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Shape modification of mineral inclusions in
diamond: thermodynamic and kinetic
considerations

M. Bruno, * S. Ghignone, F. Boero and D. Aquilano

The study of mineral inclusions in diamonds is attracting increasing interest among the scientific

community of mineralogists and petrologists. A question that has recently been addressed is whether the

shape of solid inclusions is immutable once trapped in the diamond or it can evolve over time until it

manifests an equilibrium form. In this paper, we approach this topic by means of thermodynamic and

kinetic considerations. The concept of equilibrium shape is revisited by inserting the Gibbs–Wulff theorem

into a new perspective to fit the context of a mineral inclusion. We then demonstrate that it is currently

not possible to determine the equilibrium shape of a mineral inclusion in a diamond, due to the large

number of calculations that need to be performed. Successively, kinetic considerations on the formation of

the equilibrium shape are made. It is shown that the shape evolution of an inclusion requires a significant

amount of mass transfer at constant volume and the data currently at our disposal do not allow the

estimation of the time needed to reach the equilibrium shape.

1. Introduction

In recent years, there has been a growing interest in the study
of mineral inclusions in diamonds.1–16 In particular, many
studies have been dedicated to clarifying whether the
minerals that now reside as inclusions in the diamond are
formed before the diamond hosting them (i.e., protogenetic
inclusions) or grow simultaneously and through the same
reaction (i.e., syngenetic inclusions; the inclusion should
presumably be in equilibrium with the diamond-forming
medium). A protogenetic inclusion can partly or completely
re-equilibrate with the diamond-forming fluid (or melt)
through intracrystalline diffusion and/or exchange reactions
before (or during) its encapsulation in it; therefore, its current
composition could be completely different from the original
one. There are also epigenetic inclusions, which form along
the fractures (or cleavage planes) of pre-formed diamonds.

The identification of syngenetic inclusions is of
fundamental importance in diamond studies. Since diamond
behaves as an inert container, any geological information
extracted from a syngenetic inclusion, such as pressure (P)
and temperature (T) of formation, age, and geochemistry of
the source medium (i.e., fluid or melt), should also be valid
for the host diamond. It should be noted that the concept of
syngenesis/protogenesis can be extended to any inclusion

and host mineral. For example, garnet is a phase that is
usually rich in inclusions but, historically, an in-depth
analysis of its inclusions has never been performed.
Therefore, the distinction between syngenesis and
protogenesis is not a simple academic exercise, but a
fundamental requirement for understanding geological
phenomena.

The three most commonly described potential indicators
of syngenesis are: (i) the morphological criterion (MC), when
the diamond imposes its morphology on the inclusions;6,17–22

(ii) the growth zones criterion (GC), if the interruption of the
diamond growth zones occurs by the diamond/inclusion
contact;21 (iii) the epitaxial criterion (EC), when an epitaxial
relationship sets up between the inclusion and its
host.6,19,20,22,23

The purpose of this work is not to discuss the validity of
the above criteria. They have already been extensively
discussed,1,24,25 and their unreliability in discriminating
between syngenesis and protogenesis was demonstrated.
Instead, here we want to discuss in more detail, from both
thermodynamic and kinetic points of view, what may be the
mechanisms that lead a mineral inclusion to acquire a
diamond-imposed morphology (i.e., the shape of a negative
diamond crystal). The hypotheses proposed so far are the
following:

(i) Diamond imposes its morphology on the mineral
inclusion only when the diamond and inclusion are formed
simultaneously (syngenesis), owing to diamond's much
greater formation energy,20 also named the crystalloblastic
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force of diamond faces. As highlighted by Bruno et al.:24 “An
ill-defined force is invoked to explain the morphology of the
inclusions, a force whose origin does not exist in crystal growth
theory, the relevance of which is not clear”.

(ii) Post-entrapment shape maturation process:14,26 the
imposed morphology is not due to syngenesis, but developed
after the entrapment of the inclusion. That is, a syngenetic or
protogenetic inclusion trapped in the diamond develops
successively a diamond-imposed morphology by minimizing
the Gibbs energy of a closed system by rearranging the
diamond/inclusion interfaces through diffusion processes.

