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Abstract

Density Functional Theory (DFT) is the most widely and accepted
model for calculating the electronic structure of physical systems, but
practical applications rely on approximations to the (still) unknown ex-
act exchange-correlation functional. We revisit here the main advances,
families, and tipping points for the development of accurate expressions
for the exchange-correlation functional, focusing on the historical evolu-
tion followed by DFT but also on the underlying reasons for that, while
emphasizing both the theoretical foundations and the last methodological
and technical developments (exemplified by deep-learned models). The
latter are built by training a neural network on a very extended collection
of molecular data, with the DM21, the aPBEO-ML, and the Skala func-
tionals now available using such as strategy. This degree of development
could have not been possible without the knowledge achieved so far, after
more than half a century of investigations and applications of DFT to all
kind of systems, and it is rooted on the traditional local (LDA), semi-
local (GGA or meta-GGA) and non-local (hybrid and double-hybrid)
functionals, which are still important pillars of DF'T and are expected to
coexist with deep-learned models, as well as on the creation of large and
diverse datasets of nearly-exact reference results, which are also needed

to train any of the deep-learned models envisioned.
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1 Introduction

It is no exaggeration to say that Density Functional Theory (DFT) forms
part now of the core of quantum and computational chemistry, electronic struc-
ture theories, atomic and molecular physics, theoretical spectroscopy and light-
matter interactions, finite-size or periodic materials science, and condensed
matter physics, to name just a few of scientific fields more proned to use this
theory widely and routinely. Evidently, given the historical and current im-
portance of these fields for the whole scientific knowledge achieved so far in
Chemistry, Physics, and Materials Science, this statement can be scaled up
to imagine applications and developments comprising systems and properties
from all the elements of the periodic table and from all states of matter. Since
the main ingredient of any DFT calculation is the exchange-correlation func-
tional, and actually the key for its impactful success and universal adoption
by the scientific community, we will focus on its evolution in this perspective,
which is summarized in Table 1: the first models were proposed in the late
50s, while the most modern machine-learned models date from the early 2020s,
thus covering more than half a century (seven decades in fact) of continuous

improvements, studies, and validations.

Therefore, considering a context focused on the development and assess-
ment of exchange-correlation functionals, DFT could be now experiencing
a “new age”, with the developers of modern functionals based on Machine
Learning (ML) advances invoking a “game change”, after a set of deep-learned
exchange-correlation functionals have recently appeared with the hope of reach-
ing a competitive accuracy, and at a computational cost similar or even lower,
compared with the best among the more traditional models. To better put
these new models into the due perspective, we will first summarize here the
main theoretical frameworks successfully employed so far for the development

of exchange-correlation functionals, with the most modern expression being
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sufficiently accurate and of general applicability to drive such an immense
success of DFT in recent times. We will restrict ourselves to ground-state
formulations, not only for simplicity but also because deep-learned expres-
sions are not extensively applied to excited states yet. We refer the readers
to literature reviews!™” on excited-state methods such as TD-DFT, GW, or
DFT+DMEFT for a deeper discussion. We will also follow a chronological or-
der to also inform the readers about the timeline followed by DFT to reach

its current state-of-the-art.

2 A route to DFT through its bibliographic and
historical importance

We will first illustrate the importance of DFT along the history by resorting
first to bibliographic arguments. In 2014, a literature survey was conducted
to disclose the top-10 most cited scientific publications for modern Science,®
among a larger collection of top-100 studies which was also recently updated.?
Entering into that top-100 list required more than 12000 citations in 2014.
However, that threshold was increased to 30000 in 2025, which also evidences
this increase as a byproduct of the large volume of bibliographic records oc-
curred in the last decade. The top-10 list from 2014 included two of the ex-
pressions most used for the exchange-correlation functionals: the correlation
functional developed!? by Lee-Yang-Parr (LYP) in 1988 and the first hybrid
functional!! (named later as B3LYP) developed by A. Becke in 1993. It is
important to remark that about half of the papers in the former (2014) top-
100 list have changed due to the irruption of newer papers in the new (2025)
list. However, the update made in 2025 of the top-10 still contains two ex-
pressions for exchange-correlation functionals: the LYP correlation functional
again, together with the Perdew-Burke-Erzenhof (PBE) exchange and corre-
lation functionals developed'? in 1996 (the previous BSLYP expression ranks

now 13). Interestingly, comparing both LYP and PBE models one can already
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observe another difference which has always permeated the field: while both
expressions respond to a solid and deep mathematical formulation, the LYP
expression (or the BSLYP one) includes a very reduced set of to-be-fitted pa-
rameters, while the PBE expression does not, with the values of the constants
of the latter adjusted to reproduce known conditions and numerical limits.
Actually, those DFT-based publications are gaining citations at an accelerat-
ing rate, and are accompanied into that top-10 by another manuscript dealing
with the extension of DFT calculations from molecular to solid-state situa-
tions. '3 Furthermore, the foundational manuscripts for DFT are also included
into both (2014 and 2025) top-100 lists: the Hohenberg-Kohn theorems'* and
the Kohn-Sham (KS) orbitalic (or one-electron) model!'® in positions 39 and
34 (2014) and 57 and 41 (2025), which also shows the importance of the the-
oretical framework general to any DFT modern calculation (and not only the
importance of the particular model chosen for practical calculations). To con-
clude this bibliographic analysis, we also notice that the exchange functional
developed !6 by Becke in 1988 is also listed in positions 25 (2014) and 48 (2025)

17 is also part

and that an extension of DFT to mimic non-covalent interactions
of the last top-100 list at position 92. Those numbers are certainly an impres-

sive achievement for DFT from the bibliometric point of view.

Another milestone for DFT was the awarding in 1998 of the Nobel Prize
in Chemistry to Walter Kohn'® for “his development of DFT”, shared with
John A. Pople “for his development of computational methods in quantum
chemistry”, recognizing in such a way how DFT was a perfect companion for
wavefunction-based theories. To bracket the importance of DFT from a dif-
ferent point of view, it is pertinent to comment that the libzc library 92! of
density functional approximations, which is also an example of the state-of-
the-art of the field, includes over 600 expressions for the exchange-correlation

functional and is being used or interfaced with more than 30 codes. Note that

this holds independently of the type of software (proprietary or commercial)
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or the basis set nature (Slater-type, Gaussian-type, plane waves, or grid-free)
used, to name just a pair of the existing differences between the set of massively
adopted codes nowadays. Indeed, this proliferation of expressions, implemen-
tations, and codes also explains the rise in scientific publications during the last
decades: ?? the yearly publications citing DFT in the 90s was approximately
proportional to O(10%) but increased an order of magnitude the next decade,
to O(10%), and is now doubling its number every 5 years.?? This slope is only
comparable to the rate of growth of publications for e.g. climate change, which
is somehow surprising for a theory, with the due approximations, having the
goal of understanding the electronic structure of matter after calculating the
electronic energy and its changes according to the microscopic environment.
The growing number of DFT expressions is also accompanied by a higher (for-
mal) computational cost, but this higher scaling with the system size has not
precluded the large number of applications leading to this impressive situa-
tion. The reasons for that can be roughly traced back to better algorithms
and techniques®*27 together with the exponential improvement in scientific

computing along the last decades.

