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Peptide-based therapeutics have emerged as a significant treatment strategy, offering high specificity
and tunable pharmacokinetics. Recent advances in Artificial Intelligence (Al) have shifted the focus
towards structure prediction, generative design, and interaction modelling, significantly accelerating drug
design and discovery. Deep learning architectures, including graph neural networks, transformers, and
diffusion models, have facilitated the generation of novel sequences for the target of interest, although
predicting the solubility, immunogenicity, and toxicity of these sequences remains a challenge.
Innovations in peptide chemistry, such as cyclization, stapling, non-canonical amino acids, and
nanoparticle formulations, help overcome the hurdles of bioavailability and permeation. These chemical
approaches, combined with developments in autonomous peptide synthesis and high-throughput
screening, have considerably reduced discovery timelines from years to months. Clinically, this progress
is apparent in the growing number of approved peptide drugs for metabolic disorders, oncology, and
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Accepted 4th December 2025 generative architectures and interactions. We then examine Al-driven screening and delivery
DOI: 10.1039/d5cc049983 optimization for these peptide-based discoveries. Finally, we discuss the current limitations, practical

challenges, and future direction with particular emphasis on data quality and autonomous drug
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Introduction

Peptides have emerged as a compelling class of therapeutic
interventions for various disorders.' Since the initial use of
insulin, the first peptide-based drug from the early 20th cen-
tury, numerous modified peptides, such as cyclic and stapled
forms, have been developed.”® These peptides exhibit
enhanced potency on target interventions with unique features,
including specificity, tunable half-life, and structural modi-
fications.! The approval for the peptide-based drugs has shown
a consistent increase from 2020 to 2024 for various diseases,
especially diabetes, obesity, and cancer.” Peptides are also used
as diagnostic markers in various disorders for imaging pur-
poses, aiding clinical studies.®

Peptides are versatile molecules whose moderate size allows
them to effectively target complex interactions, such as protein—
protein interactions and binding to G protein-coupled recep-
tors (GPCRs), with higher binding affinity.”® From the
chemical perspective, the synthesizability and modifications,
such as cyclization, non-canonical amino acids, stapling, and
PEGylation, make it more suitable for therapeutic purposes.’™?
However, the drawbacks of the peptides are the poor oral
bioavailability and vulnerability to proteolysis with limited
tissue penetration.”®'* These factors urge increased dosage
requirements and careful design for delivery and administra-
tion. Overcoming these negative factors is vital to progressing
clinical drug development and discovery.

In recent years, science, technology, engineering, and med-
icine (STEM) fields have seen a transformative development in
artificial intelligence (AI)."* For instance, protein folding, con-
sidered a significant challenge in protein studies, has been
emulated with high accuracy using the Alphafold models.®
Al has been applied in various fields to unravel the hidden
patterns and address the experimental difficulties, paving the
way towards novel studies and discoveries.'””'® These founda-
tions of AI have provided the capability for rational peptide
design and docking studies. The Al-based models, such as
ESM2,"® deep learning models,>® Generative Adversarial
Networks (GANs),>" diffusion models,** and Variational Auto-
encoders (VAEs),*® are applied to computationally design the
peptide sequences for the specific target of interest.>* Al-based
tools that predict key drug-like parameters such as toxicity,
solubility, and permeability provide additional support for drug
development by vastly reducing the experimental cost.>® Unify-
ing these characteristic features using Al could aid in acceler-
ating peptide-based drug discovery with greater success.

Numerous studies over the past five years report the integra-
tion of Al into peptide-based drug discovery. A recent review by
Zheng et al. has listed progress in peptide discovery, synthesis,
and clinical translation. At the same time, Xiao et al. provided a
broad summary of peptide therapeutics, delivery platforms,
and market trends, highlighting the evolving role of AL>
Developments in peptide-protein interaction modeling, such
as AfCycDesign for cyclic peptides, establish the effective use of
computational methods to design cyclic peptides.”® These
developments highlight a fundamental innovation in the field,
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where the power of experimental and computational methods
converges to unravel novel therapeutic discoveries.

