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Abstract

Femtosecond laser filament-induced reactions in gaseous hexane (CgHi4) are studied by time-of-
flight ion mass spectrometry. The neutral products are unambiguously distinguished from species
produced by ionization for mass analysis, through velocity screening along the flight tube. In
addition to hydrogen-capped polyynes, C,Hs (n = 4, 6, 8, 10 and 12), the mass spectrometry
reveals hydrocarbon molecules in the mass range of m/z 50 — 146 that have eluded identification in
previous studies. The product distributions, together with their dependence on laser pulse energy
and repetition rate, provide insight into the association reaction pathways to hydrogen-capped

polyynes and other products by laser filaments.

10 1. INTRODUCTION

1 Ultrashort strong laser fields (~1013-10' W/cm?) provide a powerful means to control
12 chemical reactions by driving electrons with their large electric fields [1-3]. Combined with
13 coherent pulse-shaping techniques, the strong-field reaction control demonstrated its efficacy
14 in unimolecular reactions [4]. Selective bond breaking and rearrangement, and orientation
15 selective ionization were demonstrated with various polyatomic molecules in gas phase such
16 as COq [5, 6], OCS [7, 8], H2O [9, 10], CoH, [11], CHy [12], CFy [13], methylhalides [14, 15],
17 trifluoro- and trichroloacetone [16], iodohexane [17], acetophenone [18], and orgnometallic
18 molecules [19]. Strong laser pulses have been exploited to manipulate bimolecular reactions
10 between gas-phase atoms [20] and molecules [21] and to intermolecular reactions in clusters
2 [22, 23)].

2 The application to many-body reactions has also been demonstrated using femtosecond
2 laser filaments. Laser filament is a needle-like light-emitting body generated by loose focusing
23 of ultrashort laser pulses into a gas or liquid medium. The field intensity of the order of
2 10" to 10 W/cm? is maintained over a long distance along the filament as a result of
25 competition between nonlinear focusing and defocusing effects [24-26]. Previous studies
2 identified the generation of nanoparticles and films from gaseous reactants, such as carbon

2 nanospheres from CHy [27], hydrogenated amorphous carbon nanoparticles and films from
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2 CoHy [28], as well as metal containing nanoparticles from Al(CHs)s and AloMg(CHj)s [29],
20 by means of fluorescence/Raman spectroscopy, electron energy loss spectroscopy (EELS) and
s transmission electron microscopy (TEM). For gaseous hexane CgHyy, association reactions
a to hydrogen-capped polyynes C,,Hy (n = 6,8, 10 and 12) were observed by UV spectroscopy
2 of the products recovered in cooled solvent [30].

;3 In addition to these studies based on the analysis of the recovered products, several
1 in-situ studies on laser-filament reactions have been reported. Emission spectroscopy was
s employed [31, 32| to identify the intermediates in laser filaments in a gas mixture of CHy
s and air, where the formation of OH radical is shown to be essential in the chain-branching
» oxidation reaction in the flame of CHy and air mixture [32]. Absorption spectroscopy was
s exploited to investigate reaction intermediates and products, in particular nonfluorescent
» molecules in their electronic ground state [33-35]. The formation of O3 [33], nitrogen oxides
0 [33-35], CO [35], and HCN [35] by filamentation in air was identified by UV, visible, and
a1 infrared absorption spectroscopy.

2 In contrast to these optical spectroscopic techniques allowing state-resolved detection of
3 the products, ion-mass spectrometry offers identification of a wide range of products with a

s high sensitivity. It was first applied to a gaseous sample recovered from the reaction cell after

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

s laser irradiation for a few hours, where various carbon hydrates, such as CoHy and CgHg

s from CHy [27], and COy and CoHy from a gas mixture of CO and Hy [36] were observed.

