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Abstract

Analyzing data and extracting meaningful insights is essential across various research
fields. To address acrylate and methacrylate radical reaction data, we propose a
modified convex clustering (regression) method, in which representative points are
directly selected from the training data to describe the dataset. Although machine
learning (ML) models are often regarded as black boxes, making their predictions
difficult to interpret, the (modified) convex clustering approach allows for
straightforward analysis of model behavior. This study emphasizes the importance of
selecting representative points to enhance the interpretability and transparency of ML
models. We demonstrate that radical reaction energy barriers can be effectively
described and predicted based on the contributions of similar reactions. The simplicity
and transparency of the modified convex clustering (regression) method enable in-depth

analysis of physicochemical data.
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1. Introduction

Machine learning (ML) approaches, combined with large-scale molecular databases,
have gained considerable prominence across various chemical fields, including
functional molecules, drug discovery, and materials science.'-?! However, despite its
advantages, ML presents certain drawbacks. For instance, it is often difficult to
comprehend how ML models operate, largely due to the complexity and lack of
transparency in their prediction processes. Predictions based on correlations rather than
causal relationships can further hinder interpretability. Although ML models excel at
capturing multidimensional and nonlinear correlations, such complexity often exceeds
human intuitive understanding, making it challenging to grasp underlying mechanisms.
This lack of interpretability has limited the broader application of ML, particularly in
extracting meaningful insights from physicochemical data. Although explainable
artificial intelligence techniques—such as permutation importance and SHAP (SHapley

Additive exPlanations)—are sometimes employed, the inherent complexity of ML

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

models continues to obscure a comprehensive understanding of their behavior.?>?”  To
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address this issue, we focus on algorithms that facilitate interpretability. Particularly, we
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highlight the convex clustering algorithm, which offers several advantageous features,
such as sophisticated data clustering, soft assignment, and direct representative point
selection from training data.?®

In a convex clustering algorithm, the distributions of all clusters (or classes) are
defined a priori by a single shared parameter, resulting in uniform distribution sizes. In
this study, we slightly modify the algorithm by relaxing this constraint: the distribution
size of each cluster is governed by its own parameter, which is automatically

determined during the model training process. The modified clustering process is
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categorized as a soft assignment method, where each data point can partially belong to
multiple classes, with probabilistic ratios representing its degree of membership.
Further, we employ the modified clustering method to perform regression on radical
reaction data for acrylate (ACR) and methacrylate (MA). Radical reactions involving
ACR and MA are widely used in synthesizing various acrylic polymers, such as
plastics, adhesives, paints, medical materials, and fibers.?*-3! To theoretically elucidate
radical reaction mechanisms, transition state (TS) analyses based on density functional
theory (DFT) are indispensable. DFT-based TS calculations have provided insights into
reaction processes,’> 33 and ML has been recently employed to predict complex features
such as energy barriers and regioselectivity in radical reactions.?* 3> We develop ML
models to predict the energy barriers of ACR and MA radical reactions using a dataset
derived from DFT calculations, and demonstrate that the number of representative
points governs both the resolution of data reproduction and the prediction accuracy.
This study highlights the simplicity of the convex clustering (regression) approach,
particularly in selecting representative points from training data, as a key factor in
enhancing the interpretability and transparency of ML models for analyzing
physicochemical data.

The remainder of this article is organized as follows. In Section 2, we describe
the modified convex clustering algorithm. Section 3 presents the fundamental behavior
of the algorithm based on a simple dataset as well as its application to ACR and MA

radical reaction data. Finally, Section 4 summarizes this study.
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2. Methods and Computational Conditions

