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Abstract

Analyzing data and extracting meaningful insights is essential across various research 

fields. To address acrylate and methacrylate radical reaction data, we propose a 

modified convex clustering (regression) method, in which representative points are 

directly selected from the training data to describe the dataset. Although machine 

learning (ML) models are often regarded as black boxes, making their predictions 

difficult to interpret, the (modified) convex clustering approach allows for 

straightforward analysis of model behavior. This study emphasizes the importance of 

selecting representative points to enhance the interpretability and transparency of ML 

models. We demonstrate that radical reaction energy barriers can be effectively 

described and predicted based on the contributions of similar reactions. The simplicity 

and transparency of the modified convex clustering (regression) method enable in-depth 

analysis of physicochemical data.
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1. Introduction

Machine learning (ML) approaches, combined with large-scale molecular databases, 

have gained considerable prominence across various chemical fields, including 

functional molecules, drug discovery, and materials science.1-21 However, despite its 

advantages, ML presents certain drawbacks. For instance, it is often difficult to 

comprehend how ML models operate, largely due to the complexity and lack of 

transparency in their prediction processes. Predictions based on correlations rather than 

causal relationships can further hinder interpretability. Although ML models excel at 

capturing multidimensional and nonlinear correlations, such complexity often exceeds 

human intuitive understanding, making it challenging to grasp underlying mechanisms. 

This lack of interpretability has limited the broader application of ML, particularly in 

extracting meaningful insights from physicochemical data. Although explainable 

artificial intelligence techniques—such as permutation importance and SHAP (SHapley 

Additive exPlanations)—are sometimes employed, the inherent complexity of ML 

models continues to obscure a comprehensive understanding of their behavior.22-27　To 

address this issue, we focus on algorithms that facilitate interpretability. Particularly, we 

highlight the convex clustering algorithm, which offers several advantageous features, 

such as sophisticated data clustering, soft assignment, and direct representative point 

selection from training data.28

In a convex clustering algorithm, the distributions of all clusters (or classes) are 

defined a priori by a single shared parameter, resulting in uniform distribution sizes. In 

this study, we slightly modify the algorithm by relaxing this constraint: the distribution 

size of each cluster is governed by its own parameter, which is automatically 

determined during the model training process. The modified clustering process is 
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categorized as a soft assignment method, where each data point can partially belong to 

multiple classes, with probabilistic ratios representing its degree of membership. 

Further, we employ the modified clustering method to perform regression on radical 

reaction data for acrylate (ACR) and methacrylate (MA). Radical reactions involving 

ACR and MA are widely used in synthesizing various acrylic polymers, such as 

plastics, adhesives, paints, medical materials, and fibers.29-31 To theoretically elucidate 

radical reaction mechanisms, transition state (TS) analyses based on density functional 

theory (DFT) are indispensable. DFT-based TS calculations have provided insights into 

reaction processes,32, 33 and ML has been recently employed to predict complex features 

such as energy barriers and regioselectivity in radical reactions.34, 35 We develop ML 

models to predict the energy barriers of ACR and MA radical reactions using a dataset 

derived from DFT calculations, and demonstrate that the number of representative 

points governs both the resolution of data reproduction and the prediction accuracy. 

This study highlights the simplicity of the convex clustering (regression) approach, 

particularly in selecting representative points from training data, as a key factor in 

enhancing the interpretability and transparency of ML models for analyzing 

physicochemical data.

The remainder of this article is organized as follows. In Section 2, we describe 

the modified convex clustering algorithm. Section 3 presents the fundamental behavior 

of the algorithm based on a simple dataset as well as its application to ACR and MA 

radical reaction data. Finally, Section 4 summarizes this study.
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2. Methods and Computational Conditions

2-1. Convex clustering method

Convex clustering is an unsupervised ML algorithm designed to assign data points to 

clusters. It is theoretically grounded in the Gaussian mixture model (GMM) and is 

classified as a soft assignment method, wherein each data point is probabilistically 

associated with multiple clusters.36, 37 Despite this probabilistic framework, a definitive 

cluster assignment can be made by selecting the cluster with the highest associated 

probability. Meanwhile, hard assignment algorithms, such as K-means clustering, assign 

each data point to only one cluster.36, 37 We present a modified K-means clustering 

algorithm (K-near) in Section S1 of the Supporting Information as a representative hard 

assignment approach. Although the modified convex clustering and K-near methods 

represent soft and hard assignment techniques, respectively, both select representative 

points from the training data to describe the underlying data structure or class 

distribution.