Open Access Article. Published on 06 January 2026. Downloaded on 1/9/2026 3:04:42 AM.

a7 Recently, laser filament reactions have been investigated by direct sampling of the products

(cc)

s from a reaction chamber into a mass spectrometer [37, 38]. The application to the filament
s reaction in CoHy successfully identified a variety of association reaction products from CsHy
s to C;Hy; [38].

s1 As demonstrated by these studies, the ion mass spectrometry is powerful in investigating
s2 the reaction products and intermediates. On the other hand, obtained mass spectra are
s3 often contaminated by the fragmentation of the reaction products by ionization [39], pre-
s« venting a clear understanding of the reaction process from the product distributions. This
ss becomes significant when association reactions to a large molecular species are anticipated,
ss as they are often susceptible to dissociation. Since the discrimination of nacent products
s7 from species produced by mass analysis is often challenging, a soft ionization technique sup-
ss pressing extensive fragmentation upon ionization, such as electrospray ionization (ESI) or

so matrix-assisted laser desorption ionization (MALDI) is employed when applicable.

3
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FIG. 1. Schematic of the experimental setup consisting of a reaction gas cell, a differential pump-
ing stage, and a Wiley-McLaren-type time-of-flight (TOF) mass spectrometer. The products of
femtosecond laser-filament reactions produced in the reaction gas cell by filament laser (pump) is
introduced into the TOF mass spectrometer via an oriffice and a skimmer. The products ionized by
ionization laser (probe) are guided by electric fields and detected by a microchannel plate detector.
The repetition rate and energy of the filament laser are varied by an optical chopper and neutral

density filters, respectively.

s  Here we introduce an alternative approach to distinguish filament products from ionization-
61 induced fragments. The method is based on the difference in initial velocities between fila-
s2 ment products and ionization fragments, which is applied to identify laser-filament reaction
63 products of hexane (CgHy4). The paper is organized as follows. In Section II, we describe our
s experimental setup. The filament products are directly sampled into the time-of-flight mass

s spectrometer, which allows a clear identification of the products and the intermediates to

<))

e discuss the reaction processes. The velocity-resolved mass spectroscopy is presented in Sec-
o7 tion III, where possible reaction pathways for the formation of hydreogen-capped polyynes
¢ and other products are discussed, as well as the effects of the laser repetition rate and laser
60 intensity on the product distributions. The results of the present study are summarized in

70 Section IV.
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n II. EXPERIMENT

22 The experimental setup is similar to that described previously [38]. Briefly, it consists
73 of three sections, a reaction gas cell, a differential pumping stage, and a time-of-flight mass
74 spectrometer (Fig. 1). The output from the Ti:sapphire laser amplifier system (800 nm, 50
75 fs, 1 kHz) was divided into two by a beamsplitter. The main pulse (98%) was focused into
76 the reaction gas cell by a plano-convex lens (f = 200 mm) to generate a laser filament. The
7 remaining horizontally-polarized pulse (2%) was focused into the mass spectrometer using a
78 plano-convex lens (f = 200 mm ), which serves as an ionization probe for the mass analysis
79 of the filament products. Hexane (CgHy4, vapor pressure ~0.2 atm at room temperature)
so was continuously supplied into the reaction gas cell using Ar as a carrier gas. The gas flow
g1 rate was controlled to keep the pressure inside the reaction gas cell at a constant value of
g2 0.4 atm.

es  After interaction with the laser filaments, the reaction products are introduced into the
s+ Mass spectrometer as a quasi-continuous molecular beam [38] via an orifice (¢200 pm) and
g5 a skimmer (¢200 pm) in the differential pumping stage. The filament products ionized by

s the probe laser pulse are guided by a static electric field to the micro-channel plate detector.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

s7 Because of the static electric field, ionic species are deflected before entering the flight tube.
ss Therefore the present setup exclusively detects the neutral products from the reaction gas

g0 cell.

Open Access Article. Published on 06 January 2026. Downloaded on 1/9/2026 3:04:42 AM.

o  The field intensity achieved by the probe pulse is estimated to be 0.8x10* W /cm?. The
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o Keldysh parameter v = +/1,,/(2U,), with I, and U, being the ionization potential and the
22 poderomotive potential, is less than 1 for I, < 10 eV, suggesting that tunnel ionization
s dominates the ionization process in the present study. An optical chopper is inserted to the
o filament laser beam to study the effect of the repetition rate on the product distributions.

s The pulse energy is varied by neutral density (ND) filters.

o6 III. RESULTS AND DISCUSSION
o7 A. Time-of-flight ion mass spectrometry with velocity screening