This review aims to provide a comprehensive and critical
analysis of the current developments in Al-driven peptide-based
therapeutics. We summarize the Al-based peptide prediction
and modelling studies designed using the generative frame-
works and their applications. We then delve into the Al-driven
screening and delivery optimization for these peptide-based
discoveries. We summarize the innovations of these peptide-
based drugs from the clinical and translational perspective.
Finally, we review the current limitations, practical challenges,
and future direction with particular emphasis on the data
quality and autonomous drug discovery.

Computational approaches in
traditional peptide design

The traditional peptide drug discovery process has focused on
empirical approaches such as screening large combinatorial
libraries using phage display, bacterial display, and mamma-
lian cell surface systems.>’?® These approaches express the
peptide libraries on the protein or cell surfaces to identify the
binding proteins through an iterative process. Phage display, in
particular, has been widely utilized in peptide discovery that
expresses the peptide variant as a genetic fusion to bacterioph-
age proteins, developing a direct link between the displayed
peptide and its encoding DNA.?® The phase display libraries
from the New England Biolabs have become a dominant tool
that facilitates epitope mapping, protein-protein contact map-
ping, and identification of bioactive peptides. However, recent
studies using next-generation sequencing showed a significant
variation in the phage display libraries, including the bias in
amino acid and over-representation of stop codons.*® Hence,
advanced computational tools are needed to complement the
traditional experimental methods (Fig. 1).

Structure-based drug design

Structure-based computational approaches have been central
to peptide design, using protein structures to guide rational
peptide optimization. Molecular docking appeared as a primary
technique for modeling peptide—protein interactions, providing
detailed information about binding modes and interactions.**
Traditional molecular docking approaches, however, encoun-
tered significant challenges when applied to peptides due to
their intrinsic flexibility. Initial methods typically treated pep-
tides as rigid entities, limiting their applicability to highly
flexible peptide sequences.** The development of flexible dock-
ing algorithms, such as CABS-dock,> Hpepdock,> and
PatchMAN,> represented a significant advancement by incor-
porating conformational flexibility of both peptide and protein
molecules. For instance, CABS-dock utilizes a coarse-grained
protein model that enables the search for peptide conforma-
tional space while retaining computational efficiency. Reports
from various studies have used these tools in multiple systems,
including peptide docking to G-protein-coupled receptors

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Traditional approaches in peptide-based drug design. This figure outlines the conventional computational workflow for identifying and
optimizing peptide therapeutics. The process begins with homology modeling, which aids in predicting the three-dimensional structure of a peptide.
Followed by screening of large peptide libraries for candidates with desirable properties. Quantitative structure—activity relationship (QSAR) modeling is
applied to establish correlations between molecular features and the biological activity of the screened peptides. Molecular docking is further employed
to predict the preferred binding orientation of a peptide with its target protein, providing insights into molecular recognition. Finally, molecular dynamics
(MD) simulations capture atomistic details of peptide—protein interactions, stability, and conformational changes, offering critical guidance for lead

optimization.

(GPCRs) and short linear motifs (SLiMs) in protein-protein
interactions.>®

Homology modeling and structure prediction

Homology modeling was widely used in peptide design when
experimental structural data are unavailable. This computa-
tional method predicts three-dimensional peptide structures,
assuming the folding pattern remains identical for peptides
with similar sequences. However, the model accuracy relies
mainly on the protein structure availability and the degree of
sequence similarity between target and template peptides, with
a minimum threshold of 30% sequence identity. Conventional
tools such as I-TASSER have been valuable for discovering novel
antimicrobial peptides and differentiating their anti-tumoral
properties.’” While tools like Backbone-based Rotamer Library
(BbRL) and PEP-FOLD have enabled prediction of peptide
structures ranging from 5 to 50 amino acids, facilitating both
de novo prediction and biased prediction when interaction sites
are known.*®

