors for many structures.

Additional methods have emerged to overcome the disad-
vantages of GNM and ANM, including differential geometry
analysis®® as well as multiscale GNM (mGNM) and multiscale
ANM (mANM) methods, which significantly improve protein B-
factor prediction with respect to traditional GNM and ANM.>”
In particular, traditional GNM uses a single cutoff distance,
limiting its predictive ability for molecules with interactions at
multiple length scales, thereby motivating the mGNM and
mANM methods. Another particularly successful method is
the flexibility-rigidity index (FRI),>® which is built on the theory
of continuum elasticity with atomic rigidity (CEWAR). FRI is a
structure-based approach that relies on two assumptions: that
protein functions are entirely determined by a protein’s struc-
ture and environment, and that protein structure is determined
by a protein’s interactions.’ These assumptions allow FRI to
bypass the Hamiltonian interaction matrix used in ENMs,
leading to significantly lower computational complexity. Adap-
tations such as fast FRI (fFRI)** have further streamlined the
process. Additionally, multiscale FRI (mFRI) has been shown to
improve the performance of FRI on certain challenging protein
structures for GNM, again largely due to the single cutoff
distance employed by GNM.** Both GNM?*® and FRI® (including
mFRI) have also been used to predict the flexibility of protein-
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nucleic acid complexes, with two-kernel mFRI demonstrating
marked improvement over both GNM and FRI.> More recently,
an FRI method has been utilized for chromosome flexibility
analysis, slightly improving predictive accuracy and signifi-
cantly improving computational efficiency compared to
GNM.”’

Topological data analysis (TDA) has also been used as a
technique for biomolecular study, and persistent homology has
emerged as a particularly useful topological tool.***° TDA has
been widely applied to molecular sciences.’® However, persis-
tent homology has several drawbacks, including its inability to
capture non-topological information.*' To address these draw-
backs, persistent topological Laplacians (PTLs), also simply
called persistent Laplacians, were introduced by Wei and his
coworkers in 2019*** as a new approach to integrate the
topological and geometric knowledge gained from persistent
homology and multiscale graphs, respectively. Many other PTLs
have since been developed, including the persistent path
Laplacian,*® persistent directed graph Laplacian,** persistent
hyperdigraph Laplacian,”® and persistent sheaf Laplacian
(PSL).*® Like many TDA methods, most of these algorithms
are global, making them ill-suited for flexibility analysis, which
requires information about individual atom sites in a
biomolecule.*” However, PSLs are capable of generating local
information, thereby providing features for individual atoms in
a protein and enabling the prediction of flexibility at specific
sites. Other local persistent homology and persistent spectral
methods have been used for RNA data analysis, including RNA
flexibility prediction.*®*° In addition to encoding local infor-
mation, PSLs also retain the benefits of other persistent topo-
logical methods by capturing geometric and non-topological
information. For more detail about recent advances in TDA, we
refer the reader to ref. 50.

Recently, we have demonstrated the success of the persistent
sheaf Laplacian (PSL) model in predicting protein B-factors.'®
While many existing topological approaches to molecular biol-
ogy produce information about a molecule as a whole, the PSL
model enables atom-specific feature generation, supporting its
use for protein flexibility analysis. Additionally, due to its use of
cellular sheaves, the PSL model allows for the inclusion of non-
spatial information in addition to the topological information
inherent to many TDA methods, which contributes to its
predictive ability.

In the present work, we extend the application of the PSL
model from proteins to protein-nucleic acid complexes. Other
models, such as multiscale FRI (mFRI), have similarly demon-
strated success in both protein and protein-nucleic acid flex-
ibility analysis. Thus, the multiscale nature of the PSL model,
also a feature of persistent homology methods and other
persistent topological methods, supports this extension.
Furthermore, the PSL method demonstrates marked improve-
ment over GNM on a benchmark data set, achieving a 21%
increase in the average Pearson correlation coefficient com-
pared to GNM for one representative model. In addition to its
improvement over GNM, the PSL model also performs well
compared to a two-kernel mFRI method from the literature.’
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One benchmark data set contains a subset of nucleic-acid-only
structures, on which the PSL model also excelled compared to
mFRI. This promising performance on varied structures
demonstrates the strengths of the PSL model and suggests
potential utility for other vital and complex molecules with
interactions at multiple scales.

The remainder of this manuscript is organized as follows:
Section 2 presents the results of the present work on data sets
from the literature, Section 3 provides discussion of our results
as well as a few case studies, and Section 4 reviews persistent
sheaf Laplacian theory and describes the method of PSL feature
generation used in our experiments. Specifically, Section 2.1
introduces the data sets used for benchmarking the PSL model.
Section 2.2 reviews the parameters used in generating the PSL
features for our model. Section 2.3 presents the results of the
PSL model on two protein-nucleic acid data sets, including
comparisons of the PSL method to existing results. Section 2.4
presents new results for a set of protein-RNA structures, Sec-
tion 3.1 contains a few selected protein-nucleic acid complex
case studies to illustrate our model’s advantages.