(iii) The imposed morphology of a protogenetic inclusion
is acquired during its entrapment:24 the diamond-imposed
morphology is due to a low diamond growth rate associated
with a low dissolution rate of the reabsorbed mineral; hence,
the inclusion/diamond system can adapt to develop the
lowest interface energy.

As reported by Cesare et al.,26 “the possibility of a change of
shape of inclusions within their host would greatly impact the
applications of elastic barometry, as well as all other approaches
that require or assume inclusions to maintain a constant shape”.
Furthermore, the ability to estimate the time required to
observe a possible change in the shape of a solid inclusion
could provide information on the P–T conditions experienced
by the rock during its geological history.

In this regard, a brief review of previous articles
addressing this topic will be carried out, but before the
discussion, the concept of the equilibrium shape (ES) of a
crystal is revisited to fit into the context of a mineral
inclusion. Furthermore, some kinetic considerations on the
formation of the equilibrium shape are made and a possible
strategy to assess whether an inclusion is protogenetic or
syngenetic is described.

2. Equilibrium shape of a mineral
inclusion

The equilibrium shape (ES) of a crystal A included in a crystal
B is ruled by the Gibbs–Wulff theorem:27

γ hklð Þ1A= h′k′l′ð Þ1B
h1

¼
γ hklð Þ2A= h′k′l′ð Þ2B

h2
¼ ⋯ ¼

γ hklð ÞiA= h′k′l′ð ÞiB
hi

¼ cost (1)

which states that, at equilibrium, the ratio between the
interfacial energy, γ(hkl)iA/(h ′k ′l ′)iB, of the i-th interface (hkl)iA/(h′k′l′)

i
B

and its distance (hi) from the crystal's barycentre is a constant
(Fig. 1). Relation (1) was derived by minimizing, at constant T
and P, the function Φ ¼ P

i
Aiγ hklð ÞiA= h′k′l′ð ÞiB with the following

constraints: (i) a mineral inclusion has a constant volume and
(ii) the morphology of the inclusion is a convex polyhedron; Ai
is the area of the i-th interface. The system inclusion/host will
tend to lower its Gibbs energy by generating the interfaces
allowing theminimum ofΦ.

According to this theorem, mineral inclusions having
different crystallographic orientation relationships (i.e.,
how the crystallographic axes of the inclusion are

arranged with respect to those of the host phase; CORs
hereinafter) will develop different ESs, to minimize the
thermodynamic quantity Φ. Initially, when a mineral
inclusion A is trapped in the hosting phase B, its
morphology is far from that of equilibrium, and the value
of the function Φ is not at a minimum. Only
subsequently, assuming that the rock remains at a high
temperature for a sufficient time, the inclusion can evolve
towards the ES, by rearranging the (hkl)iA/(h′k′l′)

i
B interfaces

until developing those that minimize Φ, i.e. Φ*(COR), for
that peculiar COR. We must therefore expect that,
independently by their volume, mineral inclusions with
different CORs will develop different ESs, not being able
to generate the same (hkl)iA/(h′k′l′)

i
B interfaces. We assume

that the bulk structure of the mineral inclusion is not
involved in this process of interface adjustment;
consequently, the COR between the inclusion and host
does not vary. We cannot rule out such a bulk structural
modification a priori, but we believe it to be highly
unlikely due to the high energetic cost and the very long
time needed for it to occur. Moreover, we assume that
there is no fluid between the inclusion and host; thus, we
are dealing with dry interfaces.

To better explain this concept, let us suppose that two
mineral inclusions of the phase A (tetragonal system; point
group: 4/mmm; cell parameters: a0 = b0, c0 = 2a0) are hosted
in the same phase B (cubic system; point group: m3̄m) with
the following CORs:

(i) the directions of the crystallographic axes of the phases
A and B coincide: [100]A ≡ [100]B, [010]A ≡ [010]B and [001]A
≡ [001]B (COR1 hereinafter; Fig. 2a);

(ii) the crystallographic axis yA coincides with yB, while the
crystallographic axis zA is rotated by 45°, around the common
direction [010]A ≡ [010]B, with respect to the crystallographic

Fig. 1 Equilibrium shape (ES) of a mineral inclusion A included in a
crystal B determined through the Gibbs–Wulff theorem. The ES is
calculated by tracing segments of length hi proportional to the surface
tensions γi. All these segments start from an arbitrary central point and
are perpendicular to the respective faces having area Ai. The smallest
polyhedron obtained represents the ES. Modified from Aquilano et al.28

CrystEngCommPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/2
0/

20
26

 6
:2

5:
10

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ce00986c


CrystEngComm, 2026, 28, 411–418 | 413This journal is © The Royal Society of Chemistry 2026

axis zB: [100]A ≡ [100]B, [010]A ≡ [010]B and [001]A ≡ [1̄01]B
(COR2 hereinafter; Fig. 2b).