Virtual screening and library design

Virtual screening offers a cost-effective strategy to identify pro-
mising peptide candidates from vast computational libraries
and has become a cornerstone of structure-based virtual
screening (SBVS).> SBVS utilizes protein structures to screen
and design peptides with high affinity and specificity for

This journal is © The Royal Society of Chemistry 2025

relevant targets. Recent advances have aided in the develop-
ment of ultra-large virtual peptide libraries containing billions
of sequences available for screening. For instance, a study
described a de novo design strategy using directed mutation-
driven high-throughput virtual screening (HTVS) to develop
vast virtual libraries, supposedly expanding from 10* initial
scaffolds to 10" library members through iterative mutation.*°
The development of virtual libraries has also extended to
include non-natural amino acids. Various studies have reported
that approximately 380000 readily synthesizable non-natural
amino acids exist, demonstrating vast chemical diversity com-
pared to the 20 natural amino acids. Virtual screening
approaches using these expanded libraries have successfully
identified peptides with significantly higher predicted affinities
than natural sequences."’

Quantitative structure-activity relationship (QSAR) modeling

QSAR approaches are critical in drug discovery, bridging appli-
cations from small-molecule development to peptide optimiza-
tion. However, they have had limited success compared to
traditional pharmaceutical applications. QSAR studies in pep-
tide research have explored various bioactive properties, includ-
ing antioxidant activity, antimicrobial effects, and enzyme
inhibition.*> A comprehensive review of QSAR applications to
food protein-derived bioactive peptides revealed that while
some studies successfully identified structural requirements
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for specific bioactivities, differences across analyses were com-
mon, possibly due to dataset quality and descriptor selection
issues.”® The limited availability of high-quality experimental
data for peptide—protein interactions has constrained the devel-
opment of robust QSAR models. Recent advances have intro-
duced machine learning-guided QSAR approaches tailored
explicitly for peptides. The streaMLine program represents a
noteworthy example, systematically exploring peptide libraries
through rigorous design, synthesis, screening, and ML-driven
analysis. Researchers successfully screened 2688 peptides using
this approach and identified multiple options for designing
stable and potent GLP-1R agonists.**

Molecular dynamics (MD) simulations

Molecular dynamics (MD) simulations play a pivotal role in
computational studies for peptide-based drug design, provid-
ing an in-depth understanding of peptide-protein interactions
and dynamics at the atomistic level, which is essential for drug
design.*>™*” Numerous studies have reported the use of MD
simulations to rationally design the inhibitory peptides against
various disorders.”®>® Advanced MD simulation techniques,
such as enhanced sampling and replica-exchange, have further
enabled the study of cyclic and intrinsically disordered
peptides.®*™® By elucidating binding mechanisms through
broad views of molecular interactions, MD simulations can
identify probable binding poses, calculate binding affinities,
and determine the thermodynamic and kinetic parameters
governing peptide-target interactions.>*®" MD simulations
have also been utilized significantly in anti-microbial peptide
design, revealing membrane disruption mechanisms and phy-
sicochemical properties that enhance activity against resistant
bacterial strains.®*** Our group has developed discrete mole-
cular dynamics (DMD), which employs discrete energetic
potentials to reach microsecond-scale timescales for complex
biomolecular systems efficiently.*>*® DMD has been extensively
validated and applied to explore protein folding dynamics,
aggregation mechanisms, and prion-like conformational
7769 1t has also provided insights into the mole-
cular mechanisms of polypeptide aggregation in human
diseases”® and the effects of macromolecular crowding on
folding cooperativity.”" More recently, DMD has been success-
fully applied to rational peptide design, including the develop-
ment of therapeutic peptides against various disorders.”>”>
Together, these studies demonstrate the versatility of DMD in
uncovering atomistic mechanisms of peptide aggregation, pro-
tein-peptide interactions, and structure-based peptide design.
With the current advancements in computational resources
that support MD simulations of large systems over millisecond
timescales, they accelerate the advantage in peptide drug
discovery.