First, we describe the GMM to highlight the distinctive characteristics of the 

convex clustering method. We consider a dataset  1 2, , , NX = x x xL comprising N  

data points, where each data point is represented by a d -dimensional vector. We 

assume that each data point is generated from a single class through probabilistically 

independent sampling (trials), although the specific class from which each point 

originates is unknown. Under these assumptions, the probability of observing the 

dataset, denoted as  1, , npθ x xL , can be expressed as follows:

   1
1

, ,
N

n k
k

p p
=

=Õθ θx x xL                         (1-1)

   
i

C

k i k i
i

p pqp= Påθ x x                          (1-2)
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1
C

i
i

p =å ,                                      (1-3)

where θ represents parameters of the probabilistic model,  kpθ x  denotes the 

probability of observing a data point of kx ,  
i k ipq Px  denotes the conditional 

probability of observing the data point kx  given that the class iP  was selected under 

the parameter iq , ip  denotes the probability (or proportion) associated with class 

iP , and C  denotes the total number of classes. Eq. (1-3) indicates that the sum of all 

class proportions equals 1.0. Based on the assumption of probabilistic independence, the 

probability  1, , npθ x xL  can be expressed as the product of the probabilities for each 

data point. In the GMM framework, we assume the mean vector iμ  and the covariance 

matrix iΣ  for class iP  with respect to iq . Accordingly,  
i k ipq Px  can be 

computed as follows:

   

 
   

,

1
1 22

1 1exp
22

i i ik i k i

T
i i i i id

i

p pq

p
-

P = P

æ ö= - - -ç ÷
è ø

μ Σx x

x μ Σ x μ
Σ

.              (2)

Given the number of classes C , the parameters ip , iμ , and iΣ  can be determined 

using the expectation–maximization (EM) algorithm by maximizing the log-likelihood 

of  1log , , npθ x xL .36, 37 Notably, the number of classes C  becomes a predefined 

parameter (hyperparameter) in the GMM. Meanwhile, the convex clustering method 

allows for automatic determination of C , although the covariance matrix iΣ  must be 

specified in advance.

Page 6 of 30Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/9

/2
02

6 
1:

59
:5

1 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5CP03946K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp03946k


7

In the convex clustering algorithm, the representative point iμ  is selected 

from a point ix  in the training dataset, and iΣ  is assumed to be a simple diagonal 

matrix, as follows: 

i i=μ x                                  (3-1)

i ds=Σ I ,                                (3-2)

where dI  is the d -dimensional identity matrix. From Eq. (3-2), all classes share the 

same distribution, which is controlled by the hyperparameter s . Under these 

conditions, the relationship      , ,i ik i k i ip p fq s sP = P =x kx x x  can be derived using 

the following equation:

 
 

2
, 2 22

1 1exp
22

i idf n npn
æ öº - -ç ÷
è ø

x x x .                (4)

Therefore, the log-likelihood of the convex clustering method can be explicitly 

expressed as follows: 

     1 , ,log , , log log
i

N N N N

n i k i i i k
k i k i

p p fs sp w pæ ö æ ö= =ç ÷ ç ÷
è ø è ø

å å å åθ μx x x xL .    (5)

The EM algorithm provides a self-consistent procedure to determine ip . The 

log-likelihood (Eq. (5)) increases monotonically and converges through an iterative loop 

in which the values of ( )next
ip  at each step are updated based on the current ip  values 

as follows:

 ( )

1

1 N
next

i i k
k

P
N

p
=

= å x                                (6-1)

     
 

 
 

, ,

, ,1 1

i

j

i i i i
i i N N

j j j jj j

p f
P P

p f
s s

s s

p p

p p
= =

P
º P º =

På å
x

x

x x
x x

x x
,             (6-2)
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where  iP P x  denotes the probability of class iP  given that the data point x  was 

observed. In the self-consistent loop, several data points acquire very small ip  values. 