We also suppose that the two mineral inclusions of phase
A are not in contact with each other.

The two mineral inclusions of A cannot develop the same
ES, but they are forced to generate different interfaces to
reduce the Gibbs energy of the system inclusion/host. The
ES of the mineral inclusion A with COR1 (corresponding to
Φ*(COR1)) is composed of the following interfaces (Fig. 2a):
(001)1A/(001)

1
B, (001̄)2A/(001̄)

2
B, (100)3A/(100)

3
B and (1̄00)4A/(1̄00)

4
B.

According to the point groups considered in our example
(i.e., 4/mmm for A and m3̄m for B), (001̄)2A/(001̄)

2
B is

equivalent by symmetry to (001)1A/(001)
1
B and, similarly,

(1̄00)4A/(1̄00)
4
B is equivalent to (100)3A/(100)

3
B. This implies that

γ(001)1A/(001)1B = γ(001̄)2A/(001̄)2B and γ(100)3A/(100)3B = γ(1̄00)4A/(1̄00)4B. Instead,
the ES of the inclusion A with COR2 (corresponding to
Φ*(COR2)) is composed of other interfaces (Fig. 2b):
(102)1A/(001)

1
B, (1̄02̄)2A/(001̄)

2
B, (1̄02)3A/(01̄0)

3
B, (102̄)4A/(010)

4
B,

(001)5A/(1̄01)
5
B and (001̄)6A/(101̄)

6
B. In this case, (102)1A/(001)

1
B,

(1̄02̄)2A/(001̄)
2
B, (1̄02)3A/(01̄0)

3
B and (102̄)4A/(010)

4
B are equivalent

by symmetry to each other, as well as the interfaces
(001)5A/(1̄01)

5
B and (001̄)6A/(101̄)

6
B. Thus, the following

relations hold: γ(102)1A/(001)1B = γ(1̄02̄)2A/(001̄)2B = γ(1̄02)3A/(01̄0)3B =
γ(102̄)4A/(010)4B and γ(001)5A/(1̄01)5B = γ(001̄)6A/(001̄)6B.

It is worth noting that COR1 and COR2 are only two of the
infinite CORs that a protogenetic inclusion can acquire when

entrapped in the hosting phase. We can associate an ES with
each of these CORs and then we can state that the minimum
of the quantity Φ is a function of the COR, Φ*(COR) (Fig. 3).
Φ*(COR) is a continuous and bounded function: among all
the possible CORs, there will be one (i.e., COR*) for which
Φ*(COR) has the lowest value, Φ*(COR*) (the absolute
minimum of the function Φ*(COR)), while there will be other
CORs (e.g., COR1) that can be in a local minimum of
Φ*(COR). In any case, the values of the function Φ*(COR) will
be between Φ*(COR*) and a maximum value that will occur
for a particular COR. In summary, for each inclusion/host
system there exists only an absolute ES, corresponding to the
absolute minimum of the function Φ*(COR) related to a
specific orientation of the inclusion with respect to the host,
but there are infinite ESs for all the other CORs.

Based on the above, determining an ES for a given COR
turns out to be a very difficult task, requiring the calculation
of an unknown number of interfacial energies. For those
interested in the calculation strategy to adopt for the
determination of the interfacial energy at the quantum-
mechanical or empirical level, we recommend reading the
articles by Bruno's research group.29–32 To our knowledge,
there are not theoretical estimates or experimental evidence
of the mineral inclusions' ES.