Accurate prediction of the peptide target interactions and
binding affinity via MD simulations is dependent on the choice
of force field and selection. The AMBER force field (ff14SB,
ff19SB) is widely used for protein-peptide complex systems,
capturing the conformational dynamics essential for binding.”®
A recent study by Miao et al. suggested that among seven force

conversions.

Chem. Commun.

View Article Online

ChemComm

fields tested for cyclic peptide simulations, RSFF2 + TIP3P,
RSFF2C + TIP3P, and Amber14SB + TIP3P showed the highest
accuracy, recapitulating NMR-derived structures for 10 peptides,
while others performed significantly worse.”” CHARMM36m and
Amber ff99SB-disp force fields are shown to provide better effi-
ciency in capturing the range of dynamics from intrinsically
disordered peptides, which can accurately capture experimental
calculations.”®®®  Furthermore, the MM-PBSA and MM-GBSA
methods provide estimates of binding affinities by computing
the enthalpic contribution from force field energies and the
entropic penalty from conformational sampling.®*

Despite significant advances, traditional computational
approaches face several persistent challenges. The inherent
flexibility of peptides makes accurate structure prediction and
docking computationally demanding. Limited availability of
experimental structural data for peptide-protein complexes
constrains model training and validation.?” Additionally, tradi-
tional methods often struggle with non-canonical amino acids
and chemical modifications commonly used in therapeutic
peptides. Incorporating cyclization, stapling, and other struc-
tural modifications remains a significant challenge for conven-
tional modeling approaches.

Al-enabled structure prediction for
peptide-based design

Over the past decade, Al has revolutionized the field of peptide-
based drug discovery. From the Nobel Prize-winning develop-
ment of AlphaFold to the upcoming quantum-based generative
models, AT has enhanced research approaches towards peptide
structure prediction, interaction, and therapeutic design (Fig. 2).

AlphaFold for structure prediction

AlphaFold, introduced by DeepMind, made a breakthrough in
computational structural biology.'® The AlphaFold, released in
early 2020, demonstrated astonishing accuracy in the protein
structure prediction competition CASP, with a median back-
bone accuracy of 0.96 A RMSD, compared to 2.8 A for competing
methods. This development showed immediate applications
towards peptide research as the AlphaFold database now holds
200 million protein structures with vast data information. The
recent development of AlphaFold3 has displayed the capability
of predicting protein-peptide interactions.®* Independent vali-
dation studies on the 588 peptide sequences with varying
amino acid ranges (10-40) showed that AlphaFold could predict
the peptides with better accuracy.®® However, the flexible
regions and intrinsically disordered peptides still show reduced
reliability.

Complementary structure prediction platforms

RoseTTAFold is an alternative to AlphaFold, with a neural
network architecture that simultaneously considers sequence
patterns, amino acid interactions, and three-dimensional
structure.®® RoseTTAFold revealed precise value in modeling
protein complexes and extended to handle nucleic acid-protein

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Artificial Intelligence in peptide structure prediction. The prediction of peptide structures has shown a transformative shift with the integration
of artificial intelligence (Al) and advanced computational methods. Deep learning—based models such as AlphaFold, RoseTTAFold, and ESMFold are
trained on vast datasets of protein sequences and experimentally determined structures. As a result, they predict the 3D structure of novel peptide
sequences with exceptional accuracy. This innovation has redefined peptide modeling, opening new avenues for drug discovery, protein engineering,

and therapeutic design.

interactions through RoseTTAFoldNA.*® The RoseTTAFold all-
atom (AA) model can accept a wide range of ligands and
covalently modified amino acids, which is particularly signifi-
cant for peptide design, as it enables modeling of non-natural
amino acids and chemical modifications commonly used in
therapeutic peptides. ColabFold has made high-quality protein
structure prediction accessible to the broader research com-
munity by combining AlphaFold 2 with accelerated homology
search algorithms. The platform achieves 40-60 fold faster
sequence searching than standard AlphaFold 2 pipelines while
maintaining prediction accuracy.®” ColabFold supports both
homo and heteromeric complex prediction, with specific hand-
ling of peptide-protein interactions. ESMFold, an embedding-
based predictor leveraging protein language models, has exhib-
ited applicability for peptide sequences, with significant hits
capturing short-range interactions relevant to secondary struc-
ture formation."