3 The form of the exchange-correlation functional
as a timeline of DFT advances

A general, but unfortunately unknown, expression for any exchange-correlation

functional, E,.[p(r)], arises from the contribution of the following terms:

Erelp(r)] = (Veelp(r)] = Jlp()]) + (Tlp(r)] = Ts[p(r)]) , (1)

with the density functionals entering the above equation being, respectively,
the exact kinetic energy, T'[p(r)], the kinetic energy of the non-interacting
particle system taken as reference, Ts[p(r)], the electron-electron interaction
energy, Vee[p(r)], and the classical charge density interaction, J[p(r)]. In other

words, the exchange-correlation functional incorporates the non-classical ef-
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fects of the type: (i) the (Fermi) correlation between same-spin electrons
(or exchange energy), (ii) the (Coulomb) correlation between opposite-spin
electrons (or correlation energy), and (iii) the difference between the kinetic
energy of the interacting and the (fictitious or KS) non-interacting particle
system. The explicit calculation of the latter term is omitted in practice and
thus assumed to be part of the E,.[p(r)] total values. Note that the explicit
(closed-shell, for simplicity) expressions of all the terms are known, since:

N/2

Tl = 3~ 19200, (2)

Velp(r)] = / JE PD)Pee(rT) 1 (3)

!r—r’!

T = 5 far [ ﬁd (4)

but not the corresponding (explicit) form of FE,.[p(r)] which needs to be
thus approximated. Note also that a set of self-consistently obtained orbitals
({¢i}) is also needed as part of the calculations, with Ts[p(r)] using the KS
orbitals for that, and from which the corresponding density is obtained as
p(r) = ZN/2 |¢;(r)[2. On the other hand, p..(r,r’) is the exchange-correlation
hole of an electron at r, or the reduction in probability around each of the elec-
trons to find another electron at r’. One can thus assume that the possible
(general) ingredients of the F,.[p(r)] expression can be the density at the
reference (or local) point, p(r), the density at another (non-local) spatially
separated point, p(r’), the mathematical form adopted or simplified for the

exchange-correlation hole, p,.(r,r’), and the occupied (or even virtual) or-

bitals, {¢;}.

We should also comment at this point some of the specific errors made
in practical DFT calculations, arising from approximating this formal (and
exact up to now) theoretical framework. First of all, it should be noticed that
for the exact F..[p(r)] expression, the Vi.[p(r)] term is not affected by the

so-called Self-Interaction Error (SIE). However, when approximated expres-
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sions are introduced for the exchange-correlation functional, SIE is not zero

T2829 and its

anymore, thus leading to one of the intrinsic problems of DF
multiple analysis and approaches to understand and then reduce the impact
on practical calculations.?3% On the other hand, a density-driven error has
been recently identified and examined, providing a simple procedure for im-
proving the results of DFT calculations in many situations upon using the

Hartree-Fock density in place of the exact density. 3637

Of course, an outcome such as Eq. (1) obeys to a solid theoretical frame-
work, rooted first on the Hohenberg-Kohn theorems, proving the existence of
an energy density functional for all the electronic systems which is also vari-
ationally well-defined, and on the Kohn-Sham approximation, simplifying the
treatment after introducing a non-interacting particle systems whose associ-
ated density matches that of the exact system formed by interacting parti-
cles.'® These KS orbitals, {¢;}, and their self-energies, ¢;, are self-consistently
obtained as part of any DFT calculation after solving iteratively the corre-

sponding one-particle equations:

{5t [ L a v} o - aow,

r—

with v(r) the external potential of the electronic system, and v,.(r) the exchange-

correlation potential or v,.(r) = m%ggr)]' However, the exchange-correlation

functional also enters into this equation through the corresponding potential,
explaining why its initial choice is so critical to the performance and accuracy
of any DFT calculation, still deserving theoretical and computational efforts
after more than half a century of developments. Finally, within this formalism,

the exact electronic energy is therefore written as:

Elp(e)) = [ o@)plw)de + Tloe)] + o) + Bl (0)

for which any prediction and comparison can be done further.
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3.1 Former but pedagogical models

Arguably, the first time (1927) in which an electronic energy term could
be written as an explicit functional of the density was part of the Thomas-
Fermi (TF) model,3%3% a semiclassical theory developed for the electronic
structure of many-body systems arising shortly after the Schrodinger equa-
tion, circumventing for the first time in history the use of the wavefunction
as the primary variable to obtain the energy and associated properties of an
N-electron system. The total kinetic energy of the electrons in this model is
given by T[p(r)] = [t(r)dr = Otr [ p(r)*/3dr, with Crr a constant, which
can be thus added to the potential energy of the electrons. However, that
model neglected any difference for electron-electron interactions with respect
to spin, which was later added thanks to the work’ of Dirac (1930) and again
in the simple form E.[p(r)] = —C, [ p(r)*/3dr, with C; a constant, which
also connects with the X, method developed later (1951) by Slater. Despite
the limitations of these early theories, it might bring the tipping point needed
to understand the origin of all the later efforts. Simply speaking, E..[p(r)]
is thought to be modelled as [ ezc[p(r)]dr, with ey, the exchange-correlation
energy per unit volume, with the possible separability of terms e,. = e, + e,
for convenience. Later on, the successful treatment of the system' known
as the “Uniform Electron Gas” corroborated this framework, leading to the
same functional form for T[p(r)] and E,[p(r)], but with Crp = (37r2)2/3
and C, = % (%)1/ % The correlation energy of this model was also numerically
modelled*? by Vosko-Wilk-Nusair (VWN), giving rise to a functional form for
E.[p(r)] too. Since both exchange and correlation functionals only depend

on p(r), the approach was consequently called Local Density Approximation

(LDA) as it is known today.
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3.2 GGA and meta-GGA models

The form of the LDA exchange and kinetic energies can also be derived
from the coordinate scaling of the density, px(r) = A3p(Ar), which is one of the
known conditions to be satisfied by any model, and where the \? factor ensures
that the scaled density still integrates to IV electrons as it should be. However,
the poor predictions of LDA in molecular systems motivated to go a step

further considering the inhomogeneity of matter around any spatial reference

Vp(r)
p/3(r)

point. This was done by introducing the dimensionless variable z(r) =
into the integrand of the e.g. exchange functional, which also guarantees the

correct coordinate scaling for this kind of expressions:

ESCA[p(r)] = / p(0)3F, (2(r)) dr, (7)

giving thus rise to the Generalized Gradient Approximation (GGA). The en-
hancement factor F, (or F,. if the total exchange-correlation expression is
instead considered) can take different mathematical forms depending on the
route followed by the developers.*3 46 Note that if p(r) tends to a constant
value, the enhancement factor should vanish approaching the LDA limit, which
can be thus viewed as another known condition to be imposed for developing
models. If that factor is intended to bring some inhomogeneity, the simplest
gradient expansion would thus be F, (z(r)) = 1+ 22 + O(z*) but it unfortu-

16

nately diverges. Therefore, one of the most famous solutions*° was proposed

in 1988 by A. Becke as F (z(r)) = 1+ 5#@7 which also fits to

the long-range behaviour of the energy density, limjy_o F% (2(r)) = —ﬁ,
another known condition to be fulfilled by approximate expressions. The in-
troduction of 5 also allows for some numerical flexibility of the model, and it is
actually fitted to reproduce a small set of atomic exchange energies as close as
possible. Overall, GGA is not only numerically more accurate than LDA but
it also permits to introduce some of the mathematical conditions and exact

constraints known for the exact functional. Considering higher-order deriva-

tives of the density, as V2p(r) by itself or through the kinetic energy density

10
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7(r) = %va/ 2 |V¢;(r)|?, has also been explored successfully*”#® leading to
the next level of functionals known as meta-GGA. Additionally, this set of
elements (i.e., the density, its gradient, and higher-order derivatives) intro-
duced step-by-step into the exchange-correlation integrand motivated their
hierarchization, with LDA, GGA, and meta-GGA forming the three (lowest)
ladders of a hierarchy known as Jacob’s ladder® (not only symbolically but

also considering the timeline of DFT).