2-1. Convex clustering method

Convex clustering is an unsupervised ML algorithm designed to assign data points to
clusters. It is theoretically grounded in the Gaussian mixture model (GMM) and is
classified as a soft assignment method, wherein each data point is probabilistically
associated with multiple clusters.3¢- 37 Despite this probabilistic framework, a definitive
cluster assignment can be made by selecting the cluster with the highest associated
probability. Meanwhile, hard assignment algorithms, such as K-means clustering, assign
each data point to only one cluster.’® 37 We present a modified K-means clustering
algorithm (K-near) in Section S1 of the Supporting Information as a representative hard
assignment approach. Although the modified convex clustering and K-near methods
represent soft and hard assignment techniques, respectively, both select representative
points from the training data to describe the underlying data structure or class

distribution.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

First, we describe the GMM to highlight the distinctive characteristics of the
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convex clustering method. We consider a dataset X ={X1,x2,L ,XN} comprising N
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data points, where each data point is represented by a d -dimensional vector. We
assume that each data point is generated from a single class through probabilistically
independent sampling (trials), although the specific class from which each point

originates is unknown. Under these assumptions, the probability of observing the

dataset, denoted as p, (Xl,L ,Xn), can be expressed as follows:

N

pO(XI’L ’Xn):Hp(-)(Xk) (1-1)
Po (Xk):zﬁipe, (Xk |Hi) (1-2)
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c

27 =1, (1-3)
where 0 represents parameters of the probabilistic model, pe(Xk) denotes the
probability of observing a data point of X;, p, (xk |H,.) denotes the conditional
probability of observing the data point X, given that the class 1] was selected under
the parameter 0, 77, denotes the probability (or proportion) associated with class

IT,and C denotes the total number of classes. Eq. (1-3) indicates that the sum of all
class proportions equals 1.0. Based on the assumption of probabilistic independence, the

probability p, (XI,L ,Xn) can be expressed as the product of the probabilities for each

data point. In the GMM framework, we assume the mean vector W, and the covariance

matrix 2 for class Il with respect to 49, Accordingly, p, (xk |Hl.) can be

computed as follows:

Py (x| ) = P =, (x]11,)

1 1 Ty : (2)
:WGXP(—E(X,-—H,-) )2 (X,-—ll,-)j

Given the number of classes C , the parameters 77;, W,, and 2 can be determined
using the expectation—maximization (EM) algorithm by maximizing the log-likelihood
of log pe(xl,L ,Xn) 36:37 Notably, the number of classes C becomes a predefined
parameter (hyperparameter) in the GMM. Meanwhile, the convex clustering method
allows for automatic determination of C , although the covariance matrix 2 must be

specified in advance.
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In the convex clustering algorithm, the representative point M, is selected

from a point X, in the training dataset, and X is assumed to be a simple diagonal

matrix, as follows:
I =X (3-1)
x,=ol, (3-2)
where I, isthe d -dimensional identity matrix. From Eq. (3-2), all classes share the
same distribution, which is controlled by the hyperparameter O . Under these

1

conditions, the relationship p, (xk |H,~) =Dy o (xk

I, )= f,,(x,) can be derived using

the following equation:

1 1 2
2—2)d/ZeXp —W|X—Xi| . (4)

(27v

fi (%)

Therefore, the log-likelihood of the convex clustering method can be explicitly

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.
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The EM algorithm provides a self-consistent procedure to determine 7;. The
log-likelihood (Eq. (5)) increases monotonically and converges through an iterative loop
in which the values of 72;("@”) at each step are updated based on the current 77; values

as follows:

A =L P () 61

P(x)=P(I,|x)= == ) mhe(d) : (6-2)
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where P (H,. |x) denotes the probability of class IT given that the data point x was
observed. In the self-consistent loop, several data points acquire very small 7Z; values.

Points with 77; values below a certain threshold are excluded from the set of
representative candidates; thus, they no longer contribute to the clustering process. To
exclude such data points, their 7Z; values are set to zero. As a result, the number of

representative points gradually decreases during the self-consistent loop. The remaining
points after the convergence are used as the final representatives for clustering. Notably,
the number of remaining points, which corresponds to the number of clusters, depends
on the hyperparameter O . For example, when a small value is assigned to O, a larger

number of data points tend to survive the self-consistent procedure.

2-2. Modified convex clustering method
In the convex clustering method, the hyperparameter O uniformly defines the
distributions of all clusters, as seen in Eq. (3-2). In this study, we modify this

distributional assumption as follows:
X =al,. )
Eq. (7) allows each class to have its own distribution corresponding to its specific O;.