2 Results

2.1 Data sets and coarse-grained models

Given the demonstrated success of the PSL model for protein
flexibility analysis,'® the present work extends this analysis to
complexes consisting of both proteins and nucleic acids.
Accordingly, the experiments in this section were performed
on three data sets of protein—nucleic acid structures. The first
data set, introduced by Yang et al.,*® contains 64 structures, 19
of which consist of only nucleic acids (no amino acids).®> The
second data set of 203 high-resolution protein-nucleic acid
complexes was introduced by Opron et al.® The third data set of
specifically protein-RNA structures was previously used by Liu
et al.>* and Harini et al.> in analysis of binding affinity changes
upon mutation. For PDB structures containing residues with
alternate locations, we removed the lower-occupancy atomic
coordinates in preprocessing, as outlined by Opron et al.?

In order to effectively perform flexibility analysis on these
data sets, we must utilize coarse-grained representations of the
structures. In our earlier paper on protein flexibility analysis
using the PSL model,'® we used a typical coarse-grained repre-
sentation for proteins consisting of only the C, atom from each
residue. Similarly, Yang et al.*® proposed three coarse-grained
representations for nucleic acids, denoted M1, M2, and M3.

The M1 model consists of backbone P atoms for nucleotides
and C, atoms for proteins (i.e., one atom per nucleotide). The
M2 model includes the atoms from M1 as well as sugar 04’
atoms (i.e., two atoms per nucleotide). The M3 model contains
the atoms from M1 in addition to sugar C4’ atoms and base C2
atoms (i.e., three atoms per nucleotide).>*® Our experiments in
the present paper utilize these three coarse-grained representa-
tions, and we compare our results to those of Opron et al.* and
Yang et al.*® using these same representations. Fig. 1 provides a
visualization of the three coarse-grained models, indicating
which atoms are included in each representation.

This journal is © the Owner Societies 2026
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Fig. 1 Visualization of the three coarse-grained models used in this work
using the visual molecular dynamics (VMD) software.>® The figure illus-
trates models M1, M2, and M3, from left to right, for a single residue of
nucleic acid 2TRA. Each representation depicts the atoms included in that
model, and atoms are colored by name. The backbone P atom is included
in each model, with models M2 and M3 including one and two additional
atoms per nucleotide, respectively.

In addition to the data sets above, for which benchmark
GNM results,*® flexibility-rigidity index (FRI) results, and
multiscale FRI (mFRI) results® exist in the literature, we also
consider a data set of 141 protein-RNA complexes, which does
not have existing B-factor prediction results. This data set was
obtained from Liu et al.>" and originally introduced by Harini
et al.>® Both of these studies concerned experiments on 710
mutations of these complexes. To generate a data set for our
own experiments, we extracted the unique PDB IDs of
the complexes from the data set of 710 mutations and per-
formed our analysis using the PDB files of these complexes.
(Note that in the original paper,’ it is stated that the 710
mutations originate from 134 protein-RNA complexes. How-
ever, there are 141 unique PDB IDs in the data set of 710
mutations. Thus, the present work refers to the set of 141
protein-RNA complexes).

In our B-factor experiments, we excluded 15 of the 141
protein-RNA complexes due to unrealistic B-factors, resulting
in a set of 126 structures. Specifically, PDB IDs 1AUD, 2JPP,
2KFY, 2KGO, 2KXN, 2LEB, 2LEC, 2LI8, 2M8D, 2MJH, 2MXY,
2RU3, 5M8I were excluded due to all atomic B-factors being
equal to zero. The other two excluded structures were 2ERR (all
B-factors were equal to 10.00) and 3]5S (all B-factors were equal
to 1.00). We preprocessed the remaining 126 complexes as
above to create M1, M2, and M3 models for each complex.

2.2 Parameters

For all sets of results in this work, we used filtration parameters
of 6 A, 12 A, and 18 A for the PSL model. Specifically, for each
filtration radius, we constructed a Oth persistent sheaf Lapla-
cian matrix L, and computed its eigenvalues. To generate PSL
features for each radius, we then computed the maximum,
minimum, mean, and median of the nonzero eigenvalues of L,
and counted the number of its zero-valued eigenvalues. In
addition to these five features for each of our three filtration
radii, we also included the standard deviation of the nonzero
eigenvalues of L, for 18 A, resulting in 16 total features for
downstream regression tasks. For the experimental B-factor
predictions in this section, we performed linear regression on
each data set as a whole using the PSL features.