On the other hand, there are also examples of GGA exchange-correlation
functionals free of adjustable parameters, such as the prominent case of PBE,
which introduced in 1996 an enhancement factor for the exchange functional

of the form Fy (z(r)) = 1+ k — able to satisfy the correct uniform

gas limit, F,(0) = 1, the spin-scaling relationship of the exact exchange en-
ergy, E;[pr,p)] = 3 (Ez[2p4] + E; [2p)]), the expected behaviour at small
density variations, Fj, (z(r)) = 1 + pz? if x — 0, and the Lieb-Oxford bound,
E. [pt,py] > Exelpr,py) > —1.679 [ p(r)*/3dr. Note that the values of x and
1 are not longer fitted to any external or reference data but obtained during
the own derivation of the model, thus motivating the non-empirical adjective
added to these models. The extension of this philosophy to the meta-GGA case
is also possible, with the Tao-Perdew-Staroverov-Scuseria (TPSS) functional
one of the step further in the hierarchy of models®® thanks to the progressive
introduction of more exact constraints without empirical parameters. The
most recent example of meta-GGA models is probably the SCAN (Strongly
Constrained and Appropriately Normed) family of functionals,®*? with the
latest regularized-restored SCAN (or r2SCAN) functional®® including most of
the exact constraints known for (meta-)GGAs. It is important to remark that

the division between semiempirical and non-empirical functionals still impreg-

nates the field.

11
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3.3 Hybrid and double-hybrid models

All the LDA, GGA, and meta-GGA functionals share the formal (asymp-
totic) scaling of O(N3) with respect to the system size N, although differing in
their numerical quadrature and possible algorithmic speedups, but also share
some of the limitations imposed by the functional form chosen as starting
point, see Eq. (7). GGA and meta-GGA are also considered as semi-local
functionals, in the sense that some degree of non-locality is introduced thanks
to that dependence on Vp(r) and V2p(r), but the importance of non-locality
has prompted other developments. For instance, it is well-known that local or
semi-local functionals fail to deliver accurate band gaps of extended systems
and key materials (i.e., insulators or semiconductors) due to the self-interaction
error,’* and that the incorporation of a fraction of non-local exchange reduces
the systematic underestimation of band gaps.?% On the other hand, the in-
troduction of non-local exchange is also known to benefit thermochemistry
and thermochemical kinetics calculations.®”°® Finally, we also mention their
importance for accurate predictions for electron transport, photocurrent gen-
eration, and photovoltaics applications.®® 6! Overall, global hybrid functionals
add a relatively low-to-medium fraction of exact-exchange energy to a GGA or
meta-GGA exchange functional, improving considerably their accuracy, which
have therefore prompted its wide use in Chemistry, Materials Science, or Con-

densed Matter Physics. 52

Actually, the Adiabatic Connection Method (ACM) allows to go a step fur-
ther with respect to GGA or meta-GGA models, representing the majority of
the calculations performed today at least at the molecular and supramolecular
scales, thus briefly revisiting here the foundations and formal framework. The
motivation is to find a mathematically admissible connection® %% between the
non-interacting (fictitious) and interacting (real) particle system, thanks to a
A-dependent electron-electron interaction term written as Veﬁ = ZN A

1<j |r—r'|"

12
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If A € [0,1], both systems are defined at the limits A = 0 (fictitious) and
A = 1 (real). The exchange-correlation functional therefore represents the
interpolation path between them, expressed as:
A=1

Exelp(r)] = - Walp(r)] dA. (8)
with Wa[p(r)] = (W2 [p(0)] VAl W [p(0)]) ~ Jp(x)], with Wy the wavefunction
minimizing <T + )\Vee> whilst giving the exact density. The pending task is
thus to guess the form of Wy [p(r)], with the simplest (linear%¢ and quadratic®7)
expressions being Wi[p(r)] = a[p]+B[p] and Wi[p(r)] = alp]+1B[o]+A*y(p],

respectively. The information needed to infer the final functional form of

E..[p(r)] is again based on a set of known conditions, such as:

Wizo = Ep {6}, (9)
Waci = B0, (10)
W = (G2)  -2((en0a) (1)

with the EXact-Exchange (EXX) energy, EXXX[{¢;}], the exact exchange-

correlation energy, ES*°*[{¢;}], and the 2nd-order Perturbation Theory, EXT2[{¢;, $a}],

depending now on the set of occupied ({¢;}) and virtual ({¢,}) KS orbitals,
respectively. The implications of this dependence on wavefunction-based en-
ergy terms cannot be underemphasized: any exchange-correlation functional
might include exact-exchange and/or correlation energies additionally to the
exchange and correlation energies given by a density functional, thus represent-
ing the next ladders of the hierarchy of models, fourth and fifth respectively,
at the price of increasing the formal computational scaling from O(N?3) (LDA,

GGA, and mega-GGA) to O(N*) (hybrid), and O(N®) (double-hybrid).

Interestingly, the combination of EEXX[{¢;}], ELT2[{s, ¢a}], and Ec[p(r)]

energy terms can be easily controlled and tuned step-by-step by introducing

13


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cp03373j

Physical Chemistry Chemical Physics Page 14 of 61

View Article Online
DOI: 10.1039/D5CP03373J

Open Access Article. Published on 30 December 2025. Downloaded on 1/20/2026 10:39:14 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

a linear combination of them:

Euclp(r)] = XEZ7R{i}] + (1= o) Eulp(r)] + Eclp(r)],  (12)
Euclp(r)] = XNEZF{oi}] + (1= Xo)Eulp(r)] (13)

+ AEL {0, da}] + (1= A Eelp(r)],

leading to the hybrid and double-hybrid approximations, depending on A. be-
ing zero or not, respectively. Note the universality of this particular yet simple
combination of energy terms, in the sense that in principle any form for the
E.[p(r)] and the E.[p(r)] functionals can be chosen for that, and the flexibility,
in the sense that the values of A\, and \. are not initially restricted. We also

68,69

note other non-linear forms as alternative to Eq. (13) also motivated by

the ACM.

