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To identify new ligands for positron emission tomography imaging of
a-synuclein aggregates, we developed a machine learning model trained
on <300 binding measurements. We used scaffold-guided curation to
select a 30 compound prospective set from a 140-million-member
library. Experimental validation yielded five high-affinity binders, show-
ing robust generalization for ligand discovery.

The synucleinopathies are a set of neurodegenerative diseases
characterized by aggregation of the protein a-synuclein (aS)
that include Parkinson’s disease (PD), multiple system atrophy
(MSA), and Lewy body dementia (LBD)." PD is the second most
common neurodegenerative disorder, behind Alzheimer’s dis-
ease (AD); collectively these diseases affect 15% of the global
population, a figure projected to double by 2050 with increas-
ing human lifespan.” Staining of oS aggregates in post-mortem
brain tissue slices has been crucial to understanding the
pathology of PD, MSA, and LBD, but there is a need for tools
to image the progression of synucleinopathies in vivo, which
would provide biomarkers for guiding the development of oS-
targeting therapies for PD and MSA.

Small molecules that specifically bind to aS fibrils could
serve as positron emission tomography (PET) imaging probes
to study disease progression or act as tools for early clinical
diagnosis of synucleinopathies.? Indeed, such PET probes have
proven invaluable for studying AD progression and evaluating
the efficacy of therapeutics.? PET ligand development in our
laboratories has used rational design principles for structure—
activity relationship (SAR) optimization as well as computa-
tional methods encompassing both similarity searches for
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analogs of existing hits and docking-based ultra-high through-
put screens for new scaffolds.”® These studies have provided
three major classes of ligands, typified by the compounds
BV-21, TZ61-84, and M503 (Fig. 1). All three of these molecules
have shown affinities of <5 nM for in vitro oS fibrils in direct
binding assays using radioisotope labeled analogs.®”° This has
translated to high affinities in human PD and/or MSA tissue
homogenates, and selective binding in autoradiography
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Fig. 1 oS Fibril and ligand structures. Top: In vitro ssSNMR or cryo-EM fibril
structures rendered from noted PDB ID coordinates and colored accord-
ing to the rainbow scheme below the structures.*>*® Binding sites identi-
fied in computational analysis of PDB ID 2n0a are noted with grey circles.*®
Bottom: Candidate PET ligand structures and crosslinkable analogs used in
XL-MS. BF-2846: R, = C*Hs, R, = H used for radioligand binding, Ry = CHs,
R, = N3 or Ry = CLX, R, = H used for XL-MS. BV-21: R; = CHs, R, = *2°| used
for radioligand binding, Ry = CLX, R, = H used for XL-MS. M503: R, = C*Hs
used for radioligand binding, Ry = CLX used for XL-MS. TZ61-84: R; =
123|All used for radioligand binding, R, = CLX used for XL-MS. For each
ligand, the binding sites identified in XL-MS experiments are noted in
parentheses.
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experiments that have allowed M503 and a structural analog,
HY-2-15 (SI, Fig. S1), to move forward to initial human
validation.'®'* In the course of developing these ligands, we
have carried out thousands of ligand binding experiments, and
this database now allows us to develop machine learning (ML)
models to guide the identification of new ligands from among
the three structural classes or deriving from hybrid or comple-
tely new scaffolds. In particular, we will focus on ML models for
classifying displacement of the tritiated BF-2846 radioligand
(Fig. 1), for which >300 inhibition constant (K;) values are
available to be used in model training.

Interpreting oS fibril binding experiments presents two
challenges that are not found in typical drug discovery inves-
tigations: polymorphism of the fibril structure and multiple
high affinity binding sites for each ligand. Our development of
PET ligands for PD, LBD, and MSA began with the identifi-
cation of 10-15 potential ligand binding pockets observed in
the original solid-state NMR (ssNMR) structure of oS fibrils
(PDB ID: 2n0a, shown in Fig. 1).">'* Site 2 is located near
residues Y3o-E46 in the ssSNMR structure, and site 9 is located
near residues Ggs-Kos. These sites presented the deepest bind-
ing pockets that were surface accessible in the ordered regions
of the fibril. More recent cryo-EM structural data show that
in vitro oS fibrils commonly exist as multi-protofilament struc-
tures and that this can result in a rearrangement of site 2 and
site 3 (backbone rotation that places Y39 and Hs, on the same
face of the protofilament) to form a site that we refer to as site
2* (Fig. 1)."* Our own recent studies on the binding of site 2*
ligands indicate that the conditions used for fibril preparation
in our studies generate fibrils with a two-standed morphology
(PDB ID: 904b),"® and a more ordered N-terminus, similar to
that recently reported by Jiang et al. (PDB ID: 9¢5r1).'® The more
ordered N-terminus presents site 1 (Gi4-Tsy), as a potential
ligand-binding location, as well as a portion of the C-terminus
that we refer to as site 15 (Dy;5-E123). We interpret our binding
data with in vitro fibrils primarily in terms of the 9c5r structure,
since this recapitulates features of other in vitro oS fibril folds,
and is consistent with photo-crosslinking mass spectrometry
(XL-MS) data used in identifying ligand binding sites.