Phys. Chem. Chem. Phys.
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2.3 Results on 64 and 203 structures

In this section, we report our results for the PSL model for B-
factor prediction of the protein—-nucleic acid complexes in the
data sets of 64 and 203 structures, respectively. The results for
the data set of 64 complexes are displayed in Table 1, and the
results for the 203-structure data set are shown in Table 3.
Additionally, the results on nucleic-acid-only structures from
the set of 64 complexes can be found in Table 2.

Our first set of results on the data set of 64 protein—-nucleic
acid complexes is shown in Table 1. We compare our findings
to the flexibility-rigidity index (FRI) and multiscale FRI (mFRI)
from Opron et al.® and the benchmark GNM.>® The PSL model
achieves a higher average Pearson correlation coefficient (PCC)
than all other compared models for the M1, M2, and M3
representations. Most notably, our results using PSL features
show an improvement over the GNM results by 21% for the
M3 model.

In addition to the results on the entire data set, Opron et al.’®
also reported their average PCC for the subset of 19 nucleic-
acid-only structures in the set of 64 complexes. Our results are
compared to these in Table 2. Our PSL model achieved a higher
average PCC value than that of the mFRI model for all three
coarse-grained representations of the 19 structures in this set.
In particular, we observe the biggest improvement for the M1
model, with our PSL model yielding an average PCC of 0.675, an
11% increase from the mFRI result (PCC = 0.608).

As shown in Table 3, our PSL model also achieved higher
average PCC values on the set of 203 structures than the FRI
and mFRI models.? Here, the most improvement is seen for the
M3 representation, with the PSL model yielding an average PCC
of 0.710, a 12% increase compared to mFRI (PCC = 0.63).

2.4 Results on 126 protein—-RNA structures

In this section, we report our results for the prediction of B-
factors of the 126 protein-RNA complexes described in Section
2.1. Table 4 shows the average PCC values over all 126 struc-
tures for the three models. The PSL model performed fairly
consistently for all three models of this data set, with the M3
model yielding the highest average PCC (PCC = 0.700) of the
three representations. Again, we utilized the same PSL features
for these predictions as in our previous experiments, as
outlined in Section 2.2. Of course, these parameters can be
further tuned to optimize the results on the 126 protein-RNA

Table 1 Average Pearson correlation coefficients (PCC) on three coarse-
grained models for a set of 64 protein—nucleic acid structures.*® Results
are shown for our PSL model compared to the flexibility-rigidity index (FRI)
and multiscale FRI (mFRI) models by Opron et al.® and the Gaussian
network model (GNM).>® The mFRI results shown were produced by a
model using two kernels

Model PSL mFRI® FRI® GNM?>®
M1 0.683 0.666 0.620 0.59
M2 0.669 0.668 0.612 0.58
M3 0.669 0.620 0.555 0.55
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Table 2 Average Pearson correlation coefficients (PCC) for three coarse-
grained models of a set of 19 nucleic-acid-only structures®® using our PSL
model. Results are compared to those of a multiscale flexibility-rigidity
index (mFRI) model using two kernels®

Model PSL mFRI®
M1 0.675 0.608
M2 0.649 0.617
M3 0.629 0.603

Table 3 Average Pearson correlation coefficients (PCC) for three coarse-
grained models of a set of 203 protein—nucleic acid structures® using our
PSL model. Results are compared to those of a flexibility-rigidity index (FRI)
model and a multiscale flexibility-rigidity-index (mFRI) model using two
kernels®

Model PSL mFRI® FRI®

M1 0.715 0.68 0.613
M2 0.718 0.67 0.625
M3 0.710 0.63 0.586

Table 4 Average Pearson correlation coefficients (PCC) for three coarse-
grained models of a set of 126 protein—RNA structures® using our PSL
model

Model PSL

M1 0.669
M2 0.665
M3 0.700

structures in this data set. Detailed results for the 126 protein-
RNA structures are given in Table 5 in Appendix A.

3 Discussion

This section provides further discussion of the results pre-
sented in Section 2 and examines a few case studies of
particular protein-nucleic acid complexes (and one nucleic-
acid-only complex) to illustrate our model’s strengths.

3.1 Protein-nucleic acid case studies

In addition to B-factor prediction results on the protein-nucleic
acid data sets, in this section, we present case studies for
selected protein—-nucleic acid complexes to illustrate PSL mod-
el’s advantage over mFRI on particular structures.