The preference for the fitting procedure of those values has led to the prolif-

111

eration of expressions such as the original BSPW91'" or the later popularized

B3LYP, ™ for which the particular combination of energy terms is:

Ewlp(r)] = aB[{i}] + (1 —a—0) EzP*p(r)] + bE; “Ap(r)] (14)

+ (L= ) EgPAp(r)] + cESAp(r)),

with ¢ = 0.20, b = 0.72, and ¢ = 0.81 values obtained from their fitting to
a set of thermochemical data taken as reference. It is worth to mention that
since the first applications of the B3LYP functional,”! the used coefficients
are those proposed by Becke in its original work, obtained for the BSPW91
and thus not specifically optimized for B3LYP. Their optimization lead to
a functional close to the so-called BILYP.” However, it is also known that
those values are functional-dependent and/or training-set dependent; for in-
stance, using the OPTX exchange functional ™ instead, the coefficients of the
corresponding O3LYP model become a = 0.12, b = 0.93, and ¢ = 0.81. An-
other of the most widely applied hybrid functionals is M06-2X, 7 incorporating

more than 30 parameters optimized simultaneously and including A, in the

14
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fit. The corresponding extension to doubly-hybrid functionals was pioneered
by S. Grimme in 2006, with the B2-PLYP model,” for which the optimal fit
to thermochemical data led to A, = 0.53 and A, = 0.27, without reoptimizing
the parameters entering into the E.[p(r)] o E.[p(r)] functionals in line with
the B3LYP model. One can easily observe how BLYP, B3LYP, and B2-PLYP
would form a hierarchy of models (i.e., any step up would ideally lead to more

accurate values) according to the Jacob’s ladder (see Figure 1) as it has been

76-79 80-82

thoroughly illustrated along the decades with some exceptions too.

The advantages of developing and working with non-empirical expressions
(i.e., PBE) can also be extended to these (double-)hybrid expressions too,®3

as it is exemplified by the parameter-free PBEO-n models:

BEPRO o)) = BEPPlp) + - (EPN(9)] - EPPlo(e))),  (15)

with n = 4 corresponding to the PBE0-1/4 (better known as PBEQ or PBE1PBE®)

model,® which has also been updated more recently to the PBE0-1/3 (n = 3)
functional.®® Furthermore, a set of non-empirical double-hybrid expressions is
also available, with an additional constraint imposed®”:%8 such as A, = A2 (1-
DH models) or A, = A? (LS1-DH models) with examples of the latter such as
PBEO0-DH,# or PBE-QIDHS7 if the ACM is concomitantly employed to derive
the final expression. These non-empirical hybridization schemes are shown to
be very robust, as it has also been systematically demonstrated,”® since the
results are not largely modified depending on the underlying expressions used
for Ey[p(r)], or in other words, the linear combination of terms given by Eq.
(13) plays a more important role for the final accuracy of the results than the
functional itself. The hierarchy constituted by e.g. PBE, PBEO, and PBE-
QIDH could thus serve as an indication of the errors provided by the lower
levels, and the physical reasons for that, bracketing conveniently the influence
of each of the terms in the final results according again to the Jacob’s ladder

typical performance.

15
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Actually, the large number of exchange-correlation functionals available,
belonging to the categories briefly discussed above, motivated the compilation
of the libzc library,'® encompassing all the developments along the last 50

years and rapidly being interfaced to main codes.?"

3.4 Other variants and corrections

Complementarily to these LDA, GGA, meta-GGA, hybrid or double-hybrid
approximations, there have also been transversal developments transferable
to all the models, such as the range-separation of the two-electron opera-
tor, or the use of a spatial-dependent EXX weight, in the hope of correct-
ing some of the identified deficiencies of DFT. As a matter of illustration,
even hybrid and double-hybrid functionals still formally miss the correct long-
range behaviour of the exchange potential, which should asymptotically go as
lim|p| o0 vz = —‘%'. A possible solution to the problem, since A, — 1 is known
to deteriorate the accuracy of the corresponding expressions for e.g. thermo-
chemical calculations, is to force that the amount of exact exchange increases

as the interaction becomes more long-ranged, by splitting the electron-electron

interaction term:

I erf(wlr - r'|) N 1 —erf(w|r — r’\)’ (16)

\r—r’\_ |r —r/| lr — r/|

with erf being the error function, and where the first (second) term gives
the short-range (long-range) contribution.! Another strategy®? consists on a

partition respecting the weight of the hybrid functional at short-range:

1 [a+ Berf(w|r —r'])] n 1—[a+ Berf(w|r —1'|)]

]r—r’]_ |r — r/| lr — 1’|

;o (1)

with erf being the error function and «, 3, and w to be defined and/or fitted
to reproduce the chosen reference data (highly employed range-separated hy-

brid functionals are LC-wPBE,% CAM-B3LYP?? or the wB97X family?4%).

16
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These range-separated functionals are now considered a practical remedy for
dealing with the (total or partial) missing of long-range interactions of (mostly)
semi-local and hybrid functionals, which is known to largely impact on charge-

transfer processes and excitations, among other applications.?6-100

Note that any range-separated hybrid functional can also be made non-
empirical thanks to a recent development disclosing!?110? the relationship
between )\, and w, and that range-separated semiempirical (e.g wB97X-2193)
and non-empirical (e.g. RSX-PBE-QIDH!'*) double-hybrid functionals are
also available. Another degree of empiricism is introduced if the value of w is
adapted to any of the system and/or geometries considered, which defines the
optimally-tuned range-separated functionals. %> On the other hand, local hy-

106

brid functionals*"® involve position-dependent ratio of EXX and an exchange

(GGA or meta-GGA) functional, with the latter models'?” employing 7, (r)

and the conventional KS kinetic-energy density 7(r) in the form g(r) = R

Particular to the case of double-hybrid functionals, there is also the possi-
bility of allowing the splitting of the PT2 term in Eq. (13) into the same-spin
and opposite-spin correlation contributions,!%® scaled by the corresponding

coefficients cgs and cyg:
PT2 —PT2 —PT2
Ec = cssEgs + CosEgS y (18)

with again coexisting the two approaches (semiempirical and non-empirical)
to find the css and ¢, values: by fitting the cgs and c,s values to reference data

109)

(e.g. the DSD-based family of expressions or by imposing some universal-

like constraints (e.g. the SOS1-PBE-QIDH functional'!?) to obtain the best

possible values (css = 0, cos = 4/3).

Finally, it is also known that non-covalent (long-range) electronic effects

are not completely introduced by any rung of the Jacob’s ladder, although

17
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this omission is attenuated by the correlation energy introduced by the PT2
term of double-hybrid functionals but it is also largely dependent on the A,
weight. However, the flexibility (and additivity) of DFT energy terms also
allows to add a posteriori this energy, once the densities p(r) and p(r’) are
available, thanks to the e.g. VV10!'! correlation energy functional, taken here

as example of a modern and widely used non-local correlation functional:

B lptw). o)) = [ pte) [30)+ 5 [arawroe| . 0

which correctly decays thanks to the form of the function ® The

parameter b can be optimized to merge this correction to any of the available
GGA, meta-GGA, hybrid, and double-hybrid functionals. '3 The VV10
expression is part of a broader family of density functional methods for van
der Waals interactions (vdW-DF), which can be found as part of the libvd-
wze library "' (vdW-DF1, vdW-DF2, vdW-DF-C09, vdW-DF-cx, vdW-DF-
optbh86, rev-vdW-DF2, vdW-DF-optPBE, vdW-DF-optB88, BEEF-vdW, and
mBEEF-vdW) where the non-local correlation forces are captured through a

formal analysis of screened response in the electron gas.

