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Completing the hierarchy of rotational defects
in monolayer MoS, through symmetry-aware
evolutionary search

Alexander Adel, 2 Ralf Wanzenbock 2 and Georg K. H. Madsen 2 *

Monolayer molybdenum disulfide (MoS,) shows a plethora of defect configurations, which constitutes
the basis for tailoring material properties through defect engineering. Detailed characterization of these
defects remains challenging due to the complexity of the potential energy surface. We efficiently
explore the three-fold rotational defect potential energy surface in monolayer MoS, by combining an
evolutionary algorithm with a machine-learning force field. To improve the performance of the structure
searches, the algorithm hierarchically restricts the exploration process to a lower-dimensional subspace,
utilizing the symmetry operators associated with the investigated defects. We demonstrate that these
constrained trajectories exhibit lower global uncertainty measures during the evolution, produce final
structures with lower energy distributions and converge faster. Our approach results in the discovery of
several novel structures with reasonable computational effort, thereby completing the hierarchy of

rsc.li/pccp rotational defects in MoS,.

Introduction

As one of the most prominent members of the transition-metal-
chalcogenides family, molybdenum disulfide (MoS,) features
extensive studies regarding its layered structure, from the
preparation of very thin crystals’~ to the isolation of individual
crystal planes. Monolayer MoS, consists of three atomic layers
of alternating Mo and S. Notably, this two-dimensional material
is a direct band gap semiconductor.””” Monolayer MoS, shows
a plethora of defect configurations. The size and complexity of
these configurations range from small native point defects such
as vacancies, antisites, adatoms, and interstitials®*® to large
structural disturbances such as extended line defects''™*
and grain boundaries.'*"® This large variety constitutes the
basis for the manipulation of material properties and defect
engineering.'*>!

A specific type of defect in MoS, are the topological defects
obtained when six S atoms (three in the upper and three in the
lower atomic layer) are rotated by 60° around an Mo atom in the
central layer.”” Parallel to how the well-known Stone-Wales
defects in graphene® can order in extended patterns,** the
rotational MoS, defects, in conjunction with sulfur double
vacancies, have been found to produce quite extensive recon-
structions, dependent on the number of these transformations
occurring in the vicinity of each other.>* As the defect structures
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grow in size, so does the complexity of the energy landscape
and finding the stable structures by constructing viable low-
energy defect configurations according to domain knowledge
becomes untenable.

Evolution strategies are a frequently used approach for
rugged energy landscapes.”*® To enhance the efficiency of
global atomistic structure optimizations, search algorithms can
exploit the inherent symmetries of the system under investiga-
tion. One approach is to bias the potential energy surface
directly,”® but a conceptually simpler approach is to restrict
the search space to configurations that obey predefined sym-
metry constraints.**”** This reduction in the number of degrees
of freedom narrows the configurational space and allows the
algorithm to identify plausible structures more efficiently.

In general, stochastic approaches like evolution strategies
still require a substantial volume of fitness evaluations.
To make the calculations feasible, highly parametrized models
based on machine learning have been used.’*’ In this paper,
we show that the utilization of machine-learning force fields
(MLFF), combined with the systematic reduction of the degrees
of freedom using symmetry, makes the efficient treatment of
complex defect structures possible. Specifically, we apply our
constrained evolutionary algorithm to investigate the afore-
mentioned large-scale rotational defects in monolayer MoS,.

The paper is organized as follows. We start with a descrip-
tion of the process of the constrained structure search and the
generation of the data set required for the MLFF training. Next,
we discuss the characteristics of the constrained trajectories
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based on the predicted energies and force uncertainties
obtained by the MLFF. This is followed by a presentation of
the resulting structures in the rotational defect hierarchy.
Finally, the MLFF is also applied to monolayer MoS, grain
boundaries. The paper ends with a conclusion and an outlook.

Methods

DFT calculations

The reference values for the data sets were obtained by per-
forming spin-polarized calculations with the VASP***° imple-
mentation of the projector augmented-wave formalism,*° using
the Perdew-Burke-Ernzerhof (PBE) functional.' The energy
cutoff was set to 258 eV (the default value for sulfur) and the
break condition for the electronic self-consistent loop to
107° eV. Only the I'-point was used for the defected supercell
and the width of Gaussian smearing was set to 10~ * eV.
All supercells were set up with one monolayer separated from
the vertical borders of the supercell by vacuum with a thickness
of 22 A. Convergence tests of the energy cutoff and k-mesh were
performed by comparing the energy difference of the most
stable structures found with symmetry constraint C; + ¢}, and
with symmetry constraint oy,. The energy difference was found
to change by less than 0.01 eV compared to a total energy
difference of 1.17 eV.