Beyond these predictors, particular Al frameworks dedicated
to peptide modeling are also emerging. For instance, PEP-FOLD3
employs a de novo fragment assembly strategy integrated with
neural network-based scoring functions to capture low-energy
peptide conformations.*® The refinement of PepFold’s pipeline
has extended its use for linear and cyclic peptides, including
post-translational modifications. These methods employ rein-
forcement learning strategies to iteratively refine peptide con-
formations against experimentally derived constraints such as
NMR or cryo-EM data.

Recently, the AfCycDesign framework adapted AlphaFold2
with cyclic positional encoding, enabling accurate structure
prediction and sequence redesign of cyclic peptides.*® Notably,
several de novo designs yielded experimental confirmation with

This journal is © The Royal Society of Chemistry 2025

RMSDs under 1 A, and served as effective scaffolds for nano-
molar peptide binders against targets like MDM2. These results
underscore the growing capability of Al models to generate and
validate stable peptide architectures, with significant implica-
tions for macrocyclic therapeutic development.

Deep learning approaches for
peptide—protein interaction prediction

Deep learning has transformed peptide-protein interaction
(PPI) prediction by aiding to that capture complex binding
patterns. Modern neural network architectures, including con-
volutional neural networks (CNNs), recurrent neural networks
(RNNs), and transformer models, have shown better perfor-
mance over traditional machine learning approaches. These
sophisticated models can simultaneously predict binary pep-
tide-protein interactions and identify critical binding residues,
providing multi-level insights that accelerate peptide drug
discovery processes (Fig. 3).

Convolutional neural networks (CNNs) for sequence-based
prediction

Convolutional neural networks are the foundational architec-
tures for peptide-protein interaction prediction, particularly
effective at capturing local sequence patterns and motifs
for binding interactions.®® PepCNN represents a significant
advancement, incorporating structural and sequence-based
information from primary protein sequences to predict peptide
binding residues.®® Recent developments have extended CNN
applications to multi-level peptide-protein interaction prediction.
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Fig. 3 Deep learning architectures for predicting protein—peptide interactions. The prediction of protein—-peptide interactions, a key step in
therapeutic discovery, has been significantly advanced by applying diverse deep learning architectures. Convolutional neural networks (CNNs) and
Recurrent neural networks (RNNs) have been widely used to extract features from sequence data, while Graph neural networks (GNNs) capture the
complex three-dimensional topology of molecular structures. Generative models, such as variational autoencoders (VAEs), enable the design of novel
peptides with tailored properties. More recently, transformers and protein language models (PLMs) have provided exceptional insights into molecular

context, achieving state-of-the-art predictive performance.

The CAMP (comprehensive analysis of multi-level peptide—protein
interactions) framework employs CNN modules to extract hidden
contextual features from both peptides and proteins.’® The
framework incorporates multi-channel architectures to sepa-
rately process numerical and categorical features, addressing
inconsistencies that arise from multi-source feature integration.
This design enables simultaneous binary interaction prediction
and peptide-binding residue identification, providing compre-
hensive insights into interaction mechanisms. Thus, CNNs
efficiently capture local sequence motifs through hierarchical
feature extraction, enabling fast inference for high-throughput
peptide screening with minimal preprocessing requirements.
However, their limited capacity to model long-range dependen-
cies and inherent lack of 3D structural awareness constrain
accurate prediction of binding interactions and conformational
properties.