The first case study concerns complex PDB: 1DRZ, a hepa-
titis 0 virus ribozyme.*® Ribozymes are RNA molecules (or
protein-RNA complexes, such as complex 1DRZ) that can act
as enzymes, catalyzing chemical reactions much like protein
enzymes. However, the catalytic center of a ribozyme is made
up solely of RNA, enabling catalysis without the need of a
protein.>® Fig. 2 displays the predicted B-factors for this
complex using the PSL model compared to the experimental
B-factors. Additionally, we provide a 3D visualization of the
ribozyme using the Visual Molecular Dynamics (VMD)

This journal is © the Owner Societies 2026
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Fig. 2 Top: 3D visualization of complex 1DRZ, with residues colored by experimental B-factors (left) and predicted B-factors using PSL (right). Bottom:
Experimental and predicted B-factors for each residue of complex 1DRZ. The results shown use model M1 for this complex. Both chains A and B of the
complex are depicted here, with chain A corresponding to the atoms numbered 1-71 above and chain B corresponding to the atoms numbered 72-162
above. Note that the numbering used here simply reflects the ordering of atoms in the M1 model as extracted from the PDB file—this is not a canonical

numbering for the complex.

software.”® Here, residues are colored by experimental or pre-
dicted B-factors. Less flexible regions are shown as blue
(“colder” residues), and more flexible regions are shown as
red (“warmer” residues). These predictions were generated
using the M1 model for complex 1DRZ, which achieved the
largest PCC value (PCC = 0.947) of all three coarse-grained
models for this complex. The PSL model improves the result of
the mFRI method (PCC = 0.846)° by 11%. Both the mFRI and
PSL models performed best with the M1 coarse-grained model
for this complex. Given our large PCC on this complex, the
visualizations reflect this accuracy, with the PSL model slightly
over- and undershooting the B-factors for a few sections of this
ribozyme. For instance, for the short alpha helix corresponding
to the last numbered residues, the PSL model predicted lower
B-factors, reflected by this structure’s more saturated blue color
in the 3D visualization.

Another protein-nucleic acid complex for which the PSL
model outperforms the mFRI method is PDB: 1U6B, a Group I
intron.?® Group I introns are ribozymes that perform RNA self-
splicing—that is, they catalyze reactions to excise themselves
from the precursor RNA.>>”® Fig. 3 shows the predicted and
experimental B-factors for the complex 1U6B. The M1 model
yielded the greatest PCC value of the three coarse-grained
models on this complex as well, and the results shown are for
this model. The PSL method achieved a PCC of 0.842, which is a
66% improvement over the mFRI model’s best result (PCC =
0.506) for this complex.* The mFRI model performed the best
using the M3 model for this structure. The PSL model largely
captures the variations in flexibility of complex 1U6B over all
chains of the molecule, with some overestimations and under-
estimations at various areas, notably for one part of the flexible
nucleic acid region corresponding roughly to residues 115-125
in Fig. 3 (in chain B). The PSL model successfully predicts the

This journal is © the Owner Societies 2026

increase in flexibility for the earlier residues of this flexible
region but it underestimates the B-factors for the later residues
of this region. Additionally, the B-factors for the flexible alpha
helix corresponding to the last residues in Fig. 3 (in chain A) are
somewhat underestimated by the PSL model. Still, the model is
able to perform well overall, particularly compared to mFRI.

Our third case study concerns the nucleic-acid-only complex
PDB: 2TRA, an aspartic acid transfer RNA (tRNA).*® The primary
function of tRNA lies in protein synthesis. Specifically, tRNA
transports amino acids to the ribosome, where it then acts as a
link between messenger RNA (mRNA) and the growing poly-
peptide chain. tRNA is also involved in other biological pro-
cesses, including enzyme synthesis regulation, enzyme
inhibition, and gene expression.””’*® Fig. 4 presents the pre-
dicted B-factors for complex 2TRA using PSL as well as experi-
mental B-factors. The results displayed are those for the M1
model, which achieved the highest PCC of the three coarse-
grained models for this complex. Our PSL method yielded a
PCC value of 0.744, a 21% improvement over mFRI (PCC =
0.614).> The mFRI result from Opron et al.® is also for the M1
model, which resulted in the highest PCC value for mFRI for
this structure, with the M2 model performing equally well.
Overall, the PSL model predicts the changes in flexibility
throughout the nucleic acid well, while missing some of the
finer points. The model successfully predicts the B-factors for
the flexible residue numbered 46 in Fig. 4 and also captures the
flexible region corresponding to the last numbered residues
of the molecule for this model, while underestimating residue
62. While the PSL model does predict the other trends in
flexibility, it misses some of the extremes—it underestimates
the B-factors for some flexible regions (residues 0-4, 14-17)
and overestimates the B-factors for some rigid regions (residues
7-11, 35-43).
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Fig. 3 Top: 3D visualization of complex 1U6B, with residues colored by experimental B-factors (left) and predicted B-factors using PSL (right). Bottom:
Experimental and predicted B-factors for each residue of complex 1U6B. The results shown use model M1 for this complex. Chains A, B, C, and D of the
complex are depicted here, with chain A corresponding to the atoms numbered 218-312, chain B corresponding to the atoms numbered 0-195, and
chain C corresponding to the atoms numbered 196-216. There is a single atom from Chain D numbered 217 in our model. Note that the numbering used
here simply reflects the ordering of atoms in the M1 model as extracted from the PDB file—this is not a canonical numbering for the complex.