Structure search

We utilize the covariance matrix adaptation evolution strategy
(CMA-ES)*® as implemented and tailored to atomistic structure
searches in Cunamen2."” The CLinamen2 code was extended by a
module implementing symmetry operations such as rotations
and reflections. Before the random sampling step takes place,
all individual structures of the current population are reduced
to the asymmetric unit corresponding to the selected sym-
metry constraint. After sampling, the structures are rebuilt so
that the energy evaluation step is performed for the complete
structures.

Symmetry operations

The relevant point group of the three-fold rotational defects is
Dsp,. We considered four symmetry constraints, none (C;) as a
baseline, a horizontal mirror plane (o), a threefold rotation
axis perpendicular to the MoS, plane (C3), and the combination
of C; and oy,. The two symmetry operators are illustrated in
Fig. 1, together with the initial or founder structure used for the
smallest defect.

3Vs, data set generation

The data set for MoS, structures with three sulfur double
vacancies inside a (5 x 5 x 1) supercell (symbolized by 3Vs )
was constructed as follows: for each combination of symmetry
operations, one Crinamen2 evolution (with Vasp as evaluation
back-end) was performed for 100 generations (with ™= 0.40 A
and population sizes between 12 and 18, dependent on
the symmetry). Non-physical structures were filtered out by
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Fig. 1 Overview of the applied symmetry constraints. Top view of a
monolayer MoS, founder structure with three sulfur double vacancies
(3Vs,) inside a (5 x 5 x 1) supercell. The atoms modified during the
evolution are placed inside a sphere defined by radius r around the
center c. The atoms outside the sphere are fixed. This setup corresponds
to the baseline none (C,). Further reduction of the number of degrees of
freedom is achieved by applying the threefold (Cs) rotational axis and the
horizontal (ay,) mirror plane.

discarding all data points that contained at least one force
component larger than a specific value (between 100 and
240 meV A™', dependent on the symmetry) and/or had an
energy value larger than 0.0 eV. To decrease the redundancy
of the data set, it was further reduced by selecting only five
structures per generation (highest energy, lowest energy, and
additional three randomly chosen) for further treatment. To
clean the data set from structures that do not represent two-
dimensional materials, all structures that contained at least
one atom with a distance larger than two Mo-S bond lengths
from the horizontal monolayer plane were also removed. In the
end, the split consisted of 921 structures for the training set
(50%), 180 structures for the validation set (10%), 373 struc-
tures for the active learning sample set (20%) and 373 struc-
tures for the test set (20%), in total 1847 structures.

Machine-learning force fields

The 3V;, data set (described above) was used for the training of
the MACE*® MLFF. The hidden layers were set to 64 channels
and the cutoff radius to 4 A. In the first phase of training
(maximum 1200 epochs), the energy and force weights were
set to 1 and 100, respectively. In the second phase (maximum
300 epochs), the weight for the energy was increased to 1000.
A second MLFF, based on the NeuralIL**** architecture, was
used only for the generation of the 5Vg test set (described
below). The training fraction was set to 0.8, the cutoff radius
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to 4 A, the number of basis functions to 5, the energy weight to
0.5 and the number of epochs to 51. The ResNet core widths
were chosen as 64, 32 and 16.

5V, test set generation

To generate the test set of MoS, structures with five sulfur
double vacancies inside a (7 x 7 x 1) supercell (symbolized by
5Vg,), the following steps were performed: for each symmetry
operation, the 100 structures with the highest uncertainties, see
eqn (1), were selected from 10 CLinamen2 evolutions. These were
executed with ¢'™* = 0.40 A, different random seeds, and the
NeuralIL. MLFF as evaluation back-end. The same procedure
was repeated with additional 10 evolutions, but now with ¢'™* =
0.60 A. The removal of high force, high energy, and non-two-
dimensional structures (similar to the 3V data set) resulted in
a test set consisting of 496 structures in total.