Thus, the conditional probability p, (xk |Hi) can be expanded as follows:

1 1 2
Jio, (X)_WGXP(_M—?|X_Xi| J (8)

1

where p, (x,|T1,)=p, , (x;|[1,) = f., (x,). Therefore, the conditional ~probability
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P (X) is slightly modified as follows:

1

Px)= P(1 ) = ot ©

Zj:l ”jfj,a,- (X)

To determine the O; value, we examine the following conditions:
1 .
o, =Em1n{Li1,Li2,L ,L,,L}, (10)
where L, denotes the distance between representative points X, and X,.

Accordingly, O; is set to half the distance to the nearest class. In addition, O; is

constrained to lie between a minimum threshold o™ and a maximum threshold
o "* . The number (or granularity) of classes can be controlled by adjusting these
threshold values.

Besides the modification given by Eq. (7), we performed a purification process

to further reduce the number of clusters (i.e., representative data points; Figure 1a). In

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

the convex clustering method, representative candidates are typically removed based on

a threshold applied to 7;. However, some redundant points may remain in the cluster
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representation even after the self-consistent procedure. To eliminate such redundant

points, we introduce a purification process based on the condition

J iargmax{f,? (Xj )} . When this condition is satisfied, even data point X; does not

yield the maximum probability for its associated class 1_]7 Such classes contribute only

marginally to the clustering and can be removed without significantly affecting the
overall model behavior. We apply this purification condition to simplify the clustering

model by removing redundant representative points.
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2-3. Regression based on convex clustering

The (modified) convex clustering method discussed in the previous section can be
easily expanded to perform regression. In regression tasks, we typically consider two
types of data, explanatory variables (feature vectors) X and target values Y , as

follows:

X={x,x,,L x| (11-1)

Y={y,y,.L .y.}. (11-2)
As the first step in constructing a regression model based on the (modified) convex

clustering method, a clustering model M

chustering (X) is built using only explanatory
(feature) data X . For a given point x, a set of probabilities over representative classes

can be obtained using Eq. (9) as follows:
Mclustering (X)_>{P1(X)’P2(X)’L ’PN(X)}' (12)

Here, the relation ZL P (x)=1 holds. Based on the probabilities, we can predict a

target value Y., for datapoint x as follows:

N
Y e = 2.Y P (). (13)
Regression based on convex clustering is simple, making it easy to analyze the behavior
of the prediction process. We discuss such an analysis in relation to radical reactions in
Section 3.
Here, we discuss the similarities and differences between the (modified)
convex clustering method and the k-nearest neighbor (k-NN) algorithm. The A-NN

algorithm predicts an unknown data point by selecting the & nearest neighbors from the

10
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training dataset and determining the outcome based on this local information. For
classification tasks, the class is assigned by majority voting among the neighbors,
whereas for regression tasks, the prediction typically involves averaging the neighbors’
values or applying distance-based weighting. The k-NN method usually requires storing
all training data and computing distances to every data point during prediction, which
increases computational cost and model complexity as the dataset grows. In contrast,
the convex clustering method represents the dataset using representative points selected
from the training data, modeled as a mixture of multiple Gaussian distributions. Only
these representative points, along with their mixing ratios, are retained in the model and
used during prediction, thereby reducing complexity. Although the convex regression
approach differs theoretically from the non-parametric &-NN method, both share the
characteristic of leveraging training data for prediction, contributing to an intuitive

understanding of the prediction process.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.
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2-4. Computational conditions
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In this study, we analyzed chemical data related to polymer radical reactions using ML.
The radical reaction data were generated through DFT calculations. The structures of
the reactants, products, and transition states were optimized using the B3LYP functional
with Grimme’s empirical dispersion correction and the 6-31+G* basis set
(B3LYP-D3/6-31+G*).38-40 All DFT calculations were performed using the Gaussian16
software package.*! For convenience, a summary of the dataset is provided in Section
S2 of the Supporting Information, and more detailed descriptions can be found in the

literature.® We implemented the modified convex clustering (regression) method in

11
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Python.*> The machine learning analysis based on the random forest (n_estimators =