Other cost-efficient alternatives also exist, such as the widely used Dn
methods!7115 (D2, D3, and D4) of S. Grimme et al., the eXchange-hole
Dipole Moment (XDM) formalism,!!® the density-dependent energy correc-
tion!7 (dDsC), or the tailored DH-SVPD basis set '8 for double-hybrid func-
tionals such as PBE-QIDH. Due to its widespread use to efficiently (but more
empirically) incorporate the non-covalent interactions at a negligible compu-
tational cost, the expression for the most modern version of those Dn methods
is:

atom—pairs
CAB

EPYB)(Rap) = — Z Sn Z R#fn(RAB)’ (20)

n=6,8 B>A AB

which is built on the pairwise (two-body) interactions between atom centers A

and B (Rp is the distance between atoms pairs), CAZ are the corresponding

18
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nth-order dispersion coefficients, and sg and sg are fitting parameters, with

f™(Rap) the (Becke-Johnson) damping function:

fn(RAB) = AB o (21)
R+ (a1 Ry + as)

based on RS‘B (an atom-pair-specific cutoff radii) and introducing two new
parameters a; and as. A three-body term from the geometrical orientation
of all atom triples A, B, C is also added. As it happens with other variants,
the set of parameters is fitted for each functional using high-level reference

interaction energies of weakly bound systems.

4 Optimal fitting and datasets in DFT

All the advances in DFT over the last decades have been fostered by the ex-
tensive benchmarking done in parallel for all the models, either by the own de-
velopers or as a part of larger and comparative studies, using extended datasets
for that and providing guidance to any user about what functionals are recom-
mended in general or for some specific or tailored application. Computational

120 and best practices guidelines 21122 for a wise

protocols, 19 tutorial reviews,
use of DFT are rooted on the robust and general performance of the models
on these datasets after the adequate and step-by-step calibration studies done.
On the other hand, in the case of semiempirical functionals, these datasets are
also very often used for the fitting of the parameters entering into the model.
Therefore, the importance of designing and using datasets for past, current,
and future studies and developments cannot be underrated. The design of
the reference datasets (not specifically for DFT) has reached a high degree
of maturity,'?® which also means to include chemically relevant systems of
varied sizes and composition together with a wide variety of properties. We
here mention some of the most general-purpose employed datasets, such as

the GMTKNS55, 124 the W4, 125 the MGCDB84, 2! or the ACCDB, 1?6 together

with some other more suited to a particular electronic structure problem, such

19
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as the treatment of non-covalent interactions (e.g. S66x8'27128)  the treat-
ment of very large systems (e.g. CiM13'29), the extension to excited-states
(e.g. QUEST!Y), etc. to name just a few of the most known examples nowa-
days. Regarding the Materials Science field, and thus the large-scale datasets
available, we can mention Materials Project, 31132 JARVIS, 133134 and Mate-

rials Cloud. 135

Of particular importance for DFT was also the derivation of the Minnesota

136 created along several years of efforts and refinements and used to

datasets,
develop some of the most used exchange-correlation functionals, and the gen-
eralized use of the GMTKNb55 dataset in comparison studies, basically cover-
ing basic properties and reaction energies for small systems, reaction energies
for large systems and isomerization reactions, reaction barrier heights, and
intra- and intermolecular non-covalent interactions. Another effort to create
meta-data is the NCIAtlas collection 7 14! of non-covalent interactions of sev-
eral types. Finally, we also emphasize the large-scale dataset Open Molecules
2025 (OMol25), 2 recently launched as an example of the culmination of the
work around compilation of datasets. OMol25 is composed of small molecules,
biomolecules, metal complexes, and electrolytes, covering 83 elements of the
periodic table and systems up to a size of 350 atoms, and includes more than
100 million of DFT calculations at the wB97TM-V /def2-TZVPD level of theory.
The motivation behind that huge dataset was to create a comprehensive data
for training of machine learning models performing accurately for molecular

chemistry.

Note also that these larger and modern datasets are rooted on historical
developments mostly done for wavefunction-based theories, such as W43
HEAT, ' FPA, ' FPD,6 Gn theories, " ccCA,'8 to name just a few of
them, also learning about the minimum level of theory needed to deliver sub-

kcal/mol or even sub-kJ/mol accuracy for e.g. thermochemical calculations.

20
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That means that the reference (or nearly-exact) results needed for modern
datasets are usually obtained at the (DLPNO-)CCSD(T)/CBS level of theory;
i.e., using CCSD(T) (Coupled-Cluster Singles, Doubles, and perturbatively
estimated Triples) possibly assisted by DLPNO (Domain Local Pair Natural
Orbitals'*?), a technique applied in recent years to extend the size of the sys-
tem tackled,® and with basis sets large enough to reach the Complete Basis
Set (CBS) limit. This model chemistry represents the best trade-off between
accuracy and computational cost, although higher levels of CC theory can also

be employed if those results are believed to be not sufficiently converged. !

Despite the emergence of lower cost methods able to deliver reference re-
sults, such as those provided by DLPNO, databases of reactions remain poorly
diverse and are mostly focused on small molecular systems, not often represen-
tative of systems in use for chemical (real-world) applications. Following this
line of research, some efforts were recently done to develop chemical databases
gathering reactions more and more representative of current trend in chem-
istry, and containing new systems not yet used to parameterized semi empirical
approaches, opening thus the road to unbiased benchmarking. %2 As as exam-
ple of this, we mention the BH9 database!®3 gathering a total of 449 real-life
organic chemistry reactions developed with the purpose of filling this gap. It
is also worth noting that machine-learning techniques are an open road to

154 with some new datasets (e.g. CY-

improve the diversity of these databases,
CLO70) already available built under this principle, even if yet marginally

applied for that purpose.

Delving into the use of datasets for the optimization of the parameters
entering into widely used models, also recognizing that the following division
is necessarily arbitrary, users have qualitatively divided the functionals into
marginally parameterized (if the exchange and correlation functionals contains

very few parameters, between 5-10, and the reference data were limited but

21
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chemically meaningful, as e.g. BLYP!'%!6 or B3LYP!'!), moderately parame-
terized (if more parameters are introduced into the models, but not exceeding
10-20, using extended datasets for that, as e.g. B97M-V %), and heavily or
highly parameterized (if a relatively large number of parameters is used, in the
range of 30-50, and intensively trained, as e.g. M06-L and M06-2X ™). Note
that this rough classification also basically obeys to the temporal timeline
followed for the development of DFT models, since the number and quality
of the reference data and datasets in the 80s and 90s were necessarily more
modest and smaller than in the next decades. Note also that the final number
of parameters of an exchange-correlation functional, specially true for those
heavily parameterized, is not critically determined by the range-separation
(i.e., only w is added), or the hybrid (i.e., only A, is needed) or double-hybrid
(i.e., only A, is required, and possibly but not always css and c¢,s) schemes,
although their ultimate performance it is. On the other hand, non-empirical
(or minimally empirical) functionals are obviously not parameterized, neither
being proned to properties or systems covered as part of the training sets, so
that a genuine use of the datasets for assessment purposes is done. A different
consideration deserves the coupling of any correction for non-covalent interac-
tions with the exchange-correlation functional, independently of semiempirical
or non-empirical models, since the corresponding parameterization cannot be

neglected.