Points with ip  values below a certain threshold are excluded from the set of 

representative candidates; thus, they no longer contribute to the clustering process. To 

exclude such data points, their ip  values are set to zero. As a result, the number of 

representative points gradually decreases during the self-consistent loop. The remaining 

points after the convergence are used as the final representatives for clustering. Notably, 

the number of remaining points, which corresponds to the number of clusters, depends 

on the hyperparameter s . For example, when a small value is assigned to s , a larger 

number of data points tend to survive the self-consistent procedure.

2-2. Modified convex clustering method

In the convex clustering method, the hyperparameter s  uniformly defines the 

distributions of all clusters, as seen in Eq. (3-2). In this study, we modify this 

distributional assumption as follows: 

i i ds=Σ I .                                     (7)

Eq. (7) allows each class to have its own distribution corresponding to its specific is . 

Thus, the conditional probability  
i k ipq Px  can be expanded as follows: 

 
 

2
, 2 22

1 1exp
22ii id

ii

f s sps

æ ö
= - -ç ÷

è ø
x x x ,                    (8)

where      , ,i i i ik i k i ip p fq s sP = P =x kx x x . Therefore, the conditional  probability 
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 iP x  is slightly modified as follows: 

     
 

,

,1

i

i

i i
i i N

j jj

f
P P

f
s

s

p

p
=

º P =
å

x
x x

x
.                         (9)

To determine the is  value, we examine the following conditions:

1 2
1 min{ , , , , }
2i i i ilL L Ls = L L ,                        (10)

where ilL  denotes the distance between representative points ix  and lx . 

Accordingly, is  is set to half the distance to the nearest class. In addition, is  is 

constrained to lie between a minimum threshold mins  and a maximum threshold 

m axs . The number (or granularity) of classes can be controlled by adjusting these 

threshold values.

Besides the modification given by Eq. (7), we performed a purification process 

to further reduce the number of clusters (i.e., representative data points; Figure 1a). In 

the convex clustering method, representative candidates are typically removed based on 

a threshold applied to ip . However, some redundant points may remain in the cluster 

representation even after the self-consistent procedure. To eliminate such redundant 

points, we introduce a purification process based on the condition 

   argmax  i j
i

j P¹ x . When this condition is satisfied, even data point jx  does not 

yield the maximum probability for its associated class jP . Such classes contribute only 

marginally to the clustering and can be removed without significantly affecting the 

overall model behavior. We apply this purification condition to simplify the clustering 

model by removing redundant representative points.

Page 9 of 30 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/9

/2
02

6 
1:

59
:5

1 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5CP03946K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp03946k


10

2-3. Regression based on convex clustering

The (modified) convex clustering method discussed in the previous section can be 

easily expanded to perform regression. In regression tasks, we typically consider two 

types of data, explanatory variables (feature vectors) X  and target values Y , as 

follows:

 1 2, , , NX = x x xL                           (11-1)

 1 2, , , NY = y y yL .                          (11-2)

As the first step in constructing a regression model based on the (modified) convex 

clustering method, a clustering model  clusteringM x  is built using only explanatory 

(feature) data X . For a given point x , a set of probabilities over representative classes 

can be obtained using Eq. (9) as follows: 

        1 2, , ,clustering NM P P P®x x x xL .               (12)

Here, the relation  1
1N

ii
P

=
=å x  holds. Based on the probabilities, we can predict a 

target value predicty  for data point x  as follows:

 
N

predict i i
i

P= åy y x .                                 (13)

Regression based on convex clustering is simple, making it easy to analyze the behavior 

of the prediction process. We discuss such an analysis in relation to radical reactions in 

Section 3. 

Here, we discuss the similarities and differences between the (modified) 

convex clustering method and the k-nearest neighbor (k-NN) algorithm. The k-NN 

algorithm predicts an unknown data point by selecting the k nearest neighbors from the 
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training dataset and determining the outcome based on this local information. For 

classification tasks, the class is assigned by majority voting among the neighbors, 

whereas for regression tasks, the prediction typically involves averaging the neighbors’ 

values or applying distance-based weighting. The k-NN method usually requires storing 

all training data and computing distances to every data point during prediction, which 

increases computational cost and model complexity as the dataset grows. In contrast, 

the convex clustering method represents the dataset using representative points selected 

from the training data, modeled as a mixture of multiple Gaussian distributions. Only 

these representative points, along with their mixing ratios, are retained in the model and 

used during prediction, thereby reducing complexity. Although the convex regression 

approach differs theoretically from the non-parametric k-NN method, both share the 

characteristic of leveraging training data for prediction, contributing to an intuitive 

understanding of the prediction process.