3.2 Discussion of results

Our results in Section 2 demonstrate the improved perfor-
mance of the PSL model over traditional GNM and FRI
as well as mFRI, a multiscale method. The successes of
the PSL and mFRI models with respect to the single-scale
methods illustrate the benefit of multiscale models for flex-
ibility analysis of protein-nucleic acids, where interactions
take place across multiple length scales. We have considered
multiple data sets of protein-nucleic acid complexes contain-
ing diverse structures, including some nucleic-acid-only

complexes. Yang et al.*® and Opron et al.’® provide additional

information about the complexes in the data sets of 64 and 203
structures.

In the set of 64 protein-nucleic acid complexes,*® the coarse-
grained molecule representations ranged from 61 atoms (for
the M1 model representation for complex 1FIR) to 12 378 atoms
(for the M3 model representation for complexes 1572, 1YHQ,
and 1YIJ). Overall, the PSL model performed the best on
average using the M1 model for this data set (average PCC =
0.683). In fact, the M1 model yielded the highest PCC value for
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Fig. 4 Experimental and predicted B-factors for each residue of nucleic-acid-only complex 2TRA. The results shown use model M1 for this complex,

which consists of only one chain.
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all three complexes considered in our case studies in Section
3.1. These three complexes, 1DRZ, 1U6B, and 2TRA, were
represented by models with a relatively small number of atoms:
162, 312, and 65, respectively, for the M1 model. These model
sizes reflect the sizes of the complexes themselves—complex
1DRZ has 95 amino acid residues and 72 nucleotides, complex
1U6B has 95 residues and 222 nucleotides, and complex 2TRA
has 74 nucleotides.*® Thus, it is perhaps unsurprising that the
PSL model using the M1 representation (with the fewest
number of atoms per nucleotide) was sufficient to capture the
topological and geometric information of these structures.

Generally, the PSL model performed better for smaller
structures (i.e., with fewer residues and/or nucleotides) than
for larger structures for the 64-complex data set. This may be
due to increased complexity of the larger molecules as well as
the fact that we used the same filtration parameters for all
complexes in the present work. Although our parameters may
have generated features that encoded enough information
about smaller molecules, adjusting the filtration radii to
include greater length scales may improve the predictive per-
formance of the PSL model on larger complexes by capturing
potential longer-range interactions and additional structure
around each atom. Additionally, although the M3 model had
a lower PCC value on average for this data set, some of the
larger molecules had better results with the M3 model than the
M1 and M2 models. For instance, complex 1YIJ (a 50S riboso-
mal subunit with 3775 amino acid residues and 2876
nucleotides®®) had a PCC of 0.498 using the M1 model (with
6636 atoms) and a PCC of 0.546 using the M2 model (with 9507
atoms), but using the M3 model (with 12 378 atoms) increased
its PCC to 0.668. Consequently, we suggest that strategically
choosing an appropriate coarse-grained model and tuning PSL
filtration parameters based on molecular structure can improve
flexibility prediction accuracy on a given complex.

The set of 203 structures® had many smaller molecules, with
the complex 1VTG containing only seven atoms in its M1
representation. This data set also lacked such large molecules
as the 64-structure data set—here, the complex with the most
atoms in its coarse-grained representation was 4DQQ, with
1278 atoms using the M3 model. Given the above discussion,
it is likely not surprising that the PSL model thus performed
better on average for the 203-complex data set. This time, the
M2 model yielded the best result (which was: average PCC =
0.718), although the M1 and M3 models showed very similar
performance (which was: M1 average PCC = 0.715, M3 average
PCC = 0.710). We do observe some similar trends for this
data set as for the set of 64 complexes, with the PSL model
generally achieving better predictive performance on the smal-
ler structures.

In addition to the data sets of 64 and 203 protein-nucleic
acid complexes, which have existing results in the literature for
GNM, FRI, and mFRI, we also predicted B-factors for a data set
of 126 protein—-RNA complexes from a set of 710 mutations on
these structures.’™> Detailed results and descriptions of the
coarse-grained models for these 126 complexes are given in
Appendix A. This data set did not contain structures as small as

This journal is © the Owner Societies 2026

View Article Online

Paper

those in the set of 203 complexes nor structures as large as
those in the set of 64 complexes. For this data set, the PSL
model performed best on average using the M3 representation
(average PCC = 0.700). Furthermore, while the structures on
which PSL performed the best were similar in size to the most
successful complexes in the other two data sets, many of the
larger structures in this data set had better results compared to
similarly sized complexes in the other data sets.