Motivated by the difficulties to express the exchange-correlation func-
tional in a compact and mathematical meaningful analytical form, some au-
thors 1267198 searched in the late 90s and early 00s for a more systematic yet
optimal functional form based on extensive parameterization of polynomial or
other continuum expansions. We show just an example of this approach, which

additionally avoided the splitting of the exchange and correlation expressions:

Bulpl®) = [ Fuc o1, pia[9s| [Vl Vor - V) (22)
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with Foe =) ped Wabed A*BCD?, and where wgpq are parameters, with the

2b .
PT—ﬂi) ¢ _ |VPT\°+\V0¢!°
prt+pL ) 2(P¢+P¢)4C/5 )

remaining functions being A® = P§ + P Bb = (

V1|2 +|Vp |2 —2Vpp-V
and D? — ( prI*+IVp, 8/3p¢ Py
(p1+p1)
the set of (a,b,c,d) exponents and corresponding parameters. However, this

d
) , with in principle no limits imposed for

line of research was more an exploration of the limit of accuracy (and redun-
dancy of parameters and/or training data) that is ultimately possible with
GGA or meta-GGA inspired expressions, but it constitutes a first step towards
more systematic and modern approaches. Overall, the intense parameteriza-
tion done in recent times has also disclosed some bottlenecks of semiempirical
approaches, such as the the bias-variance tradeoff, ®® the numerical instabili-
ties possibly caused by an overfitting, 1% and the importance of the quality of

the data used for the fitting. 16!

Another recent approach %% circumvents the need to develop new exchange-
correlation functionals, and their optimization, and simply weights the to-
tal (ground-state) energy by functional-specific weights, in the form F =
ZZX w; E;, with @; the normalized weights and E; the total energies calculated
with the X density functionals entering the ensemble. This procedure guaran-
tees the size-consistency of the results and the easy calculation of forces and
potentials, and it could be also extended to densities with p(r) = Y5 @ip;(r).
The GMTKN55 data are used to train the ensemble with up to 77 function-
als belonging to 2nd-5th rungs of Jacob’s ladder included into the regression
procedure, to reach an optimal functional (DENS24) achieving an error as
small as 1.6 kcal/mol for that GMTKN55 dataset. The transferability of the
ensemble and the basis set dependence of the model was also tested, as well as

ways to reduce the associated computational cost to get each of the E; energies.
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5 Deep-learned DFT models

We have summarized in previous sections how the conscious and meticulous
work for many decades is behind the current success of DFT, regardless some
generalized flaws of the theory 62 such as the (many-electron) self-interaction
error, or some limits imposed by the search and optimization of the param-
eter space. On the other hand, the recent rise of machine learning for the
design of exchange-correlation functionals'®® has consequently led to a new
paradigm of work, which we will also try to summarize here with three exam-
ples of functionals fully machine-learned, but rooted on the prescriptions and
knowledge so far achieved and belonging to the 3rd-4th rungs of the Jacob’s
ladder: the DeepMind (DM21),!6* the “adaptative” PBEO (aPBE0-ML) 63
and the recently presented Skala model. 6% Interestingly, two of these mod-
els (DM21 and Skala) are developed by private companies, Google Deepmind
and Microsoft (Microsoft Research — Al for Science, and Microsoft Quantum),
respectively. A common point of all these ML-based approaches is the inter-
est to replace traditional, empirically or physically motivated approximations,
with a neural-network mapping from electron density (and related magni-
tudes) to exchange-correlation energies. Note also that prior to DM21, there
was some attempts to develop machine-learned exchange-correlation function-
als (e.g. ML-wPBE'7) but not for such a general purpose as those developed
later. Additionally, the use of neural network had not demonstrated any com-
parable or superior performance with respect to traditional (or analytical, from
a mathematical point of view) functionals, as those summarized before, be-
fore the level of accuracy achieved by DM21, aPBEO-ML, or Skala functionals.
For other pioneering approaches, we also mention OrbNet,%8 NeuralXC,!6?

DeePHF, 0 or CF22D. 17!
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5.1 The Deepmind functional

In the DM21 model'™ the proportion of exact-exchange varies locally in
space, thus belonging to the family of local hybrid functionals, and also incor-
porates their range-separated values, which has the advantage of (formally)
removing the delocalization error.'” The explicit form of the DM21 functional
integrates local energies calculated by a MultiLayer Perceptron (MLP) which
took as input both local and non-local features of the occupied KS orbitals:

LDA(I.)
)

EMLP ()] = / fo(a@)) - | eXX(r
e;}EXX I‘)

dr, (23)

where fp (z(r)) represents a single set of weights, 6, accepting a vector, x(r),
at each grid point r, and returning a vector of 3 enhancement factors be-
fore computation of the integral. The MLP part is complemented by the
typical D3(BJ) term, and the DM21 expression is just made EXM2[p(r)] =
EY P [p(r)] + Epssy)- The z(r) values supplied at each point of the grid are
computed from a spin-indexed (o € {1,]}) set of typical DFT variables, based
on the density matrix, D, the density itself, p7(r) = >_;; D7;¢i(r)¢;(r), the
square norm of the gradient of the spin densities and of the total density,

|Vp?(r)|? and |Vp(r)|?, and the kinetic energy density, 7(r) = 1D‘7 |Vi(r)|%.

The local energies are:

eiDA<r>=—c[ H(x) + py(r)]? (24)
() = 3 3 0gg, [ 150 T g )y o)

v — /|
2jkl
with w = 0.4 chosen based on validation studies according to the own devel-

BEXX(r) is calculated just setting w = 0 in the above equation. Note

opers; e
that all the ingredients entering into the model are part of the main features
of the DFT advances gained in the last decades. The model was trained on
extensive atomic and molecular datasets (more than 1000 points), but also

considering exact (integer-charge) mathematical constraints, and fractional-

charge and fractional-spin information (more than 1000 points), complemented
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by a D3(BJ) two-body correction as it is usually done in traditional mod-
els. Note also that the hard-to-control piecewise linear variation of the total
energy with respect to fractional electron number was forced to be part of
those constraints. Despite some initial criticism of the model, ™75 DM21
was found to be more accurate than a set of (more standard) functionals such
as revPBE-D3(BJ), MN15-L-D3(0), SCAN-D3(0), BSLYP-D3(BJ), wB97X-V,
MO06-2X-D3(0), and PW6B95-D3(0) by looking at the WTMAD-2 error of the
GMTKN55 dataset, and only inferior to the DSD-PBEP86-D3(BJ) double-
hybrid functional, among the traditional functionals considered. One notable
performance of the DM21 model was the correct dissociation limit of challeng-
ing systems such as Hj, H;r, and Ng, the good performance for the SIE4x4
dataset, as well as for other complex situations like a charged adenine-thymine
base pair, a compressed hydrogen H,, chain, and diradical transition states.
The developers of DM21 caution against its application to atoms heavier than
Kr because the training set does not include heavy elements or pseudopoten-

tials.

DM21 has recently been applied to transition metal chemistry,!”® which
can be seen as a proof-of-concept for its transferability since DM21 was ex-
clusively trained on main-group chemistry as said before; more particularly, it
was applied to the TMC151 dataset, featuring transition metal dimer dissoci-
ation energies, metal-organic reaction energies, and barriers of complexes of
second- and third-row transition metals. The authors concluded that despite a
similar performance to BSLYP, the model faced convergence issues most of the
times, thus complicating its self-consistent implementation; however, the use
of B3LYP densities instead (DM21@B3LYP) improved the results, although at
the price of a higher computational cost comparable even to i.e. B2-PLYP, a
double-hybrid exchange-correlation functional. One possible solution for this,
already pointed out by the authors of the study, would be to incorporate tran-

sition metal reactions into the machine-learned functional, with the due care
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to not deteriorate the performance of main-group chemistry, borrowing again
one of the strategies followed historically, that is, extending and extending the
size and diversity of the datasets used for the development and assessment of

the models.