2-4. Computational conditions

In this study, we analyzed chemical data related to polymer radical reactions using ML. 

The radical reaction data were generated through DFT calculations. The structures of 

the reactants, products, and transition states were optimized using the B3LYP functional 

with Grimme’s empirical dispersion correction and the 6-31+G* basis set 

(B3LYP-D3/6-31+G*).38-40 All DFT calculations were performed using the Gaussian16 

software package.41 For convenience, a summary of the dataset is provided in Section 

S2 of the Supporting Information, and more detailed descriptions can be found in the 

literature.6 We implemented the modified convex clustering (regression) method in 
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12

Python.42 The machine learning analysis based on the random forest (n_estimators = 

30), kernel ridge (alpha = 1.0), and k-NN algorithms36 was carried out using the 

scikit-learn library (version 1.5.1).43 

Figure 1. Computational flow of the modified convex clustering method.
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3. Results and discussions

3.1 Basic behavior of the modified convex clustering method

We analyze the behavior of the modified convex clustering method using a simple 

two-dimensional dataset with 1,000 points (Figure 2a). The points were randomly 

generated from five normal distributions with means at (1, 6), (5, 2), (6, 9), (8, 5), and 

(10, 8) and the standard deviations of 0.9, 0.8, 1.0, 1.1, and 1.2, respectively. We 

applied the modified convex clustering method to this dataset. We employed a 

maximum threshold value of max 3s = . We show clustering results with mind = 1.0, 0.8, 

and 0.5 in Figures 2b, 2c, and 2d, respectively. In these figures, star markers indicate 

representative points, and orange-dotted circles indicate the class distributions ( is ). For 

min 1.0d = , five representative points are obtained from the convex clustering method 

(Figure 2b). The means of these representatives are at (0.91, 5.86), (4.94, 2.10), (6.08, 

9.03), (8.23, 4.97), and (10.417, 8.30). These representative points are included in the 

training dataset in Figure 2a. When smaller mind  values are used, data points are 

partitioned into more narrowly defined classes. For example, mind  = 0.8 and 0.5 result 

in 7 and 12 classes, respectively. In the convex clustering method, the number of 

clusters is automatically determined based on mind . This hyperparameter sets the lower 

bound for the class distribution; thus, smaller values lead to finer-grained clustering. In 
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other words, a smaller mind  value allows the dataset to be covered by more compact 

clusters. Conversely, a larger mind  value results in a coarser representation of the data. 

Thus, we can control the density (granularity) of the clusters by adjusting mind . 

Figure 2. Clustering results for a simple dataset based on the modified convex 

clustering algorithm.
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3.2 Chemical reaction data analysis based on the convex regression method

In this section, we analyze ACR and MA radical reactions (Figure 3a) using the 

modified convex regression method. Previously, we presented radical reactions 

involving various combinations of ACRs and MAs (Figure 3b) and calculated their 

reaction barriers using the DFT method.6 The chemical dataset was analyzed using a 

modified convex clustering approach. The reaction energy barriers (ΔETS) for radical 

reactions were predicted using the convex regression method based on Eq. (13), with 

product–reactant energy difference (ΔERP) and a dummy parameter (DP(X)) as 

explanatory variables (Figure 3c). Here, the dummy parameter DP(m) represents either 

ACR or MA for the radical reaction X· + Y → XY·, where m specifies X or Y: DP(X) 

= 0 (1) indicates X = ACR (MA). The values are also summarized in SI. We 

standardized the input features to train ML models. Table 1 presents the regression 

results obtained by varying the hyperparameter mins . To evaluate the performance of 

the regression models, we used the 5-fold cross-validation to calculate the mean 

absolute error (MAE).36 The table also includes the coefficient of determination (R2). 