¢ Figure 2(a) shows a time-of-flight mass spectrum of C¢H;4 obtained without the filamen-

o tation laser in the reaction chamber. In addition to the peak at ¢ = 6.7 ps corresponding to
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FIG. 2. (a) Time-of-flight spectrum of hexane recorded without the filamentation laser. The field
intensity of the ionization laser is estimated to be 8.2x10'® W/cm?. Note that the small peak
corresponding to m/z 40 is attributed to C3Hy™ instead of Ar™ from the carrier gas, because the
tunnel ionization of Ar is less efficient than the hydrocarbon molecules due to the high ionization
potential (15.8 V). (b) Velocity distribution of representative peaks in (a). Side peaks observed in
the velocity distributions for CgHy4+, CsHy; ™, and C4Hg™ are due to ions with neighboring mass,
which can be assigned to '3CCsH4 isotopologue and fragments with different number of hydrogen
atoms, such as CsHy2™, CsHyo™, and C4Hg™, respectively. (c) Full width at the half maximum of
the velocity distrubution w, for the peaks observed in (a). The reference width w? (solid) and the

critical width w§ (dashed) are indicated.

100 the parent ion (CgHyyt), the spectrum shows many peaks at shorter flight times, some of

o

11 which have peak intensities even larger than that of the parent ion. A similar mass spectrum

102 is observed by electron impact ionization [40]. These additional peaks are assigned to frag-

o

103 ment ions produced by the probe pulse for the mass analysis [41, 42]. The fragmentation
104 was not significant on ethylene [38]. The marked contrast to the previous study implies
105 that the product distribution of the filament-induced reaction in hexane requires a secure

106 discrimination between the filament products and the probe products.

w7 Under the space-focusing conditions of a time-of-flight mass spectrometer [43], the spec-

08 trum peak width is essentially determined by the distribution of the initial velocity v, at
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100 the time of ionization along the time-of-flight axis (see Fig. 1). The initial velocity of parent
o ion (CgHys™) is governed by the transverse velocity of the molecular beam. On the other
m hand, the fragment ions produced by the ionization can gain additional velocity due to the
u2 kinetic energy released by the fragmentation. This results in a broader velocity distribution
u3 than that of the parent ion.

s Figure 2(b) shows the velocity distribution along the z-axis for selected ionic species in

us the time-of-flight spectrum in Fig. 2(a). The v, component is given as [44],

. qFaCC
B m

(to — 7). (1)

Vz

us Here ¢ and m are the electric charge and the mass of the ion, respectively, and F,.. is the

uz strength of the electric field in the ion extraction region, t is the flight time, and %, is that

[

11s of the ion with v, = 0. The CgHy4 T parent ion exhibits a narrow velocity distribution, while

uo significantly broader distributions are observed for the fragment ions.

=

1

N

o Figure 2(c) shows the full width at half maximum (FWHM) of the velocity distribution,

121 W, obtained for each peak from least-squares fitting to a Gaussian function. The width

N

122 increases for a smaller fragment, which can be interpreted as a result of heavy fragmentation

N

s caused by ionization to highly excited or highly charged states. It is worth noting that a

1

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
N

124 significant difference is seen even in the widths of the parent ion and the largest fragment ion,

1

N

s CsHy; 1, showing that the velocity width can be used to discriminate the nascent filament

Open Access Article. Published on 06 January 2026. Downloaded on 1/9/2026 3:04:42 AM.

126 products in the sample from the probe products. In the following, the widths of CgHyy™t

(cc)

c

17 and CsHy; T are adopted as the reference width w? and the critical width w¢,

respectively,

128 which are used to identify the filament products from hexane.