XL-MS data for photo-crosslinkable (CLX) derivatives of our
ligands have been mapped onto the in vitro ssSNMR and cryo-EM
structures to allow us to understand where binding of BV-21,
M503, and TZ61-84 overlap with binding of BF-2846 (Fig. 1).>>"
BV-21 XL-MS data identifying site 3 are consistent with our cryo-
EM structures of the binding of related compound Ex-6."> The
primary areas of overlap are at site 2*(sites 2/3) for all ligands and
site 9 for all ligands but TZ61-84. These data provide a structural
understanding of the basis for [*’H]BF-2846 displacement by the
other ligands and also demonstrate the potential for some binding
events that may not be observed in the radioligand assays (e.g,
TZ61-84 class compound binding at site 1 or site 15). While the
relative affinities for the sites may vary, the XL-MS data support
the use of [°’H|BF-2846 K; measurements in developing classifiers
for oS fibril binding across three types of ligand structures.

To develop our ML model for predicting oS fibril binding
affinity in [°H]|BF-2846 displacement, we curated 315 experiments

Chem. Commun.

View Article Online

ChemComm

in which full 10-point binding curves were collected, resulting in
either a fitted K; value or an assessment of “no binding” if a curve
could not be fit with K; < 1 puM. For these 315 measurements,
there is reasonable class balance, with 138 BF-2846/M503 class
compounds, 121 BV-21 class compounds, and 56 TZ61-84 class
compounds. About 1/3 of the compounds (99) have low similarity
to any of the class parents, showing reasonable diversity in the
data set. A deeper analysis of similarity is given in SI, Fig. S2 and
S5. This class balance and diversity is representative of a typical
drug screening campaign, where there will often be a skew toward
known hits.

Building on our experimental data, we trained an ML model to
identify potential binders for S fibrils from the full-scale Mcule
library, comprising approximately 140 million compounds.'®
Using 315 full binding measurements, our model achieved con-
sistent performance on cross-validation and the held-out test set.
We then applied the model to a scaffold-diverse 30 compound
prospective library and identified 13 predicted binders. Experi-
mental validation confirmed seven true binders, including five
compounds with <10 nM K; spanning multiple chemotypes.
These results demonstrate that the model generalizes beyond
the training distribution and provides practical value for identify-
ing potent oS PET probe candidates.

Binder labels were assigned using a 25 nM K; threshold:
compounds with K; <25 nM were classified as binders, whereas
those with K; >25 nM were designated as non-binders. This
cutoff was chosen for two reasons. First, 25 nM represents a
meaningful potency level that helps distinguish promising,
high-affinity ligands. Second, this cutoff provides a balanced
distribution of binder and non-binder classes in the dataset.
Lower thresholds would lead to an imbalanced set dominated
by non-binders, whereas higher thresholds would incorporate
weaker ligands that are less relevant for our application. To
ensure representative training and test sets, we applied strati-
fied splitting to preserve the class distribution across datasets
(SI, Table S1). Given the limited size of the training set (271 data
points), we selected algorithms with inherently higher bias and
lower variance to reduce overfitting and achieve robust
generalization.'® Specifically, we trained logistic regression,
k-nearest neighbors, and decision tree classifier models. Mole-
cules were featurized for classical ML using a combined
feature-set of Morgan fingerprints and Mordred chemical
descriptors. Together, these features capture both bulk and
substructural information from molecules to be used in
ML.?*?! To maximize performance, we tuned hyperparameters
and performed feature selection via five-fold cross-validation,
optimizing for the macro F1 score. Macro F1 was chosen as the
primary optimization metric because the dataset is highly
imbalanced, and accurate prediction of the minority (binder)
class is of particular importance. In parallel, to provide an
intuitive baseline, we created a simple similarity-based classi-
fier: Morgan fingerprints (radius 3, 1024 bits) were computed
for all compounds, and each molecule was assigned a binder
label if its maximum Tanimoto similarity to any training-set
binder exceeded a threshold t. We selected t = 0.5 as it reflects
meaningful structural similarity, while higher values would