DM21 has also been applied to neutral and charged water clusters,!”” with
a varying degree of accuracy as a function of the water cluster size: (H20),
(n = 2 —10), H30"-(H20),, and OH™-(H30),, clusters with n = 2 — 6. The
functional performed similarly to one the best range-separated meta-GGA
functionals (wB97M-V) but the errors for the normalized interaction energies
(i.e., interaction energies divided by n) increased with the cluster size, thus
being size-dependent. The authors also introduced a many-body potential
(MB-DM21) to correct for missing many-body non-covalent interactions, and
applied the corrected model to calculate some properties of liquid water with
partial success, recommending to improve the functional form and physical
content of machine-learned density functionals. Besides energy calculations,
DM21 has also been extended to geometry optimizations and Potential Energy
Surfaces (PES). As another example of application of DM21, we mention the
DM21-based calculations!'™ of some PES upon variation of bond angles (e.g.,
H-O-H in water) and bond lengths (e.g., C-H or C-C bond length in common
organic molecules such as C4Hg). The authors found a very good agreement
between CCSD(T) and DM21-based results for all the PES tackled, including
the stretched Hy and Hf PES at long H-H distances, comparable or better

than results obtained at the hybrid PW6B95/cc-pVnZ level.

5.2 The Skala functional

The first step of the developers of the Skala functional'% was the compi-
lation of an unprecedented dataset of physically meaningful values (149079)

to train the model, including a set of Total Atomization Energies (TAE) as
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the largest subset, which is a property known to be difficult to calculate and
has always been part of both early and modern datasets. The TAE dataset
is composed by 78650 values with an expected accuracy of 4+ 1 kcal/mol rel-
ative to experiments, and achieved by a suited wavefunction-based protocol
such as CCSD(T)/CBS. The TAE were calculated for molecules containing
up to five non-H atoms (Li-F, Na-Cl) and the total number of points was
complemented by other datasets. The latter included atomic (total energies,
electron affinities, and ionization potentials), molecular (conformational ener-
gies, proton affinities, and ionization potentials), reaction kinetics, and both
intra- and intermolecular non-covalent interactions from the NCIAtlas collec-

tion (D442x10, SH250x10, R739x5, and HB300SPXx10).

The chosen form of the Skala functional was also motivated by satisfying
energetically relevant constraints such as the high-density uniform coordinate
scaling, the Lieb-Oxford lower bound, and the LDA limit if the enhancement

factor is made fp (z(r)) = 1, which can be achieved by the form:

1/3
Bl == (2) [ h ) ) 4] P, (20

T
with fp (z(r)) a learnable enhancement factor, whose modelling is done by a
deep neural network taken as input a set of semi-local, density-dependent
features x(r), from a meta-GGA model. Actually, those features consid-
ered are again the density, the square norm of the gradient of the density
and of the total density, and the kinetic energy density. The model was
also complemented by a standard D3(BJ) correction. The authors chosen to
work with discretized models, by evaluating the expression on a set of points
{rieR%i=1,... M}:
3/6\/*Y
B~ =5 ()3 f0 ) ) + sV (21
i

s

with the associated weights w; € R for those points 7;. The set of z((r;) fea-
tures are p' (i), p*(ri), [Vo! (ri) |2, [V p* (r0) 2, [V p! (r) £V p* (r2) [P, 71 (i), 7 (1r4),
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with the input thus of the neural network being a tensor RM*7. These spatial
fields are projected onto grids in a way compatible with typical DFT inte-
gration schemes. The model learns non-local correlation effects directly from
these fields (i.e., message-passing mechanisms to encode long-range electron
correlation) thus improving the description given by semi-local functionals.
Among other interesting features of the Skala model, its accuracy was demon-
strated to improve systematically with adding more training data by including
step-by-step more datasets into the model. Concerning the computational cost
of Skala, a pair of implementations were tested: a GPU-based version inte-
grated into Accelerated DFT,!™ and a CPU-based version implemented in
PySCF.180 Skala showed to be very competitive particularly for the GPU-
based version, with a cost comparable to that of r2SCAN and ten times lower
than that of M06-2X. The CPU-based implementation was slightly less suc-
cessful but still competitive with those of r?2SCAN, B97M-V, M06-2X, and
wBITM-V.

5.2.1 Comparison between DM21 and Skala for some established
datasets and subsets

Compared to the WTMAD-2 value dropped by DM21 for the GMTKN55
dataset, 3.97 kcal/mol, Skala gave a very close value of 3.89 kcal/mol de-
spite an almost two order of magnitude increase in the number of data points
used to train the model. To put these numbers in a due context, the lowest
achieved WTMAD-2 value nowadays is obtained by the DH23 model, 181,182
a 12-parameter double-hybrid density functional leading to an error or 1.7
kcal/mol, with some non-empirical double-hybrid density functionals!83:184
also giving errors as low as 3-5 kcal/mol. Skala performed remarkably accurate
on the W4-17 dataset 125 of TAE, with a mean absolute error of 1 kcal/mol for
the 200 values included, roughly speaking, situating the model as the best per-

former for this dataset among all the functionals considered (revPBE, r2SCAN,
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B97M-V, B3LYP, M06-2X, wB97X-V, and wB97M-V). The W4-17 was part
of the training of DM21, and it was thus not analyzed separately in the cor-

responding publication.

Looking more in detail at the performance of Skala for the different sub-
sets of the families of the GMTKNbS5 dataset, the largest error was found for
the SIE4x4 (self-interaction-error related systems, with 13.6 kcal/mol) subset,
the DIE60 (relative energies between Cgo isomers, 8.54 kcal/mol), BHPERI
(barrier heights of pericyclic reactions, 3.13 kcal/mol), WATER27 (Binding
energies in (H20),,, Ht-(H20),, and OH™-(H20),,, 2.47 kcal/mol), and IDISP
(intramolecular dispersion interactions, 3.46 kcal/mol). On the other hand,
the errors given by DM21 for those subsets are 4.92, 11.35, 0.77, 1.96, and 1.37
kcal/mol, respectively, evidencing the large discrepancies between both mod-
els when looking at their performances for the individual subsets. Actually,
the largest error dropped by DM21 were found for the STE4x4 (4.92 kcal/mol)
and DIE60 (11.35 kcal/mol) for the families of basic properties and reaction
energies for small systems, and reaction energies for large systems and isomer-
ization reactions, respectively. For the family of reaction barrier heights, the
DM21 largest error was found for the BH76 dataset (barrier heights of vari-
ous reaction types, 2.08 kcal/mol). Considering the intra- and intermolecular
families of non-covalent interactions, the DM21 largest errors are again found

for the WATER27 (1.96 kcal/mol) and IDISP (1.37 kcal/mol) datasets.

Additionally, Skala was also tested %6 for equilibrium geometries with a
deviation of 0.012 A for the bond lengths of the CCse21 dataset,® a typi-

186 and larger than the values (mostly

cal deviation by semi-local functionals
around 0.04-0.05 A) provided by the rest of the functionals (r2SCAN, B97M-
V, B3LYP, M06-2X, wB97X-V, and wB97M-V) chosen with the exception of
revPBE which also leads to a deviation of 0.012 A. By perusing now 87 the

LMGB35 dataset!” of light atoms main group bond lengths, Skala gave a
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mean absolute error of 0.014 A, compared with 0.006 A by DM21 and thus
competitive with PBEO results. However, except BO, F;, N;, NF, NHT, O;r,
and OH™, those molecules belonging to LMGB35 are also included into the
W4-17 used for training the DM21. Skala was also applied to the HMGB11
dataset of heavy atoms main group bond length, providing larger deviations
(of 0.03 A) than for light atoms, but comparable to those achieved by revPBE
or wB97X-V functionals.