120 B. Laser-filament product distributions

1 Figure 3(a) shows the time-of-flight mass spectrum obtained with a filament laser oper-
1 ated at 480 pJ per pulse and a repetition rate of 500 Hz. The mass spectrum looks similar
132 to that observed without the filament laser. However, the enlarged spectrum in Fig. 3(b)
133 reveals the emergence of new peaks in the spectral range from m/z 10 to 150. The new peaks
134 are more clearly visible in the difference between the spectra recorded with and without the
155 filament (Fig. 3(c)). Hydrogen capped polyynes C,Hy" (n = 6, 8, 10, 12) observed in the

13 previous study by UV absorption spectroscopy of recovered samples [30] are observed. In

7
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FIG. 3. (a) Mass spectra obtained with (red) and without (black) the filament laser pulse (pulse
energy: 480 pJ, repetition rate: 500 Hz). Each spectrum is normalized at m/z 29. Fragment
ions generated from the parent CgHi4 molecule solely by the probe pulse are mainly observed.
(b) Expanded view of the mass spectra shown in (a). (c)Difference spectrum between the spectra
obtained with and without the filamentation laser pulse. The hatched areas indicate spectral
regions where strong signals of the probe products from hexane hinder clear identification of the

filament products.

addition, the time-of-flight mass spectrometry identifies a number of hydrocarbon molecules
as assigned in Fig. 3(c). The broad widths of the peaks around m/z 110 hinder clear as-
signments, but they could be attributed to CoH,, ™ (n = 1, 2).

Figure 4 plots the full widths at the half maximum w, of peaks identified in the difference

spectrum in Fig. 3(c). The velocity distributions of selected species are displayed as insets

8
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FIG. 4. Full-width half maximum of the velocity distrubution of the major peaks observed in the

difference spectrum. The velocity distribution of selected peaks are also shown. The horizontal

lines represent the reference width w? and critical width w¢, respectively.

142 In Flg 4. Some species such as C4H3+, C5H6+, C6H+, CGHQJr, CGH6+7 Cg;I‘Ig+ and CgH8+,

13 have narrow widths comparable with the hexane cation (C¢Hy4%). On the other hand, the

s peak of C4,H™, for example, exhibited a significantly broader width.

145

1

'S

147
148
149
150
151

> probe products.

1

1

153

1

o

Under the present quasi-continuous free-expansion conditions, the fragment products are
s entrained by the carrier gas to the mass spectrometer. This implies that all the products
formed in laser filaments have velocity distributions similar to those of the dominant species
of the beam, i.e., CgHy4 and Ar, in the present case. Therefore, the reference and critical
widths, w? and w¢, determined in the previous section for C¢Hy4 can be used to discriminate
the filament products from the probe products. Namely, peaks with widths w, that satisfy

w, < w; are attributed to filament products, whereas those with w, > w{ are classified as

Figure 4 shows that mass peak heavier than C¢Hy4 ", such as CgH,, ™, CioH, " and C1,H,, ™

+ are assigned to filament reaction products, while those lighter than CgHy4 " are mostly formed

155 by fragmentation, except for C4H,, ™ (n = 2 and 3) and C;H,,* (n = 6 and 8). In principle,

9
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each mass peak could contain contributions from both the filament product and the probe
product. The resultant peak profile in such a case would consist of narrow and broad
components. However, since the velocity distributions are well expressed by single Gaussian
profiles as plotted in the insets of Fig.4, the observed species are attributed to either of the

two possible origins.

Figure 5(a) shows the integrated intensities of the peaks observed in the difference spec-
trum in Fig. 3. For a more quantitative discussion of the distribution of the filament
products, the ionization efficiency of each species should be taken into account [38]. As
mentioned above, the ionization should be well described by tunnel ionization under the
present experimental conditions. The ionization rate can be evaluated by the Ammosov-
Delone-Krainov (ADK) theory [45, 46], using the ionization potentials as described in the
previous study [38] (see also Supplementary Information). Here the structure factor de-
scribing the effect of molecular orientation to the laser electric field is not considered for
simplicity. Figure 5(a) also shows the ionization probability P calculated for each species
in the spectrum, by time integration of the tunnel rate over the ionization pulse, where a

Gaussian intensity profile is assumed for the ionization laser pulse.