Overall, the results of our PSL model on these three data sets
demonstrate its applicability for flexibility analysis of diverse
protein—nucleic acid complexes, as evidenced by its increased
predictive accuracy over traditional GNM and mFRI, a state-of-
the-art multiscale model. Our case studies further illustrate the
advantages of PSL for particular significant structures. Addi-
tionally, we propose that the performance of the PSL model on
larger complexes may be improved by parameter tuning and
strategic coarse-grained model selection.

4 Methods

4.1 Persistent sheaf Laplacians

Many of the techniques used in the present work follow those
in our prior paper,'® with some adjustments made for the more
complex nucleic acid structures. The algorithms for data pre-
processing are described in Section 2.1, with particular discus-
sion of three coarse-grained models from Yang et al.>® that we
adopted for our analyses. The specific persistent sheaf Lapla-
cian features are also detailed in this paper in Section 2.2. In
this section, we will briefly review the persistent sheaf Lapla-
cian theory and provide more detail about the feature genera-
tion. The full details and comprehensive review of the
persistent sheaf Laplacian theory and algorithms can be found
in the original paper by Wei and Wei® and our earlier paper.*®
Other graph-based approaches incorporating Laplacians
include the work.>

Persistent sheaf Laplacians®® (PSLs) extend the theory of
persistent Laplacians on simplicial complexes and simplicial
chain complexes to cellular sheaves and sheaf cochain com-
plexes. The motivation for the extension to sheaves is, in part,
their ability to embed additional non-spatial information in a
simplicial complex. In molecular science, this information may
be derived from molecular structures; one example of such
information is an atom’s partial charge. In contrast to many
other persistent topological Laplacians, which can describe a
molecule as a whole, persistent sheaf Laplacians provide infor-
mation about local (i.e., atom-specific) topology and geometry
in a molecule.

To formalize the above, we will first introduce persistent
homology, which is defined with respect to simplicial com-
plexes. Given a finite set V (for example, a set of atoms in a
molecule), we can define a simplicial complex X on V as a
collection of subsets of V satisfying the following criterion: if a
set ¢ is in X, then any subset of ¢ must also be in X. The sets ¢
are called simplices, and a simplex with g + 1 elements is called
a g-simplex. Furthermore, if a simplex ¢ < 7, then ¢ is called a
face of 7, and this face relation is defined by ¢ < 7. We can
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define subcomplexes as follows: if X and Y are both simplicial
complexes with X — Y, then X is considered a subcomplex of Y.

Given a simplicial complex X, one may define the simplicial
chain complex associated with X, which is denoted as

-2 o) 2 o) A cox) —o.

C,4(X) is a real vector space generated by g-simplices of X,
and an element ¢ € Cy(X) is called a g-chain. The operator
04:C¢(X) —» C4-4(X) is a linear map, called a boundary map,
defined as follows:

:Z(—l)i[vao,...,\?ai,...,vaq].

i

0y [vao, ce v,,q]

Here, the notation 7, means that the element v, is deleted.
Because our finite set V is totally ordered, the boundary
operator 0, is well defined. We can then define the g-th
homology group of the chain complex by H, = kerd,/imd,.,.
We have 3% = 9y O 9441 =0, s0 H, is also well defined.

Now, if we let X be a subcomplex of Y, we also have inclusions
of the chain groups, with the inclusion map denoted by

1:Cy(X) — C4(Y). Thus, we can construct the following diagram:
%12 %11 %
R (%) 2 ) -2 € (x)
r ] r
v - ¥ v ¥

aX
q-1

P Y :
C S Cun (V) S Cu(Y) — Cpa(Y) 5 -

Then, we have a map :* induced by the inclusion 1, defined
as 1*: Hy(X) —» H,(Y). The image

is the g-th persistent homology group for the simplicial
complex pair (X, Y). The ranks of these persistent homology
groups are called (g-th) persistent Betti numbers f;",** which
are used in topological data analysis to track topological
features that persist in the filtration (i.e., at multiple scales).
If the input point cloud is given by a set of atoms in a molecule,
the Betti numbers can capture multiscale information about
the molecule’s structure and interactions.