The only estimates of interface energies between a
mineral inclusion and a diamond host were provided by
Bruno et al.,29,30 who carried out ab initio calculations on
four diamond (D)/forsterite (Fo) interfaces: γ(111)D/(001)Fo =
6.459, γ(001)D/(021)Fo = 6.477 and γ(110)D/(101)Fo = 6.375 J m−2.
The interfaces considered are related to the following
CORs:

Fig. 2 Schematic diagram representing two possible equilibrium
shapes (ESs) of a tetragonal mineral inclusion (A; point group: 4/mmm)
trapped in a cubic host phase (B; point group: m3̄m). In (a), the
crystallographic orientation of A with respect to B is defined by [100]A
≡ [100]B, [010]A ≡ [010]B and [001]A ≡ [001]B, whereas in (b) by [100]A
≡ [101]B, [010]A ≡ [010]B and [001]A ≡ [1

_
01]B. In (b), [001]A is

anticlockwise rotated by 45° around [010]A ≡ [010]B with respect to
[001]B. In (a), the ES of the mineral inclusion A is defined by the
interfaces: (001)1A/(001)

1
B, (001̄)

2
A/(001̄)

2
B, (100)

3
A/(100)

3
B and (1̄00)4A/(1̄00)

4
B;

interfaces 1 and 2 are symmetry-equivalent to each other (i.e., they are
related by the inversion centre), as well as interfaces 3 and 4. Instead,
the ES in (b) is delimited by the interfaces: (102)1A/(001)

1
B, (1̄02̄)

2
A/(001̄)

2
B,

(1̄02)3A/(01̄0)
3
B, (102̄)

4
A/(010)

4
B, (001)

5
A/(1̄01)

5
B and (001̄)6A/(101̄)

6
B; interfaces

1–4 are symmetry-equivalent to each other (i.e., they are related by the
inversion centre, A2 = [010]A and A4 = [010]B), as well as interfaces 5
and 6 (i.e., they are related by the inversion centre).

Fig. 3 Schematic diagram representing the function
Φ ¼ P

i
Aiγ hklð ÞiA= h′k′l′ð ÞiB . On the abscissa axis, different orientations (COR1,

COR2, etc.…) of the crystal relationships (CORs) are represented. On
the y-axis, the corresponding functions Φ*(COR) have been drawn. It is
worth remembering that each COR value represents only one of the
infinite CORs that a protogenetic inclusion can acquire when
entrapped in the hosting phase. The asterisk * indicates the minimum
of the Φ quantity. Φ*(COR) is a continuous and bounded function:
among all the possible CORs, there will be one (i.e., COR*) for which
Φ*(COR) has the lowest value, Φ*(COR*) (the absolute minimum of
Φ*(COR)), while there will be other CORs (e.g., COR1, COR2, etc.…,)
that can be in a local minimum of Φ*(COR). See paragraph 2 to find
the ES of a crystal system A/B, which is ruled by the Gibbs–Wulff
theorem.27
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• (001)D/(001)Fo: [110]D ≡ [100]Fo, [11̄0]D ≡ [010]Fo and
[001]D ≡ [001]Fo

• (111)D/(001)Fo: [1̄01]D ≡ [100]Fo, [01̄1]D ≡ [110]Fo and
[111]D ≡ [001]Fo

• (001)D/(021)Fo: [110]D ≡ [100]Fo, [11̄0]D ≡ [01̄2]Fo and
[001]D ≡ ⊥(021)Fo

• (110)D/(101)Fo: [101̄]D ≡ [010]Fo, [010]D ≡ [1̄01]Fo and
[110]D ≡ ⊥(101)Fo

Interestingly, despite the different crystallographic
orientations between diamond and forsterite, the values of
the interface energy are very high and similar, being in the
range of 6.105–6.477 J m−2. This is due to a very low chemical
affinity between diamond and forsterite, which translates
into a very low adhesion energy β(hkl)D/(h ′k ′l ′)Fo (0.243–0.391 J
m−2),30 a fundamental thermodynamic quantity related to the
interface energy by means of Duprè's relation:27

γ(hkl)D/(h′k′l′)Fo = γ(hkl)D + γ(h′k′l′)Fo − β(hkl)D/(h′k′l′)Fo (2)

Bruno et al.30 obtained a negative value for the adhesion
energy of the (111)D/(001)Fo interface ( β(111)D/(001)Fo = −0.934 J
m−2), which is probably unrealistic and affected by some
errors, perhaps due to an incorrect use of the diamond
surface termination when generating the diamond/forsterite
interface for the simulation; for that, we will neglect it in our
analysis.