The relative peak intensity of each compound in Fig. 5(a) is divided by the corresponding
ionization efficiency S, which accounts for variations in the ionization probability P near
the focal spot [38]. The resultant relative yield distribution is shown in Fig. 5(b). Here
the relative ratio of the peak width r, = w,/w? is used to distinguish the filament prod-
ucts (r, < r¢) and the probe products (r, > r¢), where r¢ = w¢/w? is the ratio between
the critical and reference widths defined in the previous section. The product distribution

spectrum with r, <

~Y

r¢ shows that the hydrogen-capped polyynes, C,Hy with n = 4, 6,
8, 10 and 12 are formed and that the smaller polyynes with n = 4, 6, 8, are the major
products from the filament. The yields decrease as the number of included carbon atoms
to be comparable with the H-loss species at n = 10 and 12. A similar spectrum is obtained
at a lower ionization pulse intensity of 5.0x10'® W /cm? (see Supplementary Information),
showing that it is not sensitive to the variation of the ionization pulse intensity under the

present experimental conditions.

10
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is indicated above each bar. Tunnel ionization probabilities calculated for the probe pulse with a

duration of 50 fs and a peak intensity of 8.2x10'® W/cm? are also shown. (b) Relative yields of

the products obtained after tunnel ionization efficiency correction. Since the ionization energies of

C,H (n = 4,6,8,10,12) are unavailable, the ionization potentials are assumed to be the same as

that of C,,Hy. The color indicates the ratio r, = w,/w! of each peak with w? being the reference

width determined from the CgHis " peak. The filament products (ry < r§) are distiguished from

the probe products (r, > 7%)

C. Effects of filament laser parameters

1. Repetition rate

As the repetition rate of the filament laser pulse increases, the time interval of laser

189 irradiation would become shorter or comparable to the timescale of unimolecular decay

100 or diffusion of reaction products. This leads to an accumulation of reaction intermediates

101 subjected to irradiation of subsequent filament laser pulses [47, 48]. Indeed, previous studies
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FIG. 6. Repetition-rate dependence of the molecular yields per unit time for hydrogen-capped
polyynes C,Hy (n=4, 6, 8, 10, 12) with m/z 50, 74, 98, 122, and 146, obtained at the filament
laser energy of 300 1J /pulse. The solid lines show the curve fitting results to a power function R*r,

where R is the repetition rate. The numbers denote the nonlinear coefficients k..

192 of laser filamentation in air showed that laser energy absorption by the laser filament at
103 higher repetition rate (1 kHz) becomes considerably larger than at lower repetition rates
s (1-10 Hz) [49]. This was attributed to the electronically excited molecules formed in the
15 metastable states in laser filaments that undergo ionization by subsequent laser pulses.

ws  Figure 6 plots the repeptition rate dependence of the yields of the hydrogen-capped
107 polyyne, C,,Hy (n =4, 6, 8, 10 and 12). The least-squares fitting to a power function of the
108 Tepetition rate R* shows that the yields depend linearly (k, ~ 1) with the repetition rate
10 R, regardless of the products. This shows that the observed filament reactions are induced

200 by single laser pulses.

201 2. Pulse energy

202 Laser pulse energy can be another important parameter in laser filament induced re-
203 actions. For an isolated molecule, the fragmentation is expected to become significant as
20e the pulse energy increases, as a result of nonlinear excitation and ionization in strong laser
205 fields. In the previous study, it was shown that the product distribution of the laser filament
206 Teaction in ethylene is sensitive to the laser pulse energy [38]. Figure 7 shows the yields of the

207 hydrogen-capped polyynes plotted as a function of the pulse energy E of the filamentation

12
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FIG. 7. Filamentation laser-energy dependence of the molecular yields for hydrogen-capped
polyynes C,Hs (n=4, 6, 8, 10 and 12), obtained at the repetition rate of 500 Hz. The solid
line shows the curve fitting results to a power function E*e, with E being the pulse energy. The

numbers denote the nonlinear coefficients k..

28 laser. The pulse energy dependence is well expressed by E*¢, with k. being the nonlinear

200 coefficient. Interestingly, these products have similar values k. ~ 1.7, showing that the

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

210 product distribution does not vary significantly by pulse energy. This can be interpreted

i in terms of the intensity clamping effect in a filament. Because of the balance between the

Open Access Article. Published on 06 January 2026. Downloaded on 1/9/2026 3:04:42 AM.

212 nonlinear focusing and defocusing, the laser field intensity is maintained at ~1x10 W /cm?

(cc)

213 in a laser filament [24-26, 50]. Instead, the increase of input energy results in the increase
214 of filament volume [51, 52]. Therefore the product yields increase as the pulse energy, but

215 with no dependence on the product species in this energy range.