This journal is © The Royal Society of Chemistry 2026
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Table 1 Classification report on test set

Precision Recall F1
Non-binder 0.96 0.74 0.83
Binder 0.47 0.89 0.62
Accuracy 0.77
Macro 0.72 0.81 0.72
Weighted 0.86 0.77 0.79

Test set performance is depicted in a confusion matrix plot in SI Fig. S3.

capture only near-identical compounds. This yielded a baseline
macro F1 score of 0.56. Classification reports for the best-
performing models selected by cross-validation and for the
similarity-based baseline classifier are provided in the
(SIL, Tables S2-S5).

The logistic regression model achieved the highest perfor-
mance and was therefore selected as the final model for
subsequent binder predictions (SI, Table S6 and S7; Table 1).
The optimal hyperparameters are listed in SI, Table S8, and the
selected features are available on our GitHub repository. To aid
interpretation, the top 40 logistic regression feature coefficients
are shown in SI, Fig. S4. The final model achieved a weighted F1
score of 0.79 and a macro F1 score of 0.72 during cross-
validation (SI, Table S2). When evaluated on the test set, the
model maintained consistent performance, with identical
weighted and macro F1 scores of 0.79 and 0.72, respectively
(Table 1). Moreover, relative to the best cross-validation results,
the model exhibited improvements in weighted precision,
macro precision, and macro recall (Aweighted-precision =
+0.02; Amacro-precision = +0.02; Amacro-recall = +0.02), while
maintaining stable weighted recall across datasets. These
results collectively indicate that the model not only fits the
training data effectively, but also preserves predictive reliability
when exposed to unseen samples. The comparable perfor-
mance between cross-validation and test evaluations suggests
minimal overfitting and robust model generalization. Impor-
tantly, achieving this stability and accuracy with a small and
somewhat imbalanced test set that includes only 9 binders
among 44 total samples highlights the model’s capacity to
capture meaningful discriminative patterns for oS fibril bind-
ing within such data constraints. This level of performance
underscores the potential applicability of the model in scenar-
ios where experimental data are limited, but accurate binder
prediction remains critical.

To externally validate the model, we developed a scaffold-
aware workflow to curate a prospective dataset from the full
Mcule library for model inference. Guided by prior SAR analysis
highlighting the three reference chemotypes (BV-21, M503, and
TZ61-84), we assigned each library molecule to its nearest
reference scaffold using Tanimoto similarity. Candidates were
classified according to their closest chemotype, which allows us
to assess the extent of scaffold coverage within the dataset
(Fig. 2, grey). Overlaying Tanimoto scores of the compounds in
the training and test sets (Fig. 2, red) shows that we have a
range of chemotypes, not just close analogs of BV-21, M503,
and TZ61-84. For prospective compound set selection, we
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Fig. 2 Scaffold similarity distributions for training, test, and prospective
datasets. Grey histograms represent distributions of Tanimoto similarity
values between Mcule library compounds and the three reference che-
motypes (BV-21, M503, and TZ61-84). Red ticks mark similarity values for
training and test compounds, and blue ticks mark those for the prospective
compounds.

analyzed the Mcule database with the same Tanimoto metrics.
We then deliberately selected a small number of high Tanimoto
compounds (including some non-Mcule molecules for TZ61-84-
type representation), but also sampled low Tanimoto scores
(<0.2 to BV-21, M503, and TZ61-84 for 16 compounds) to
expand chemical space and assess model generalization. This
scaffold-aware, yet diversity-oriented selection method for our
30 compound prospective set (Fig. 2, blue) avoids collapsing
onto a single chemotype while rigorously evaluating the mod-
el’s capability to generalize beyond its training domain.