Uncertainties

The force uncertainties were estimated by training two com-
mittees (MACE and NeuraLIL) consisting of 5 models each. The
only difference between the models of a committee is the
random seed that determines the initial weights of the neural
network. Every model in the committee produces their own
predictions for the force components of the atoms. The indivi-
dual force uncertainties were aggregated over all atoms in a
given configuration to the global uncertainties

1 Natom XyZ

_ (k)
= KA 1
3Natom 7 Z ( )

1 )
k
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with k denoting the spatial direction, j the atom, and i the
configuration. These uncertainties have been shown to provide
reliable estimates of the error, exhibiting a strong correlation
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with the corresponding differences between the predicted and
reference DFT values.**™’

Active learning

For the active learning step, the structures from the 3V active
learning sample set were sorted by their uncertainty as defined
in eqn (1). The 74 structures in the highest 20% interval were
removed from the active learning sample set and instead added
to the training and validation sets. The resulting data set
represents iteration 1 (see Fig. S2 in the SI).

Results

Force field predictions

The data set for the MACE MLFF committee contained struc-
tures only from evolutions that started with the smallest
founder, consisting of a single layer of MoS, with three double
vacancies (3Vs ). Additionally, a test set including larger foun-
ders with five double vacancies (5Vs,) was generated. To mea-
sure the performance of the MLFF, parity plots for both 3Vs,
and 5Vg data sets were generated, see Fig. 2. The error values
demonstrate the predictive power of the force field for the 3V,
structures and the ability to generalize well to the larger 5V,
structures, which were not part of the training set.

The correlation between the uncertainties and error values is
visualized in a correlation plot, Fig. 3, where also linear fits of
the data points are shown. The value of the slope « of the linear
fit for the 3V structures is smaller than for the 5V test set.
Since higher o values are generally related to higher model
bias,?” it seems plausible to receive a higher « value when the
force field has to extrapolate the prediction to larger, previously
unseen structures. Nevertheless, the difference is small, and
the uncertainties can, therefore, be used as a reliable measure

Test set errors

MAE (3Vs2): 0.177 eV/A
MAE (5Vs2): 0.088 eV/A_
RMSE (3Vs,): 0.348 eV/A
RMSE (5Vs3): 0.193 eV/A

300
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Fig. 2 Parity plots for the predicted and reference energies and forces. The plots compare the predicted energies per atom Emace and forces fuace from
the MLFF with reference energies per atom Epgr and forces fper calculated by DFT. Shown are all three 3Vs2 data set splits, where the training and
validation set lines are shifted up and down relative to the test set line, respectively. The 5Vs, data set is only used as a test set. Also given are the test set

errors (MAE and RMSE) for both types of founder structures.
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Fig. 3 Alpha correlation plot. The global errors e; (the difference between
the predicted and the reference forces) are plotted over the global
uncertainties s; resulting from the force predictions of the MLFF commit-
tee. Linear fits for both SVS2 and 5V52 data sets are visualized by colored
lines. Additional characteristics of the linear fits such as the slope « and the
coefficient of determination R? are given in the legend.

for both founder types to describe the performance of the MLFF
during the executed evolutions.

The global uncertainties classify all obtained structures into
two categories. The first contains configurations which are
familiar to the force field (low uncertainty) and the second
contains configurations where the force field is unsure if the
predictions are accurate (high uncertainty). This classification
more or less decides which structures contain the most infor-
mation that could be useful for the improvement of the MLFF.
Keeping this principle in mind, active learning steps can be
performed, where the structures with the highest uncertainties
are selected and added to the training set for a new force field.
In our case, the top 20% 3Vs, structures exhibiting the largest
uncertainty were removed from the active learning sample set
and instead added to the training and validation sets. Then a
new MLFF was trained on these augmented data sets. In the
following, the original force field before the active learning step
will be called iteration 0, while the new force field after the
active learning step will be called iteration 1. Parity and alpha
correlation plots were generated to compare the predictive
power between these two MLFFs (see Fig. S2 in the SI). The
test set errors contained in these plots are summarized in
Table 1. The results indicate that the active learning step does
not show a large improvement regarding the predictive power.
The energy and force errors for both the 3Vg and 5V, struc-
tures only changed minutely. We therefore settled on the MLFF
trained purely on the 3V structures obtained from the original
CMA-ES evolutions.

Constrained trajectories

Three-fold rotational defects can be ordered into a hierarchy,
where the geometric properties of each level, labeled as T, with

Phys. Chem. Chem. Phys.