25 The pulse energy dependence observed in the present study shows a marked contrast
217 to the filament reactions in ethylene. In the latter case, the yields of filament products
zs such as CsH,, substantially increase with an increase of pulse energy (155 pJ/pulse) by a
210 factor of two, resulting in a substantial difference in the product distribution [38]. This may
220 be attributed to the difference in the ionization efficiency between these species. Indeed,
2z previous studies of strong field ionization of ethylene [53] show that the ionization yield
2 becomes saturated at a higher field intensity (~ 1 x 10 W/cm?) than that of hexane
23 (~ 6 x 10" W /cm?) [41], though their ionization potentials are similar (10.5 eV for ethylene
24 and 10.1 eV for hexane [54]). This implies that the filament clamping intensity for ethylene

13
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25 can be higher than that for hexane, which would explain the difference in the pulse energy

226 dependence of the product distribution between hexane and ethylene.

227 D. Association reactions in femtosecond laser filaments of hexane

28 As discussed in the previous subsection, the filament reactions in the present study are
20 induced by a single laser pulse. The products with masses smaller than hexane (m/z 86)
230 could be formed by the fragmentation of the parent molecule in the laser filament. Indeed,
21 the mass spectrum of hexane presented in Fig.3(a) shows that various fragment ions formed
2 at a field intensity (8x10' W /cm?) close to the clamp intensity of a filament (~ 1 x 10
23 W/cm?). This in turn suggests that neutral fragments observed in the present study could
2. be produced in the filaments as their counterparts. For example, neutral products C4Hq4_g
235 could be formed as the counterpart of CoH,™ (n = 1-6) observed in Fig.3, if they are
23 produced by two-body fragmentation of the parent ion, CgHy4T. The absence of these
237 neutral species, C4Hg, C4Hgy, C4Hyy, C4Hyy, C4Hyo and C4Hy3, in Fig.5 suggests that they
238 are formed either by more substantial fragmentation of the parent ion through, e.g., a three-
23 body dissociation or possibly by association reactions of smaller fragments. This applies to
20 other small neutral species observed in the present study.

o The neutral products larger than hexane could also be formed by association reactions
22 between the filament reaction products. Reactions of small hydrogen-deficient hydrocarbon
213 radicals with other hydrocarbons have been extensively studied because of their importance
244 in the formation of large carbonaceous molecules such as polycyclic aromatic hydrocarbons,
25 fullerenes, and soot [55-63].

26 The butadiynyl radical (C4H), which has attracted attention due to its abundance in
27 interstellar molecular clouds and comets, has been proposed to undergo hydrogen abstraction
g Teactions with saturated hydrocarbons, C4H + C, Hy, 4o (n = 1-4) — C4Hy + C, Hap 11,
20 to form CHjz, CoHs, C3Hy, and C4H7 [57]. The reactions with unsaturated hydrocarbon
20 molecules, e.g., C4H + C,H¢ —— CgHg + H, were also proposed. As for the polyynes, recent
251 experiments [56, 59-62] show that the chain length of polyynes can be extended by reactions
22 with C,H (n =1 —8). The C4H radical can contribute to the formation of larger polyynes,
253 such as CgHa, CioHy, and CyoHg, through the reactions C4H 4+ C4Hy —— CgHy + H [61],
20 C4H + CgHy —— C1oHy + H [62], and C,H 4+ CgHy —— CyoHy + H [55], respectively.