Persistent Laplacians*'—in particular, their non-zero eigen-
values—can capture even more information from an input
point cloud. Given a persistent homology group 1°(H,(X)) as
defined above, a persistent Laplacian is a positive semi-definite
operator with a kernel isomorphic to that group. To construct
the persistent Laplacian, first define C2} = {¢ € Cg:1(Y)|05:1(c)
€ C,(X)}, and let 033} be the restriction of 9,4 to C3y. Note that
each C,(X) is generated by g-simplices, equipping it with a
canonical inner product. Now, we can define the g-th persistent
Laplacian 47" as

Aq™ = 0" + (09)°05,

where f is the adjoint of a linear morphism. Many variants
of persistent Laplacian methods exist, and examining the
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eigenvalues of these various persistent Laplacians enables regres-
sion algorithms to learn multiscale information about point clouds
in addition to that available from persistent homology.

Now, while persistent Laplacians as defined above are built
on simplicial chain complexes, persistent sheaf Laplacian
theory*® generalizes this idea to cellular sheaves and sheaf
cochain complexes. A cellular sheaf % can be conceptualized
as a simplicial complex X, where we assign (i) a finite-dimen-
sional vector space .#(¢) to each simplex ¢ of X and (ii) a linear
morphism ¥, .. of vector spaces to each face relation ¢ < 7.
The vector space /(o) is called the stalk of & over g, and the
morphism ;.. is called the restriction map of the face
relation ¢ < 7. Furthermore, the restriction maps behave nicely
across face relations; that is, (o) satisfies the rule that if p <
o6 < 1, then ¥,., = 5% p<s Where &, refers to the
identity map of ¥(a).

Intuitively, stalks serve as information about each simplex;
in the case where the input point cloud represents atoms in a
molecule, a stalk may capture non-spatial atomic information,
such as partial charges, atomic weights, etc. We can view
restriction maps as describing how the additional information
stored by stalks interacts across simplexes.

Now, we may construct a sheaf cochain complex

0-Cx:9) LX) LAy L

where each g-th sheaf cochain group C/(X; %) is defined as the
direct sum of stalks over all g-dimensional simplices. The
coboundary maps d require obtaining a signed incidence rela-
tion by globally orienting the simplicial complex X, where the
relation assigns an integer [o: 1] to each face relation ¢ < t.
Thus, we can define the coboundary map d%:CY(X; &) — CI"'(X;
) as

A g = Z [0:7]F 5<1-

o<t

To define the persistent sheaf Laplacian, we must again
consider subcomplexes X < Y, now equipped with sheaf % on
X and sheaf 4 on Y. Here, we let the sheaves be defined such
that the stalks and restriction maps of X and Y are identical.
Thus, we have a sheaf cochain complex for X and one for Y, with
inclusion maps between their corresponding cochain groups.
Further assuming that each stalk is an inner product space,

we can define @"7“4 = {x € Crtl(y; g)|(d§)*(x) € C‘f(X;j’f')},

where d?, , is the adjoint of n(dg)*’a@l :@fg; — C!(X; F) and
7 is the projection map from C%(Y; ¢) to CY(X; ) (its subspace).
The g-th persistent sheaf Laplacian Aqf % is then defined as

7

, f t
F G —1 —1

A7 = (dhy) dly + (a5

Note that when & = ¥, the persistent sheaf Laplacian becomes

the sheaf Laplacian of #. Also, when % and ¥ are constant, the

persistent sheaf Laplacian is equal to the persistent Laplacian

47" defined above.
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4.2 Model construction and feature generation

Given the theoretical foundation of PSLs in the previous sec-
tion, in this section we will outline the specifics of the PSL
model used in this paper, as well as how we generated spectral
features using this model.

In general, persistent homology examines how topological
features evolve across a nested sequence of subcomplexes,
called a filtration. Given a point cloud, a common method for
constructing a filtration is by varying a radius parameter from
each point and including additional simplices once the radius
parameter exceeds the distance from our point to each of those
simplices. In the present work, the filtration parameter is the
distance (in A) from each atom. At each radius, one may compute
topological invariants of the corresponding subcomplex. Then, how
these invariants change over the filtration can be analyzed. In a
molecule, this can allow the examination of interactions and
structures at multiple length scales. However, many of the typical
topological tools provide global information, whereas protein-
nucleic acid flexibility analysis requires the knowledge of atom-
specific information to predict individual B-factors. Persistent sheaf
Laplacians provide the necessary localization for this analysis. To
construct a filtration of sheaves, as used in persistent sheaf
cohomology® and persistent sheaf Laplacians, we begin by con-
structing a filtration of simplicial complexes as above, but addi-
tionally construct a sheaf for each complex. Then, by computing
the eigenvalues of persistent sheaf Laplacians, we can obtain
topological invariants (from the harmonic spectra) and geometric
information (from the non-harmonic spectra) of the data.*”