Using our ML model, we identified 13 potential binders
(Fig. 3). To validate the predictions, we performed a [*H|BF-
2846 assay to determine K; values. Based on these experimental
labels, we obtained a weighted F1 score of 0.74 and a macro F1
score of 0.71 (SI, Table S11). Despite a modest decrease in
performance compared to the test set, the results remain
noteworthy given that the model was trained on only 271 data
points, yet generalized effectively to a diverse dataset. Impor-
tantly, although the final model was selected based on its
performance on a small test set, that performance closely
matched the cross-validation results and was again reproduced
in the prospective evaluation, indicating that the observed
accuracy reflects genuine model generalization.

Chem. Commun.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5cc06228d

Open Access Article. Published on 13 January 2026. Downloaded on 1/14/2026 3:59:57 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Communication

— //\ N= o]
Ry N, N
Sy N *k.}‘fn@_o
| R, \

P27-M (6.8 M) R; = H, R, = H

R Eom SO RS P03-M (43 M) Ry = OH, R, = NH,

P23V (10nM)  X=CH,R=OEt

P13-A*(104nM) X =N, R = NHiPr = M\ M= 0 pogm
W W NB

P04V (48nM) X =CH, R;=OMe N N (NB)

N~o o NSNS o~
) 7N P24-M
"‘@MEJ\@“' Q‘”\_/“_QN]@/ (31 nM)
Rz

N~
P28-V (9.9nM) X=Br,R;=0Et,R;=H 7\ H /
( ) 1 2 _,@——(N )\s /\[rN o
P20-V (4.3nM). X = Me, R, = H, R, = On-Pr H I )
P25-A (NB)
H
< » ~ N >_©_ P
1 NH O
° ¢ A
P30-Z (22 nM) P29-A (9.4 nM)

Fig. 3 Predicted hits from prospective compound set. Compound names
indicate structural class (V = BV-21, M = M503/BF-2846, Z = TZ61-84, A =
Alternative/Hybrid). Classes assigned based on Tanimoto scores, where A
indicates that scores relative to BV-21, M503, and TZ61-84 were all <0.2.
*Despite apparent similarity to BV-21, these compounds have low Tani-
moto scores due to the combination of thiadiazole and exocyclic amine.
Experimental K; values gyven in parentheses. The full list of compounds in
the prospective set with associated computational and experimental data
is given in S| Table S12.

Importantly, the model demonstrated strong capability in
filtering non-binders, achieving an F1 score of 0.79 for non-
binder prediction. This high performance allows for efficient
prioritization of compounds by reducing the experimental
burden of testing inactive molecules. Moreover, the model
successfully identified seven strong binders, five of which
exhibited K; values below 10 nM, underscoring its potential to
guide hit discovery (data for all 30 compounds in SI, Table S12).
The 13 predicted hit compounds are shown in Fig. 3. Notably,
the true positives include at least one compound from each of
the structural classes as well as alternative scaffold compounds.
Among the false positives are three compounds with K; values
<50 nM, still potent compounds, although above our 25 nM
cut-off. While the alternative scaffolds share elements of exist-
ing scaffolds, they provide new areas of chemical space to
explore.

In summary, we report a data-efficient ML framework to
accelerate the identification of high-affinity oS fibril PET ligand
candidates. Despite being trained on only 271 data points, the
logistic regression model integrated feature selection and
exhibited generalization across chemical space, enabling effi-
cient prioritization of active scaffolds. Prospective validation
against a curated Mcule dataset yielded five compounds with
sub-10 nM K;s, including BV-21-type hits with thiadiazoles,
which human analysis predicted to be non-binders.”> Our
scaffold-aware design ensures broad coverage of both known
and novel aS-binding chemotypes, providing a generalizable
method for leveraging limited biochemical data to guide PET
probe design, advancing in vivo imaging of synucleinopathies.
Although the approach is validated only for this target, it
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illustrates what can be achieved in ligand discovery when
limited high-quality biochemical measurements are combined
with an appropriately designed model.

The manuscript was written by X. L. and E. ]J. P., with input
from all authors. X. L., S. G., and E. J. P. designed all experi-
ments and X. L. performed most experiments. R. M. P. curated
experimental data.
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The data supporting this article have been included as part of
the supplementary information (SI) and are available online at
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tree/master/%CE%3B1-SynucleinBinder. Compound synthesis
and binding studies for previously unreported compounds in
training and test sets are described in an accompanying
publication.?? Supplementary information: experimental meth-
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