14
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x5 However, the velocity-screened product spectrum in Fig. 5(b) shows that C4H is not
26 produced as a filament product, which would otherwise appear as a narrow peak at m/z 49 in
257 mass spectra [64]. This suggests that the pathways involving C,H have minor contributions
»s to the association reactions in laser filaments. Instead, the CgH radical observed in the
259 product spectrum implies other pathways leading to CioHy by C¢H 4+ C4;Hy, —— CigHy + H
260 and to Ci1oHy by CgH+ C¢Hy —— CoHo + H [55] as both C4Hy and CgH, are observed in the
61 spectrum. Further investigation of these reaction pathways is needed, but previous studies
22 of closely related systems involving C4H radicals reacting with small polyynes indicate that
263 radical-addition to C4Hy and CgHy would be essentially barrier-less reactions readily leading
24 1O to chain growth of polyynes. Another pathway was suggested to form a smaller polyyne
265 CgHy via CgH + CoHy —— CgHy + H[59], though CyHs is not confirmed as the product by
26 the present study due to the overlap with the probe product CoHy™ from hexane (see Fig.3).
27 The previous crossed-beam studies also show that hydrogen-capped polyynes containing an
s 0dd number of carbon atoms can be formed, for example, by C3H + C¢Hy —— CoHs +
260 H[62]. However, the product spectrum (Fig.5) obtained shows that C9Hs is not produced
o0 in the present study. This is consistent with the absence of C3H in the product spectrum,

on which in turn obtained after the velocity discrimination.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

o Association reaction with metastable C4Hs* can be another reaction routes to polyynes

213 as discussed in a gas flow reaction study [65]. For example, CgHy was identified as a reaction

Open Access Article. Published on 06 January 2026. Downloaded on 1/9/2026 3:04:42 AM.

o product between C4Hy* and C4H, [65]. Since the peak with m/z 50 identified in Fig.5 can

(cc)

s be assigned to both C4Hs and C4Hs*, such reaction may contribute in forming CgH,. The
2 formation of C;Hg was also observed in the reaction between C,Hy™ with C3Hg, which may
o7 also contribute in forming products other than hydrogen capped polyynes in the present
s study. Unfortunately, CsHg is not confirmed as a filament product in the present study, as
2 the mass peak overlaps with CsHg" formed by the dissociative ionization of hexane by the

250 10nization laser pulse.

261 Anionic intermediates, which evade observation by the present experimental setup, may
2 also contribute to the product distribution. It was reported [66] that negative ions are
283 formed in aerial laser filament. In the present case, C¢H ™ might be formed in the filament
28 because of the large electron affinity (3.8 eV) [67]. The previous crossed beam experiments
25 have shown that CgH™ would react with CoH, to form CgH ™, CgH™ 4+ CoHy —— CsH™ + H,

266 [68], which may undergo subsequent reactions such as ion-ion recombination or ion-neutral
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27 associative detachement [69] to form neutralized CgHy. The contributions from such anionic

288 carbon chain growth requires further studies to understand the filament induced reactions.

230 IV, SUMMARY AND OUTLOOK

20  The present study demonstrated the time-of-flight mass spectrometry of the products
201 from femtosecond filaments in hexane, where the velocity screening proved to be a powerful
202 approach to securely distinguish the filament neutral products from the probe products.
203 Direct sampling from the reaction cell allows for identification of various intermediates and
204 products, including the hydrogen capped polyynes, C,Hy (n = 4, 6, 8, 10 and 12) as well as
205 other hydrocarbon molecules that escaped from identification in the previous studies.

26 Possible routes to the formation of the hydrogen-capped polyynes in laser filaments are
207 discussed, including collisional reaction among the fragments. The synthesis of hydrogen-
208 capped polyynes C,Hs has attracted wide interests in both materials science [70, 71] and
200 astrochemistry [72], where chain growth reactions Co,H + Co,,Hy —— Copyq0,Ho + H are
300 proposed to be responsible for the synthesis of polyynes. Present study suggests that C¢H
;0 and CgH radicals or possibly metastable/anionic species play more important roles than
32 C4H in the filament-induced reactions to large hydrogen-capped polyynes (n = 8, 10 and
303 12). Further investigation on the reaction of different molecular species would elucidate the
soa characteristic features of laser filament reactions in more depth.

ss  Strong laser fields offer a unique means of controlling chemical reactions through their
s06 electric-field waveforms as discussed in Introduction. In particular, closed-loop optimiza-
so7 tion employing mass spectrometry provides a powerful approach to tailoring the waveform,
308 With reaction dynamics at each step monitored by product distribution, as previously demon-
200 strated for unimolecular reactions [18, 19]. The present velocity-resolved ion mass spectrom-
s10 etry constitutes an ideal tool for optimizing the yields of neutral products, thereby providing
sn a pathway to efficiently control both unimolecular and many-body chemical reactions via

a2 laser waveform shaping.
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