Now, (i) supposing a low constant value of the adhesion
energy for every diamond/forsterite interface ( β(hkl)D/(h ′k ′l ′)Fo =
0.300 J m−2), of the same order of magnitude of the values
calculated by Bruno et al.,30 (ii) using the most accurate and
reliable surface energy values of forsterite determined at the

ab initio level by Demichelis et al.33 and (iii) the surface
energy values of diamond calculated always at the ab initio
level by De La Pierre et al.,34 we apply relation (2) to estimate
all the diamond/forsterite interface energies listed in Table 1.

We can observe from Table 1 that the surface energy
values of diamond faces are much greater than those of
forsterite: the average value of diamond surface energies, 〈γD〉
= 4.708 J m−2, is about three and a half times that of
forsterite, 〈γFo〉 = 1.314 J m−2. Then, it is plausible to assume
that the interface energy value of any forsterite/diamond
interface is dominated by the diamond surface energy. Such
a conclusion is probably true for all silicates included in
diamond (e.g., garnet and pyroxene): it is reasonable to
assume a very low chemical affinity between all of the
silicates and diamond and, consequently, that the silicate/
diamond interface energies are dominated by the diamond
surface energy. This is also suggested by the surface energy
value of the {001} form of pyrope [Mg3Al2(SiO4)3], 1.712 J
m−2,35 which is of the same order of magnitude as the
surface energy values of forsterite (Table 1).

3. Kinetic considerations on the
formation of the equilibrium shape

As already specified in the paper by Bruno et al.,24 although
thermodynamics allows for post entrapment modification of
the inclusions, there is no information about the kinetics of
the process. However, it is evident that the shape evolution of
the inclusion requires a significant amount of mass transfer,
both from the host and inclusions, which must occur at
constant volume (i.e., closed system) by means of growth/
dissolution processes occurring at the host/inclusion
interface, coupled with grain boundary diffusion. In order to
give an idea of the amount of matter involved in this process,
let us consider an inclusion of a tetragonal mineral (A) in
diamond (B) having edge lengths a* and c* and the following
COR (Fig. 4): [100]A ≡ [100]B, [010]A ≡ [010]B and [001]A ≡
[001]B. Then, let us imagine that this inclusion will evolve at
constant volume until reaching its ES defined by the edge
lengths a and c, with a* > a and c* < c. If we suppose that

Table 1 Forsterite surface energies,33 γ(h ′k ′l ′)Fo, diamond surface
energies,34 γ(hkl)D, and diamond/forsterite interface energies, γ(hkl)D/(h ′k ′l ′)Fo.
γ(hkl)D/(h ′k ′l ′)Fo have been calculated by means of eqn (2) and considering a
constant value of adhesion energy for all of the interfaces (β(hkl)D/(h ′k ′l ′)Fo =
0.300 J m−2)

Forsterite
face γ(h ′k ′l ′)Fo

Diamond
face γ(hkl)D Interface

γ(hkl)D/
(h ′k ′l ′)Fo

(010)Fo 0.930 (100)D 4.825 (100)D/(010)Fo 5.455
(111)D 3.759 (111)D/(010)Fo 4.389
(110)D 5.539 (110)D/(010)Fo 6.169

(101)Fo 1.300 (100)D 4.825 (100)D/(101)Fo 5.825
(111)D 3.759 (111)D/(101)Fo 4.759
(110)D 5.539 (110)D/(101)Fo 6.539

(111)Fo 1.380 (100)D 4.825 (100)D/(111)Fo 5.905
(111)D 3.759 (111)D/(111)Fo 4.839
(110)D 5.539 (110)D/(111)Fo 6.619

(001)Fo 1.330 (100)D 4.825 (100)D/(001)Fo 5.855
(111)D 3.759 (111)D/(001)Fo 4.789
(110)D 5.539 (110)D/(001)Fo 6.569

(110)Fo 1.730 (100)D 4.825 (100)D/(110)Fo 6.255
(111)D 3.759 (111)D/(110)Fo 5.189
(110)D 5.539 (110)D/(110)Fo 6.969

(120)Fo 1.090 (100)D 4.825 (100)D/(120)Fo 5.615
(111)D 3.759 (111)D/(120)Fo 4.549
(110)D 5.539 (110)D/(120)Fo 6.329