View Article Online

PCCP

Table1 Test set errors for one active learning step. Test set errors for the
MLFF before (iteration 0) and after (iteration 1) one active learning step.
Given are the MAE and RMSE for the predicted energies per atom Emace
and the predicted forces fuyace for both 3VS2 and SVS2 data sets

3Vs, 5Vs,
Emace (eV per atom) MAE RMSE MAE RMSE
Iteration 0 0.014 0.022 0.060 0.061
Iteration 1 0.013 0.021 0.057 0.058
Suace (eV A™Y) MAE RMSE MAE RMSE
Iteration 0 0.177 0.348 0.088 0.193
Iteration 1 0.175 0.342 0.087 0.189

n €41, 2, 3,...}, can be described by structural parameters. One
example would be the number of octagons and double-
pentagons which are part of the defect.?” The requirement for
the formation of these defects is a specific number of sulfur
double vacancies in the vicinity of potential bond rotation
centers. The smallest defect, called T,, requires three double
vacancies (3Vs,) around one rotation center (see Fig. 4a). The
vacancies in the founder were placed symmetrically around
the center, since the search algorithm had to start the evolu-
tions with the same symmetry constraints as the desired final
structure. This was also the reason why one of the sulfur pairs
of the founder of the defect level T,, which requires five double
vacancies (5Vg ), was shifted to the intersection between the
rotational axis and the horizontal monolayer plane (see Fig. 4b).

To demonstrate the influence of the applied constraints, we
ran 20 separate Crinamen2 evolutions with different random
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0, 0,0.,0, 0, \ 6.0 ¢ b o,
0 0 0 0 0 6 P o o
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0 0 0 _o_»o 0,0 0 0 0

(a) 3Vs2 (5x5x1) founder and final Ty structure. E?:,';°°'(3V52) =2.15eV.
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(b) 5Vsa (7 x 7 x 1) founder and final Ty structure. E;f,‘;om(SVSg) =2.05eV.

Fig. 4 Founders with double vacancies and final structures with rotational
defects. The founders are placed in differently sized super cells (D x D x 1):
(@ D =5 and (b) D = 7. Both contain sulfur double vacancies XVs, with
X € {3,5}, respectively. The double vacancies are symbolized by red
crosses. Notice that in the case of 5Vs,, one pair of sulfurs is not removed
(shown as a red dot), but shifted to the center to preserve the rotational
symmetry. The final structures, produced by Cs + o, constrained evolu-
tions, are colored to highlight the octagons (blue), double-pentagons
(green), and ten-fold rings (yellow) of the defects. Also given are the
defect formation energies E¢p = X HEp — Epuk — N,E,), normalized by
the number of double vacancies X.
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Fig. 5 Predicted energy per atom distributions for all symmetry opera-
tions. Shown are the predicted energies per atom Emace for the final
structures from in total 160 evolutions. Both 3Vs, and 5V, founders were
included. The population size was selected as 4 = 25 and the initial step
size set to ¢™' = 0.75 A. The utilized constraints are ordered from the
highest symmetry (Cs + ) on the left to the lowest symmetry (Cy) on the
right. The shading in the background indicates the accumulation area
around the mean value of the distributions.

seeds and the MACE MLFF as evaluation back-end for each of
the four symmetry operations. This was done for both the
smaller 3Vs and the larger 5V founders, thus yielding 160
CMA-ES evolutions in total. The population size was selected as
J. = 25, while the initial step size was chosen as ¢'™* = 0.75 A.
The advantages of these constrained evolutions can be shown
by analyzing the energy per atom distributions of the final
structures of the trajectories. For every evolution, the predicted
energy per atom of the most stable structure in the population

0.200

5Vsy (A=25, 6"t =0.75)
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of the last generation was plotted, see Fig. 5. The distribution of
both founder types shows that evolutions with symmetry con-
straints lead to lower average values of the energies per atom of
the final structures. Out of all 3V evolutions (20 runs) with the
C; + oy, constraint, the search found the smallest of the
rotational defects, T, in Fig. 4a, six times. Out of all 5Vg,
evolutions run with the same constraint (also 20 runs), the
larger T, defect was found two times (see Fig. 4b). Both these
structures are in excellent agreement with the combined DFT
and experimental study in ref. 22, underlining the significant
promise of the transferable MLFF. Another important benefit
shown by Fig. 5 is the fact that evolutions augmented with
symmetry constrains permit both lower population sizes 4 and
higher initial step sizes ¢'™, while still producing stable final
structures at the same time. Low population sizes lead to faster
execution times, while high initial step sizes increase the
possibility of the evolution mean to leave the minimum of
the founder, opening up the opportunity to find other stable
minima. Additional energy per atom distributions for other
initial step and population sizes can be found in Fig. S3 in
the SL