Finally, taken from the original study, ¢ the authors also compared Skala
and DM21 cost. We remind that the former deep-learned form (Skala) avoids
a position-dependent fraction of exact-exchange (DM21) with a clear bene-
fit for the (CPU-based) computational cost which is substantially lower by
two orders of magnitude. For this comparison, the authors used a sample of
molecules of varying sizes, from 50 to 900 atoms and from 1000 to 20000 or-
bitals, roughly speaking, taken also from established datasets such as S30L '®8
HS13L'® and NCI16L. %

5.3 The adaptative PBEO functional

The “adaptative” PBEO functional (aPBEQ) was also recently developed '6?
by von Lilienfeld et al., based on the hypothesis that a system-dependent opti-
mal A% value exists, which is actually a system-specific scalar label leading to
vanishing error for the model if compared with reference of high-level electronic

structures methods, in the form:

Eelp(t)] = AP {(Z1,Ra) 1, S} B {4 (1 = AP {(Z1,Ra) 1, S}) Exlp(r)|+Ec[p(x)],

(28)
with Z; and R; denoting the nuclear charge and coordinates, respectively,
with S specifying the electronic spin state; or, in other words, the optimal
value depends on both the external potential and the electronic spin state.

In a further step, by setting A" = 1 the correlation term can also be made

31


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cp03373j

Open Access Article. Published on 30 December 2025. Downloaded on 1/20/2026 10:39:14 AM.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Physical Chemistry Chemical Physics

Page 32 of 61

View Article Online

DOI: 10.1039/D5CP03373J

system-dependent to find the corresponding 72?* optimal values, in the form
VP {(Z1,Ry);, S} Eclp(r)]. The authors first calculated at the CCSD(T) level
the TAE of 1169 small molecular fragments (containing 1-5 heavy atoms) re-
ported in Ref. 191 to find the optimal A% values for those systems. The nor-
mal distribution plot of the individual 1169 values was centered at A\, = 0.42
approximately. The mean absolute error was impressively reduced from 3.46
(PBEO) to 0.02 (aPBEOQ) kcal/mol upon this adaptation of values. To as-
sess the transferability of the model, they calculate TAE for a set of 50 new
molecules, largely reducing again the mean absolute error with respect to
nearly-exact reference results from 4.68 (PBEO) to 0.02 (aPBEO0) kcal/mol.
The procedure was also applied to the spin gap of a large set of carbenes (=
3000) in their singlet and triplet states and taken from the QMSpin dataset, 192
with excellent results too going from a mean absolute error of 10.2 (PBEO)
to 0.1 (aPBEO) keal/mol. Note also that A" Pt — 1 102APhm9let _ ) 118,
The results by aPBEO, be for TAE or for the singlet-triplet spin gaps, were
always better than those provided by semi-local (PBE, BLYP or r2SCAN),
hybrid (PBEO, B3LYP, and M06-2X), and wB97XD functionals.

After having confirmed the hypothesis that a significant improvement of
the results can be obtained by a system-dependent mixing of semi-local and
exact-exchange, the authors explored the possibility of deep-learned A%’ b val-
ues: using the generated A3’ " values as training data, they use a predictive
model to infer values for any other system of interest, naming this variant as
aPBEO-ML consequently. They predicted on-the-fly the AZ" values for the
revised QM9 dataset!'9 (revQM9) consisting on 130000 molecules, roughly
speaking. The deep-learned \%’ " values followed again a Gaussian-like distri-
bution, peaking at A, = 0.44, with a standard deviation of 0.037, and thus
very close to the A, = 0.42 value disclosed before. The TAE of the reduced
set of 50 molecules showed now an error of 1.32 kcal/mol by aPBE0O-ML, and

thus slightly larger than that by aPBEO itself. HOMO-LUMO gaps errors,
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with respect to nearly-exact GW values for 100 organic molecules from the
QM7b dataset,®* are also reduced from 3.52 (PBEO) to 0.86 (aPBE0-ML)
eV, with aPBEO-ML again on top-tier of the models tested (PBE, BLYP,
r2’SCAN, PBEO, B3LYP, M06-2X, LC-wPBE, and wB97XD) with the excep-
tion of M06-2X for which a slightly lower error (0.67 V) was found.

6 Conclusions

The field of DFT has been living a golden age for decades, as it is clearly ev-
idenced by the large volume of scientific publications, advances, and exchange-
correlation functionals expressions implemented in codes and exploited in end-
less applications. Generally speaking, the main advances and developments
of DFT has gone in parallel with those of modern Science. For instance, the
deployment of large computing facilities and hardware/software improvements
has allowed the application of DFT to systems of all sizes and chemical com-
position, thus going a step further with respect to earlier studies. However,
other issues have also arise. Among them, we mention some of the most crit-
ical ones, such as the increasing cost of the calculations with rungs of Jacob’s
ladder and how to alleviate it, the dependence and nature of the errors with
respect to the system size and composition, the different performance (and
the reasons for that) between the class of exchange-correlation functionals
employed, etc. That continuous validation and assessment of models was also
possible by preserving the accuracy of wavefunction-based results, which are
very often taken as reference, at all size scales, thanks to the introduction of
extended and chemically diverse datasets, from both the composition of the

systems and the properties included in them.

This rich and very fruitful context is now also experiencing another step

forward due to deep-learned expressions for the exchange-correlation func-
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tional. However, the underlying hypothesis and expressions are deeply rooted
on the lessons achieved so far, as well as on the key role played by the ingre-
dients defining the exchange-correlation integrand. Furthermore, in a kind of
virtuous circle, the size and availability of datasets has also been invigorated
by the need to train those deep-learned expressions, which can also be seen as
a source of opportunities for assessing and comparing more traditional expres-
sions. With the due efforts in both directions, the field of DFT is expected to

still grow strongly in the next decades, full of opportunities and success.

Data Availability
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Table 1: Summary of the developments and families of functionals (with some

examples) of DFT.

Jacob’s ladder rung  Scaling Examples Availability
LDA O(N3) SVWN >1950s
GGA O(N3)  BLYP (semiempirical), PBE (non-empirical), >1980s
meta-GGA O(N3)  MO06-L (semiempirical), r2SCAN (non-empirical) >1990s
hybrid O(N*) B3LYP (semiempirical), PBEO (non-empirical), >1990s
o ________ wBITX (semiempirical), RSX-PBEO (non-empirical) _________ __
double-hybrid O(N®) B2-PLYP (semiempirical), PBE-QIDH (non-emprical), >2000s

wBITX-2 (semiempirical), RSX-PBE-QIDH (non-empirical)

deep-learned

DM21, CF22D, aPBEO-ML, Skala, etc. >2020s
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Figure 1: Illustration of the Jacob’s ladder in DFT, where any upper rung of
the hierarchy adds more physical information and complexity, thus allowing
to reach a more accurate representation of chemical systems.
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Data Availability

The data that supports the findings of this study are available within the article [and its supplementary
material] or are available from the corresponding authors upon reasonable request.
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