(021)Fo 1.440 (100)D 4.825 (100)D/(021)Fo 5.965
(111)D 3.759 (111)D/(021)Fo 4.899
(110)D 5.539 (110)D/(021)Fo 6.679

Fig. 4 Schematic drawing representing a tetragonal mineral (A) in
diamond (B) having edge lengths a* and c* and the following CORs:
[100]A ≡ [100]B, [010]A ≡ [010]B and [001]A ≡ [001]B.
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the shape evolution occurs at a fixed centre of gravity, that is
the centre of gravity of the mineral inclusion before and after
the evolution is not changed, then the amount of matter of
phases A (ΔmA; moles) and B (ΔmB; moles) involved in the
shape evolution is easily determined by the relationship:

ΔmA ¼ ΔVAρA
MWA

(3)

ΔmB ¼ ΔVBρB
MWB

(4)

where ρA and ρB are the densities (g cm−3) of phases A and B,
MWA and MWB are the molecular weights (g per moles) of
phases A and B, and ΔVA = ΔVB = ΔV is the volume (cm3) of
phases A and B involved in the shape evolution of the
inclusion:

ΔV = c*(a*2 − a2) (5)

By inserting eqn (5) in eqn (3) and (4), one obtains:

ΔmA ¼ c* a*2 − a2
� � ρA

MWA
(6)

ΔmB ¼ c* a*2 − a2
� � ρB

MWB
(7)

By considering ΔVA = ΔVB = ΔV in eqn (3) and (4), we obtain
the following relation which relates the quantities ΔmA and
ΔmB:

ΔmB ¼ ΔmA
MWAρB
MWBρA

� �
(8)

Now, by supposing A ≡ forsterite (Fo) as the inclusion and B
≡ diamond (D) as the hosting mineral, ρFo = 3.27 g cm−3, ρD
= 3.52 g cm−3, MWFo = 140.69 g per moles and MWD = 12.01
g per moles, we are able to estimate ΔmFo and ΔmD for a
given shape evolution of the forsterite crystal. Let us imagine
an initial (out-of-equilibrium) inclusion shape with size a* =
15 μm and c* = 20 μm and a final equilibrium inclusion
shape with size a = 10 μm and c = 45 μm. The amount of
matter to be mobilized for reaching the equilibrium shape is
ΔmFo = 5.811 × 10−11 moles and ΔmD = 7.327 × 10−10 moles.

If the forsterite/diamond interface is dry (i.e., no fluids
separating the phases), in order to estimate the time required
to move all this matter, it is necessary to know the grain
boundary diffusion coefficients of the involved elements (Fe,
Si, O and C) as a function of temperature and pressure; data
not currently available. The rate of the morphological
evolution of the inclusion will be limited by the element with
the lowest mobility, the one with the lowest grain boundary
diffusion coefficient.

Instead, if there is a fluid at the forsterite/diamond
interface (wet interface), dissolution/growth processes of the
phases must be considered to model the evolution of the
inclusion morphology, together with the diffusion of
elements within the fluid. It is highly probable that the
presence of a thin fluid at the mineral/host interface

accelerates the kinetics of the process, favouring more rapid
evolution of the inclusion's shape towards equilibrium.
However, to our knowledge there are no data that allow a
reliable estimation of the time required to reach equilibrium.
It is evident that the smaller the inclusion, the shorter the
time needed to obtain the equilibrium morphology, since the
amount of the material to be reorganized is smaller.

Recently, phase-field modelling has been used to analyse
the shape evolution of crystals,36,37 but never for solid
inclusions in minerals. This computational methodology
could provide an estimation of the time required to reach the
equilibrium shape defined by the Gibbs–Wulff theorem.
However, the application of such advanced models always
requires reliable data on intergranular diffusion coefficients,
which are currently unknown for the silicate/diamond
system.

4. A strategy to evaluate, through
observation, the existence of post-
entrapment modification

To evaluate whether the post-entrapment modification of an
inclusion can occur in diamond, Bruno et al.24 proposed a
strategy, described below, which is based on the
morphological evolution of mineral inclusions.