Notably, smaller MAE values can be obtained when the training dataset is used directly 

as input. Figure 4 shows a comparison of the DFT-calculated reaction energy barriers 

with prediction results from the regression model for min 0.0075s = . The results 

confirm that the regression model tends to perform better when smaller values of mins  

are used. As discussed in the previous section, mins  controls the density of clusters (or 
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classes) covering the data, with the number of clusters increasing as the value decreases, 

and hence the regression model can more accurately predict reaction barriers. For 

example, MAE values of 0.39 and 0.52 kcal/mol were obtained for min 0.015s =  and 

0.03, respectively. Conversely, there is no established method for determining the 

optimal value of sigma in convex clustering. Therefore, similar to standard 

hyperparameter tuning, the parameter needs to be adjusted, and the model’s behavior 

evaluated to identify a suitable value. According to the results in Table 1, the regression 

performance tends to level off as the sigma value decreases, indicating that sigma 

should be chosen with consideration for model complexity to avoid overfitting. 

Developing a more systematic approach to selecting sigma in convex clustering may be 

an important topic for future research.

Here, we compare the results obtained from convex clustering regression with 

kernel ridge, random forest, and k-NN algorithms. For kernel ridge regression, the MAE 

and R2 were 0.44 kcal/mol and 0.83, respectively, when using a linear kernel. With a 

radial basis function kernel, the MAE and R2 improved to 0.36 kcal/mol and 0.89. The 

random forest method achieved an MAE of 0.36 kcal/mol and an R2 of 0.88. For the 

k-NN method with 3, 5, and 7 neighbors, the MAEs were 0.31, 0.30, and 0.33 kcal/mol, 

and the corresponding R2 values were 0.92, 0.91, and 0.89. In comparison, the convex 

regression method with sigma = 0.0075 yielded an MAE of 0.30 kcal/mol and an R2 of 

0.93. These results indicate that the convex regression method provides predictive 

performance comparable to, and in some cases slightly better than, other machine 

learning approaches for the dataset analyzed in this study.

In the modified convex regression method, representative points are selected 

from the training dataset and stored as internal variables (or states) within the model. 
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Figure 5 shows several representative points with relatively large ip  values, stored in 

the prediction model for min 0.0075s = , using a chemical reaction representation. ML 

models often behave like black boxes, making it difficult to interpret how predictions 

are made. However, in the modified convex regression method, predictions are based on 

representative points that originate from the training dataset. This characteristic allows 

for straightforward analysis of model behavior. For instance, to understand the 

prediction of reaction energy barriers, we can examine the contribution of each 

representative point. Figure 6 shows the contributions for several predictions. For 

example, the DFT-based TS calculation yielded a barrier of 6.55 kcal/mol for the radical 

reaction between methyl MA (compound 4 in Figure 3b) and γ-butyrolactone MA 

(compound 8 in Figure 3b), whereas the convex regression model predicted a barrier of 

6.39 kcal/mol. This prediction was primarily influenced by two reactions: the radical 

reaction between methyl MA (compound 4) and methacrylic acid (compound 2) yielded 

the contribution of 76.4%, and the reaction between t-butyl MA (compound 6) and MA 

(compound 4) yielded the contribution 23.4%, (Figure 6a). Similarly, for the reaction 

between ethyl-cyclohexyl ACR (compound 9) and ethyl-cyclohexyl MA (compound 

10), the DFT calculation yielded a barrier of 4.40 kcal/mol, whereas the ML model 

predicted 4.84 kcal/mol. In this case, the reaction between ethyl-cyclohexyl ACR 

(compound 9) and methyl MA (compound 4) contributed 93.8%, and the reaction 

between γ-butyrolactone ACR (compound 7) and methacrylic acid (compound 2) 

contributed 3.89% (Figure 6b). Thus, the convex regression method enables intuitive 

interpretation of ML prediction by analyzing the contributions of representative points.

In these reaction predictions, the machine learning model clearly focuses on 

similarities among reactant monomers. For example, methyl MA (compound 4) in 
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Figure 6a and ethyl-cyclohexyl ACR (compound 9) in Figure 6b appear both in the 

target reactions and in the reactions that contributed most to the prediction. The model 

also assigned importance to whether the monomer belongs to MA or ACR when making 

predictions, as shown in Figure 6. This distinction is critical in radical reactions 

because it determines the stability of the reactant and product radicals. For reactions 

involving relatively large side chains, the model tends to reference reactions with 

similarly large side chains, as these can influence radical behavior through steric effects. 

The machine learning model appears to account for these effects as well, which aligns 

with chemical intuition. Conversely, it is worth noting that machine learning using the 

convex clustering method does not predict reactions based on chemical understanding 

or causal relationships as researchers do, but rather relies solely on the similarity of 

reaction data. Nevertheless, analyzing the model’s behavior in this way may help 

researchers extract chemical insights from the data. Improving prediction transparency 

could facilitate uncovering chemical insights from machine learning analyses of 

chemical data.