30), kernel ridge (alpha = 1.0), and k-NN algorithms3¢ was carried out using the

scikit-learn library (version 1.5.1).43

Initial step

set mitial values for O, and 7,

|

7

Calculate f;a and update 7T,

e *id i,
7

1 (x)= 1 e};p;_ 1 |I—1|-'.' aful®)
i [EJTG_._-.l..-i': \ 2o’ ) Z-.-_'-f: ixl

¥

Remove data points with small 7; wvalues

Purify data points from J #argmax {P |{I j ]Il

Update T,
ZF =émiﬂ{£.—1=L.—':="'=L.-';="'}

¥

@ Yes

Done clustering

Figure 1. Computational flow of the modified convex clustering method.
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3. Results and discussions

3.1 Basic behavior of the modified convex clustering method

We analyze the behavior of the modified convex clustering method using a simple
two-dimensional dataset with 1,000 points (Figure 2a). The points were randomly
generated from five normal distributions with means at (1, 6), (5, 2), (6, 9), (8, 5), and
(10, 8) and the standard deviations of 0.9, 0.8, 1.0, 1.1, and 1.2, respectively. We
applied the modified convex clustering method to this dataset. We employed a

maximum threshold value of o™ =3. We show clustering results with §™"= 1.0, 0.8,

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

and 0.5 in Figures 2b, 2¢, and 2d, respectively. In these figures, star markers indicate
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representative points, and orange-dotted circles indicate the class distributions ( 0;). For
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5™ =1.0, five representative points are obtained from the convex clustering method
(Figure 2b). The means of these representatives are at (0.91, 5.86), (4.94, 2.10), (6.08,
9.03), (8.23, 4.97), and (10.417, 8.30). These representative points are included in the
training dataset in Figure 2a. When smaller ¢™" values are used, data points are
partitioned into more narrowly defined classes. For example, §™" = 0.8 and 0.5 result
in 7 and 12 classes, respectively. In the convex clustering method, the number of
clusters is automatically determined based on §™". This hyperparameter sets the lower

bound for the class distribution; thus, smaller values lead to finer-grained clustering. In

13
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other words, a smaller ™" value allows the dataset to be covered by more compact
clusters. Conversely, a larger &™" value results in a coarser representation of the data.

Thus, we can control the density (granularity) of the clusters by adjusting &™".

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.
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Figure 2. Clustering results for a simple dataset based on the modified convex

clustering algorithm.
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3.2 Chemical reaction data analysis based on the convex regression method

In this section, we analyze ACR and MA radical reactions (Figure 3a) using the
modified convex regression method. Previously, we presented radical reactions
involving various combinations of ACRs and MAs (Figure 3b) and calculated their
reaction barriers using the DFT method.® The chemical dataset was analyzed using a
modified convex clustering approach. The reaction energy barriers (AErs) for radical
reactions were predicted using the convex regression method based on Eq. (13), with
product—reactant energy difference (AEgp) and a dummy parameter (DP(X)) as
explanatory variables (Figure 3c¢). Here, the dummy parameter DP(m) represents either

ACR or MA for the radical reaction X: + Y — XY, where m specifies X or Y: DP(X)

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

= 0 (1) indicates X = ACR (MA). The values are also summarized in SI. We
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standardized the input features to train ML models. Table 1 presents the regression
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results obtained by varying the hyperparameter o™ . To evaluate the performance of
the regression models, we used the 5-fold cross-validation to calculate the mean
absolute error (MAE).3¢ The table also includes the coefficient of determination (R?).
Notably, smaller MAE values can be obtained when the training dataset is used directly
as input. Figure 4 shows a comparison of the DFT-calculated reaction energy barriers
with prediction results from the regression model for o™" =0.0075. The results
confirm that the regression model tends to perform better when smaller values of &™"

are used. As discussed in the previous section, o™ controls the density of clusters (or

15
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classes) covering the data, with the number of clusters increasing as the value decreases,
and hence the regression model can more accurately predict reaction barriers. For
example, MAE values of 0.39 and 0.52 kcal/mol were obtained for ™" =0.015 and
0.03, respectively. Conversely, there is no established method for determining the
optimal value of sigma in convex clustering. Therefore, similar to standard
hyperparameter tuning, the parameter needs to be adjusted, and the model’s behavior
evaluated to identify a suitable value. According to the results in Table 1, the regression
performance tends to level off as the sigma value decreases, indicating that sigma
should be chosen with consideration for model complexity to avoid overfitting.
Developing a more systematic approach to selecting sigma in convex clustering may be
an important topic for future research.