First of all, it is fundamental to find a diamond
containing two or more mineral inclusions with the same
crystallographic orientation and that exhibit both diamond-
imposed and lobed morphologies; the same orientation
ensures that the inclusions are relicts of an original
monocrystal (i.e., protogenetic inclusions). The
crystallographic orientations of the inclusions in diamond
can be determined either by single-crystal X-ray diffraction or
electron back scatter diffraction (EBSD). The coexistence of
iso-oriented inclusions with both imposed and lobed
morphologies in the same diamond suggests the following
two possible hypotheses if we assume that they come from a
single resorbed original crystal:

(i) The inclusion shape, once trapped in the diamond, is
not modified. Then, their different morphologies should
follow the growth and dissolution rates of the diamond and
mineral undergoing resorption, respectively. Likely, low
diamond growth, along with a low dissolution rate of the
reabsorbed mineral, favours the inclusions with a diamond-
imposed morphology to minimise the system energy,
generating inclusion/diamond interfaces with the lowest
interfacial energies. Conversely, both high diamond growth
rates and high dissolution rates of the inclusion do not
readjust the inclusion/diamond interfaces; thus, it is
reasonable to expect crystals with a lobed morphology.

(ii) The inclusion shape can change, once trapped in
the diamond, through thermally activated grain-boundary
diffusion along dry (or wet) interphase boundaries, so
generating a crystal habit which reflects that of the host
diamond (ES of the inclusion, as described in paragraph
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2). If this can occur, inclusions with both imposed and
lobed morphologies mean that the maturation process has
involved only some relicts of the partially resorbed single
crystal. This can occur only when the inclusions have
been trapped at different times; the first to be captured
into the diamond are those that have a longer time to
adjust their morphology. In practice, inclusions with an
imposed morphology, more than those with the lobed
one, should lie closer to the central growth zone of the
diamond. Thus, it is crucial to associate the mineral
inclusions with the growth sectors of the diamond to
disprove or validate the post-entrapment shape maturation
process.

Subsequently, it is essential to compare the inclusions'
places with their position in the diamond growth sectors,
which can be observed by means of cathodoluminescence
(CL). These data being collected, two cases can be
considered for the inclusion: (1) those with an imposed
morphology are located closer to the central growth zone
of the diamond than the lobed ones (Fig. 5a). Thus, one
cannot establish whether such a morphology distribution
is due to post-entrapment modification or if it is
syngenetic to the growth of the host (i.e., a consequence
of the growth and dissolution rates of the host and
resorbing mineral, respectively); (2) the lobed ones are
located closer to the central growth zone of the diamond
than those with an imposed morphology (Fig. 5b). In the
last case, one can state that post-entrapment modification
did not occur. Indeed, since the first inclusions to be
captured into the host (diamond or garnet) will be those
having a longer time to fix their morphology, the lobed
morphologies near the central growth zone cannot be
explained by post-entrapment modification.

It is worth highlighting that this analysis must be done on
inclusions of similar size. In fact, small inclusions require
much less mass transfer (and then less time) than larger ones
to adjust their shapes.

5. Conclusions

Within the present paper, we address a topic of great interest
about the shape evolution of a mineral inclusion in diamond;
this topic being approached through thermodynamic and
kinetic considerations.

First, the equilibrium shape (ES) of a crystal was revisited
to fit into the context of a mineral inclusion. The Gibbs–
Wulff theorem is described in detail and inserted in a new
perspective. Then, we showed that determining the ES of a
mineral inclusion is a very difficult task, since it requires the
calculation of an unknown number of interfacial energies. It
is currently not possible to say with certainty whether a given
inclusion in a diamond has reached its ES.

Subsequently, kinetic considerations on the ES formation
were made. The shape evolution of the inclusion requires a
significant amount of mass transfer at constant volume (i.e.,
a closed system) by means of growth/dissolution processes
occurring at the host/inclusion interface, coupled with grain
boundary diffusion. Unfortunately, the data currently at our
disposal do not allow the estimation of the time needed to
reach the ES: as an example, intergranular diffusion
coefficients and growth/dissolution rates of diamond and its
inclusions at the T and P of interest are missing.

Finally, a method proposed by Bruno et al.24 to evaluate
whether the post-entrapment modification of an inclusion
can occur in diamond is described, which requires knowing:
(i) how the crystal axes of the inclusion are arranged relative
to those of the host phase and (ii) the position of the
inclusions with respect to the diamond growth sectors.
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