Another way to visualize the usefulness of our symmetry
constraints is to plot the calculated uncertainties of all struc-
tures as a function of the number of generations, see Fig. 6. The
uncertainty trajectories were extracted from the four 5Vg,
evolutions that led to the final structures with the lowest
energies out of all evolutions. The plot shows that constrained
trajectories, in general, exhibit global uncertainties with a lower
mean and a smaller standard deviation per generation than
completely free trajectories. In addition, on average, the termi-
nation criteria are satisfied earlier, which leads to faster con-
vergence. Furthermore, the final structures produced by these
high-symmetry evolutions possess lower predicted energy per
atom distributions, leading to more stable configurations.

TS

il 5Vs2 (1=25, 61 =0.75)

0.175 % ity T o % Cs+0y
—_ 8 N
°§ 0.150 ® G 2 ® G
3 ® o) 3_7 0 ® o)
50.125 % Ci g ¥ C1
.9 =
g 5
£0.100 5 7.1 i,
E B
£0.075 g
z 572
el 5]
20050 ks
o]
8 73
0.025 >
0.00076""200 400 600 800 1000 * 0 200 400 600 800 1000
Generations Generations

Fig. 6 Uncertainties and predicted energies per atom plotted over the number of generations. The left figure shows the global uncertainties s; of
all structures produced by selected evolutions as a function of the generations. For every symmetry operation, one evolution is plotted, coded by color.
All evolutions started with the 5Vs, founder. The population size was selected as 2 = 25 and the initial step size set to ™ = 0.75 A. The right figure plots
the predicted energies per atom Emace of the same evolutions over the generations.
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To substantiate the claim of a symmetry-related advantage,
we performed a series of DFT calculations for selected final
structures shown in Fig. 5. The deviations in AE between the
MACE model and DFT are provided in Table S1 in the SI and
fall within the range expected from the model’s MAE and RMSE
(Fig. 2). Moreover, the DFT energy differences between the final
structures corroborate the stability ordering predicted by the
force field.

The dynamic change of the uncertainty values during the
evolutions offers insight into different phases of the search
process. For example, the trajectory for the evolution with the
C; constraint (see Fig. 6) experiences an interesting sequence of
character shifts. Approaching generation 300, the spread of the
uncertainties is already very slim and decreases even further,
which normally indicates the end of an evolution. However,
around generation 400, the standard deviation increases shar-
ply, suggesting that the CMA-ES found a new path for further
exploration. The same characteristics can be seen for the
energies. The evolution is following this track until around
generation 500, during which both the uncertainties and the
energies are decreasing. Finally, around generation 600, the
search converges to the stable configuration, while at the same
time scaling back once again to small standard deviations for
both quantities.

Structure search

The MLFF was not only able to reproduce the two known members
of the hierarchy, Fig. 4, but also capable to find additional
rotational defects. These require an amount of double vacancies
between the numbers already presented, specifically 4V and 6Vs,,
see Fig. 7a and b. These defects contain the same structural 8-5-5-8
ring building blocks as the known structures in Fig. 4. They also
exhibit corners consisting of one octagon and one pentagon each
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(b) 6Vs2 (8 x8x 1) founder and final Tg structure. E?f,‘;(’m(()vsg) =2.08eV

Fig. 7 Founders and final structures with new rotational defects from the
structure search. The founders are placed in differently sized super cells
(D x D x 1): (@ D =6and (b) D = 8. Both contain sulfur double vacancies
XVs, with X e {4,6}, respectively. The coloring scheme follows Fig. 4. The
corners of the T and Tg structures colored in red consist of one octagon
and one pentagon each.
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Fig. 8 Histograms of global uncertainties. Shown are the frequency
distributions of the global uncertainties s; for all four evolutions that
generated the final structures illustrated in Fig. 4 and 7, visualized as
histograms. Uncertainties larger than s; = 0.5 eV A~! are not shown, since
these values are very low in number and arise only at the very beginning of
the evolutions.

(red colored areas in Fig. 7a and b). These T, and Ty defect
structures fill the gaps in the defect hierarchy, completing the
series ranging from 3Vg to 6Vg founders.