Here, we compare the results obtained from convex clustering regression with
kernel ridge, random forest, and k-NN algorithms. For kernel ridge regression, the MAE
and R? were 0.44 kcal/mol and 0.83, respectively, when using a linear kernel. With a
radial basis function kernel, the MAE and R? improved to 0.36 kcal/mol and 0.89. The
random forest method achieved an MAE of 0.36 kcal/mol and an R? of 0.88. For the
k-NN method with 3, 5, and 7 neighbors, the MAEs were 0.31, 0.30, and 0.33 kcal/mol,
and the corresponding R? values were 0.92, 0.91, and 0.89. In comparison, the convex
regression method with sigma = 0.0075 yielded an MAE of 0.30 kcal/mol and an R? of
0.93. These results indicate that the convex regression method provides predictive
performance comparable to, and in some cases slightly better than, other machine
learning approaches for the dataset analyzed in this study.

In the modified convex regression method, representative points are selected

from the training dataset and stored as internal variables (or states) within the model.

16
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Figure 5 shows several representative points with relatively large 7Z; values, stored in

the prediction model for ™" =0.0075, using a chemical reaction representation. ML
models often behave like black boxes, making it difficult to interpret how predictions
are made. However, in the modified convex regression method, predictions are based on
representative points that originate from the training dataset. This characteristic allows
for straightforward analysis of model behavior. For instance, to understand the
prediction of reaction energy barriers, we can examine the contribution of each
representative point. Figure 6 shows the contributions for several predictions. For
example, the DFT-based TS calculation yielded a barrier of 6.55 kcal/mol for the radical
reaction between methyl MA (compound 4 in Figure 3b) and y-butyrolactone MA
(compound 8 in Figure 3b), whereas the convex regression model predicted a barrier of
6.39 kcal/mol. This prediction was primarily influenced by two reactions: the radical

reaction between methyl MA (compound 4) and methacrylic acid (compound 2) yielded

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

the contribution of 76.4%, and the reaction between #-butyl MA (compound 6) and MA

(compound 4) yielded the contribution 23.4%, (Figure 6a). Similarly, for the reaction
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between ethyl-cyclohexyl ACR (compound 9) and ethyl-cyclohexyl MA (compound

(cc)

10), the DFT calculation yielded a barrier of 4.40 kcal/mol, whereas the ML model
predicted 4.84 kcal/mol. In this case, the reaction between ethyl-cyclohexyl ACR
(compound 9) and methyl MA (compound 4) contributed 93.8%, and the reaction
between y-butyrolactone ACR (compound 7) and methacrylic acid (compound 2)
contributed 3.89% (Figure 6b). Thus, the convex regression method enables intuitive
interpretation of ML prediction by analyzing the contributions of representative points.
In these reaction predictions, the machine learning model clearly focuses on

similarities among reactant monomers. For example, methyl MA (compound 4) in

17


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp03946k

Open Access Article. Published on 06 January 2026. Downloaded on 1/9/2026 1:59:51 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Physical Chemistry Chemical Physics

Page 18 of 30

View Article Online
DOI: 10.1039/D5CP03946K

Figure 6a and ethyl-cyclohexyl ACR (compound 9) in Figure 6b appear both in the
target reactions and in the reactions that contributed most to the prediction. The model
also assigned importance to whether the monomer belongs to MA or ACR when making
predictions, as shown in Figure 6. This distinction is critical in radical reactions
because it determines the stability of the reactant and product radicals. For reactions
involving relatively large side chains, the model tends to reference reactions with
similarly large side chains, as these can influence radical behavior through steric effects.
The machine learning model appears to account for these effects as well, which aligns
with chemical intuition. Conversely, it is worth noting that machine learning using the
convex clustering method does not predict reactions based on chemical understanding
or causal relationships as researchers do, but rather relies solely on the similarity of
reaction data. Nevertheless, analyzing the model’s behavior in this way may help
researchers extract chemical insights from the data. Improving prediction transparency
could facilitate uncovering chemical insights from machine learning analyses of
chemical data.