Specifically, for the present work, we begin with a point
cloud consisting of the atoms in a particular coarse-grained
model (M1, M2, or M3) of a protein-nucleic acid complex. With
the goal of predicting the B-factor for each atom, we construct
features for each atom using PSLs. For a given atom 4 in the
point cloud, we first designate a cutoff distance for the point
cloud so that we only consider other atoms within that distance
from A when we construct our complex. Then, we determine the
set of radii that will generate our filtration—for this work, we
used 6 A, 12 A, and 18 A. For each radius, we construct an alpha
complex X (again, only considering atoms within the prescribed
cutoff distance from A). To construct a cellular sheaf on X, we
assign a label g; to each atom v; in X, and then let each stalk be.
To define the restriction maps, let r; be the length of simplex
v; (i.e., the 1-simplex between atoms v; and v;). For face
relations of the form v; < vy, we define the restriction map
as scalar multiplication by g;/r;. For face relations of the form
vy, < vy, we define the restriction map as scalar multi-
plication by gi/(ri7;x). (Further motivation behind the definition
of restriction maps in this way can be found in our previous
paper'® and the introduction by Wei et al*®) In order to
distinguish atom A from the other model atoms in X, the
label g; of A is set to 0, and the labels of all other model atoms
in X are set to 1. By constructing sheaf Laplacians for atom A for
a given radius, and then computing the eigenvalues of the sheaf
Laplacians, we can generate features for A using these eigen-
values (the particular set of features used in this work is
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detailed in Section 2.2). Then, by varying the radius and
computing sheaf Laplacians across the filtration, we obtain
additional features for each radius. We can repeat this process
for all atoms in the given coarse-grained model to enable the B-
factor prediction of each atom.

Regarding computational complexity, both GNM and the
persistent sheaf Laplacian model used in this work have a
computational complexity of O(n®), where n is the number of
input nodes. The complexity of FRI and mFRI is O(n*), and this
decreased complexity is one of the primary advantages of the
FRI methods over GNM. Although the PSL model has greater
computational complexity than the FRI models, the size of the
present B-factor prediction is relatively small due to the trunca-
tion in our algorithm. In particular, when constructing a sheaf
around each atom in a protein-nucleic acid complex, we do not
consider all other atoms in the structure, but only a small
subset of atoms within a chosen cutoff distance. Therefore,
computing B-factors with the proposed method is quite man-
ageable given its lower cost in practice.

5 Conclusion

Persistent topological Laplacians are a new generation of multi-
scale spectral algorithms.>® Unlike other topological techni-
ques, the persistent sheaf Laplacian (PSL) offers atom-specific
localized information of a biomolecular complex.*® The atom-
specific and multiscale nature of persistent sheaf Laplacian
features enables detailed atomistic analysis, which is crucial for
understanding multiscale molecular flexibility and long-term
conformational dynamics. Both molecular flexibility and the
long-term conformational dynamics are very important for
their biological functions and are the subjects of biophysical
studies in the past decades.

In this study, we introduce a PSL model to predict the B-factors
of protein—nucleic acid complexes, a task that presents unique
challenges due to their multiscale nature and structural diversity.
Our results across multiple benchmark datasets demonstrate that
PSL not only surpasses traditional models like GNM and mFRI in
predictive accuracy but also maintains strong performance on
nucleic-acid-only structures. Furthermore, we have given a few
case studies to further illustrate the model’s effectiveness in
capturing biologically relevant flexibility patterns. The promising
performance of our PSL model suggests its potential for further
applications in structural biology, including the prediction of
mutation effects and binding affinity changes as well as the
design of biomolecular therapeutics. To be consistent with
the literature, a regression model is used in this work. However,
the proposed sheaf approach can be implemented in a deep
neural network for B-factor predictions."®
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Table 5 (continued)

M1 Model M2 Model M3 Model
PDBID PCC #of Atoms PCC # of Atoms PCC # of Atoms
5WLH 0.708 1332 0.705 1374 0.719 1416
S5SWWW 0.712 99 0.645 105 0.555 111
5WWX 0.644 89 0.663 94 0.671 99
5WZH 0.671 543 0.664 554 0.686 565
5YTV 0.849 79 0.852 83 0.821 87
5ZTM 0.613 380 0.633 428 0.665 476
6B14 0.797 523 0.785 606 0.667 689
6CMN 0.611 117 0.708 144 0.738 171
6CYT 0.715 669 0.759 686 0.773 703
6D12 0.928 237 0.949 275 0.93 313
6KWR 0.801 487 0.848 521 0.844 555
6NY5 0.721 769 0.712 782 0.725 795
6SDY 0.325 107 0.228 141 0.323 175
6S0O9 0.735 117 0.742 122 0.752 127
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