Although the force field was trained on structures that only
contained small T; defects, it was able to generalize well to
predictions of larger T, structures and to extrapolate from the
existing data to T, and Ty defects. Fig. 8 indicates that the
global uncertainties are still a reliable measure of performance
when utilized for the new 4Vs and 6V, founders, since the
visual comparison shows frequency distributions similar to
those started with the 3Vg and 5V, structures.

As a final validation of the search procedure, we initiated
new evolutionary runs using the high-symmetry structures as
founders, while enforcing lower symmetry constraints. The low-
energy threefold-rotational defects shown in Fig. 4 and 7 were used
as starting configurations for evolutions constrained by Cs, gy, and
C, symmetries. In all cases, the evolutions converged to the same
defect structures, thereby reinforcing the conclusion that the
rotational defects correspond to genuine local minima.

Grain boundaries

The MLFF was trained on only 1101 structures from the original
DFT CMA-ES trajectories of small 3V defects, but showed the
ability to generalize to structures not included in training. To
further demonstrate this feature, it was applied to MoS, mono-
layer grain boundaries. These geometries contain similar build-
ing blocks as the rotational defects discussed above.'*
Specifically, we used the MACE committee to calculate the local
uncertainties

1 Nneigh xyz

local § (k)
y 3 Nneigh - T Szn ( )
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Fig. 9 Local uncertainties of grain boundary ring motifs. The color bar
represents the local uncertainties s}f’cal for every atom, calculated by the
MACE committee for a MoS, monolayer grain boundary tilted by 18.5°. The
cutoff radius for the uncertainty calculation was chosen as re = 4.0 A.
Motifs such as 4/6 (orange), 5|7 (violet) and 6|8 (cyan) rings are highlighted
by coloring. Ten-fold rings also present in the corners of the T, and T,
defects are indicated by yellow.

for every atom in the vicinity of a grain boundary with a tilt angle of
18.5°. Npeign denotes here the neighbouring atoms of atom j,
located within a cutoff radius .. These locally aggregated uncer-
tainties have been shown to correlate with the local errors in a
similar way as the globally aggregated uncertainties in Fig. 3.*”

Fig. 9 illustrates the calculated sj®'. Considering first the
Mo-rich interface on the left side of the structure, it is seen that
motifs already present in the threefold rotational defect struc-
tures, such as Mo-rich five- and seven-fold rings (5|7), display
local uncertainty values almost as low as the pristine environ-
ment. More surprisingly, unknown motifs, such as Mo-rich
four- and six-fold (4]6) and six- and eight-fold (6|8) rings, do not
increase the resulting values in a significant way. To assess the
transferability of the force field to grain boundaries, we com-
puted DFT reference forces for the grain boundary structure
shown in Fig. 9. An a-correlation plot illustrating the relation-
ship between local uncertainties and force errors for this
structure is provided in Fig. S6 in the SI. As in previous cases,
the local uncertainties are found to be predictive of the corres-
ponding local force errors. This underlines that a CMA-ES run
visits a diverse set of structures.*®*’

The other S-rich interface on the right consists of the same
motifs, but here the Mo and S atoms are switched in place
(sometimes called opposite polarity). For this reason, two sulfur
atoms of the pentagon structure in the S-rich 5|7 rings are
placed closer to each other than in the structures known by the
force field. This circumstance leads to the increased local
uncertainties that are displayed for these specific sulfur atoms.

Conclusions

We investigated the potential energy landscape of three-
fold rotational defects in monolayer MoS, by coupling a

This journal is © the Owner Societies 2025

View Article Online

Paper

machine-learning force field with an evolutionary structure
search algorithm. To enhance search efficiency, the algorithm
systematically constrained the exploration to a reduced-
dimensional space defined by the symmetry operations of
the respective defects. We found that these symmetry-guided
trajectories maintained lower global uncertainty throughout
the search process, led to energetically more favorable struc-
tures, and achieved faster convergence. This strategy allowed
us to identify several previously unreported defect configura-
tions at a moderate computational cost, thus completing the
catalog of rotational defects in MoS,.

While machine-learning force fields can already efficiently
and transferable parametrize potential energy surfaces, the
structure search itself still relies on heuristic algorithms that
require extensive manual tuning and struggle to escape local
minima. Replacing these heuristics with data-driven approaches
capable of learning adaptive search strategies from large datasets
presents a promising direction for future work.
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