The convex clustering method selects representative points along with their
class proportions, making the model simpler and more efficient. A simple prediction
process also helps improve understanding of the model’s behavior. As shown in Egs.
(12) and (13), even when the dataset is small and an unseen data point is far from the
representative points, the regression process remains influenced by the nearest
representatives. This helps prevent extreme predictions and ensures stable behavior.
Conversely, as with other machine learning methods, improving predictive performance
requires expanding the training dataset. In addition, similar to distance-based models

such as GMM and k-NN, feature selection is also critical for convex clustering.

18
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Dimensionality reduction and careful feature selection are essential for building
effective models with this approach. To address this challenge, we are currently
investigating a method that combines feature refinement with convex clustering. The
results of this research will be reported elsewhere.

The complexity of ML algorithms leads to difficulties in understanding their
predictive process by humans. To alleviate the incomprehensibility of ML, we focused
on the selection process of representative points. In the convex clustering approach,
representative points are selected from the training dataset and used to make
predictions. By analyzing the contributions of these representative points, we can gain
some insight into a model’s behavior. Selecting representative points directly from the
training dataset plays a valuable role in enhancing the transparency and interpretability
of ML models. We considered the convex regression method as an example, which may
serve as a guideline for developing ML algorithms with improved analyzability. In

particular, chemical datasets often contain rich information, and incorporating this

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

information directly into ML models can further enhance their interpretability and
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transparency.
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Figure 3. a) Scheme of the radical reaction between ACR and MA. b) Reactant
monomers of acrylic acid, ACR, methacrylic acid, and MA. We categorize acrylic and

methacrylic acids as ACR and MA, respectively. ¢) Energy diagram for radical reaction

X '+Y — XY ', where X represents the radical monomer.

Table 1. Predictive performance of the convex regression method for energy

reaction barrier based on cross-validation.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

o™ MAE [Kkcal/mol] R?
0.04 0.58 0.67
0.03 0.52 0.74
0.02 0.49 0.80
0.015 0.39 0.86
0.0075 0.30 0.93

(cc)

21


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp03946k

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 06 January 2026. Downloaded on 1/9/2026 1:59:51 AM.

(cc)

Physical Chemistry Chemical Physics Page 22 of 30

View Article Online

DOI: 10.1039/D5CP03946K

:10_
=]
=}
=
8
=
g 8
—
=2
=
=¥}
-
="
=]
=
£ 67
o~
2
@
=
iy
(=7
-1
Z 41

8 10
DFT calculation [kcal/mol]

Figure 4. Comparison between DFT calculations and ML predictions for reaction

energy barriers [kcal/mol].
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Figure 6. Contributions from representative points stored in ML models to predict

energy barriers.
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4. Summary

In this study, we explored a modified convex clustering (regression) method, in which
representative points used to describe classes are selected directly from the training
dataset. In this approach, each class is associated with a parameter that defines its size
(distribution), allowing for a flexible data representation. We demonstrated that data are
described more coarsely when the number of representative points is smaller.
Conversely, increasing the number of classes (clusters) enables a more fine-grained
representation, which can enhance the predictive performance of ML models. However,
this increased granularity induces greater model complexity. The number of
representative points provides a means to control both model granularity and
complexity. We applied the modified method to ACR and MA radical reaction data and
constructed ML models to predict reaction energy barriers. Our results showed that
prediction accuracy improves with the number of representative points. We also

analyzed the prediction process by examining the contributions of individual

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

representative points, where the energy barrier is estimated as a weighted sum of

Open Access Article. Published on 06 January 2026. Downloaded on 1/9/2026 1:59:51 AM.

contributions from radical reactions. The model’s behavior can be easily interpreted

(cc)

because the representative points are selected from the training dataset and directly used
in predictions. We concluded that selecting representative points from the training
dataset is a useful strategy for improving the interpretability and transparency of ML
models. The simplicity and analyzability of the modified convex clustering (regression)
method make it a promising tool for deeper investigation of chemical and scientific

data.
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Supporting Information.

We described S1) the K-near clustering method and S2) the radical reaction dataset in

another PDF file.

Notes
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