The convex clustering method selects representative points along with their 

class proportions, making the model simpler and more efficient. A simple prediction 

process also helps improve understanding of the model’s behavior. As shown in Eqs. 

(12) and (13), even when the dataset is small and an unseen data point is far from the 

representative points, the regression process remains influenced by the nearest 

representatives. This helps prevent extreme predictions and ensures stable behavior. 

Conversely, as with other machine learning methods, improving predictive performance 

requires expanding the training dataset. In addition, similar to distance-based models 

such as GMM and k-NN, feature selection is also critical for convex clustering. 
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Dimensionality reduction and careful feature selection are essential for building 

effective models with this approach. To address this challenge, we are currently 

investigating a method that combines feature refinement with convex clustering. The 

results of this research will be reported elsewhere.

The complexity of ML algorithms leads to difficulties in understanding their 

predictive process by humans. To alleviate the incomprehensibility of ML, we focused 

on the selection process of representative points. In the convex clustering approach, 

representative points are selected from the training dataset and used to make 

predictions. By analyzing the contributions of these representative points, we can gain 

some insight into a model’s behavior. Selecting representative points directly from the 

training dataset plays a valuable role in enhancing the transparency and interpretability 

of ML models. We considered the convex regression method as an example, which may 

serve as a guideline for developing ML algorithms with improved analyzability. In 

particular, chemical datasets often contain rich information, and incorporating this 

information directly into ML models can further enhance their interpretability and 

transparency.
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a)

b)

c)
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Figure 3. a) Scheme of the radical reaction between ACR and MA. b) Reactant 

monomers of acrylic acid, ACR, methacrylic acid, and MA. We categorize acrylic and 

methacrylic acids as ACR and MA, respectively. c) Energy diagram for radical reaction  

X・+ Y → XY・, where X・ represents the radical monomer.

Table 1. Predictive performance of the convex regression method for energy 

reaction barrier based on cross-validation.

mins MAE [kcal/mol] R2

0.04 0.58 0.67

0.03 0.52 0.74

0.02 0.49 0.80

0.015 0.39 0.86

0.0075 0.30 0.93
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Figure 4. Comparison between DFT calculations and ML predictions for reaction 

energy barriers [kcal/mol]. 
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Figure 5. Representative data stored in the convex regression model. We show some 

representative points with relatively large ip  values using a chemical reaction 

representation.
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Figure 6. Contributions from representative points stored in ML models to predict 

energy barriers. 
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4. Summary

In this study, we explored a modified convex clustering (regression) method, in which 

representative points used to describe classes are selected directly from the training 

dataset. In this approach, each class is associated with a parameter that defines its size 

(distribution), allowing for a flexible data representation. We demonstrated that data are 

described more coarsely when the number of representative points is smaller. 

Conversely, increasing the number of classes (clusters) enables a more fine-grained 

representation, which can enhance the predictive performance of ML models. However, 

this increased granularity induces greater model complexity. The number of 

representative points provides a means to control both model granularity and 

complexity. We applied the modified method to ACR and MA radical reaction data and 

constructed ML models to predict reaction energy barriers. Our results showed that 

prediction accuracy improves with the number of representative points. We also 

analyzed the prediction process by examining the contributions of individual 

representative points, where the energy barrier is estimated as a weighted sum of 

contributions from radical reactions. The model’s behavior can be easily interpreted 

because the representative points are selected from the training dataset and directly used 

in predictions. We concluded that selecting representative points from the training 

dataset is a useful strategy for improving the interpretability and transparency of ML 

models. The simplicity and analyzability of the modified convex clustering (regression) 

method make it a promising tool for deeper investigation of chemical and scientific 

data.

Page 25 of 30 Physical Chemistry Chemical Physics

P
hy

si
ca

lC
he

m
is

tr
y

C
he

m
ic

al
P

hy
si

cs
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/9

/2
02

6 
1:

59
:5

1 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5CP03946K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cp03946k


26

Supporting Information. 

We described S1) the K-near clustering method and S2) the radical reaction dataset in 

another PDF file. 
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The data supporting this article have been included as part of the Supplementary 

Information.
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