Transformer architectures and attention mechanisms

Transformer-based models have revolutionized peptide-
protein interaction prediction by using attention mechanisms
to capture long-range dependencies and identify critical
interaction patterns. The cross-TCR-interpreter model utilizes
transformer architectures in predicting T-cell receptor-peptide-
major histocompatibility complex (TCR-pMHC) interactions.
ABTrans represents another innovative transformer applica-
tion, specifically designed for predicting interactions between
amyloid-p peptides and antibodies.” PepNN advances trans-
former applications by enabling sequence- and structure-based
predictions through graph attention layers.’ The model incor-
porates multi-head reciprocal attention layers that simulta-
neously update embeddings of both peptides and proteins,

Chem. Commun.

learning interactions between residues involved in binding.
More recently, TPepPro,”® a transformer-based model trained
on 19 187 peptide-protein complex pairs, achieved 85.5% accu-
racy with an AUC of 0.922. The model combines local protein
sequence feature extraction with global protein structure fea-
ture extraction, demonstrating the power of attention mechan-
isms in capturing long-range interactions. Transformer models
leverage self-attention mechanisms to capture long-range
sequence dependencies and global context, achieving state-of-
the-art performance across diverse peptide prediction tasks
with highly parallelizable training. Nonetheless, their quadratic
computational complexity with respect to sequence length,
substantial memory requirements, and dependence on large
training datasets limit their practical deployment for resource-
constrained applications and small peptide datasets prone to
overfitting.

Graph neural networks for structural interaction modeling

Graph neural networks model protein-protein interfaces and
peptide binding sites by representing molecular structures
as graphs with nodes representing residues or atoms and
edges, capturing spatial relationships.®* The TP-LMMSG model
significantly advances therapeutic peptide prediction, incor-
porating hierarchical multi-scale residual networks with pre-
trained language model embeddings.’® This approach achieves
remarkable performance across antimicrobial peptide (AMP),
antiviral peptide (AVP), and anticancer peptide (ACP) predic-
tion tasks while reducing preprocessing time by over seven-fold
compared to traditional graph learning models. Research uti-
lizing graph convolutional networks (GCN) and graph attention
networks (GAT) shows that structural information combined

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cc04998a

Open Access Article. Published on 05 December 2025. Downloaded on 1/13/2026 4:18:59 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

ChemComm

with sequence features considerably enhances prediction
performance.’® These models construct protein graphs from
protein files within threshold distances, creating residue con-
tact networks that capture spatial relationships critical for
interaction prediction.

Integrating protein language models with graph neural
networks represents a substantial improvement. By using pre-
trained language models like SeqVec and ProtBERT to generate
node features directly from protein sequences, these hybrid
approaches eliminate the need for domain-specific features
while maintaining the structural knowledge provided by graph
representations.”” This combination leverages evolutionary
information learned by language models and spatial con-
straints captured by graph architectures. Hence, graph neural
networks naturally represent molecular topology and 3D spatial
relationships, enabling explicit modeling of atom-level interac-
tions critical for accurate binding affinity and protein-peptide
complex prediction. Their computational expense for large
molecular systems, strict requirement for high-quality struc-
tural inputs, and limited generalization to novel structural
motifs outside training distributions present significant prac-
tical limitations.

Recurrent neural networks and LSTM applications

Long short-term memory (LSTM) networks are used for peptide
property prediction and sequence generation since the network
captures long-range interactions in amino acid sequences.’®
The use of LSTM networks to generate antimicrobial peptides
exhibits their generative capabilities.”® Recent implementa-
tions have combined LSTM networks with other architectural
components to improve performance. Models combining con-
volutional layers with bidirectional LSTM capture local patterns
and long-range dependencies simultaneously. This hybrid
approach is remarkably effective for T-cell receptor-epitope
binding prediction, where local sequence motifs and global
sequence context contribute to binding specificity.'*® However,
slow sequential training that precludes parallelization, vanish-
ing gradient problems affecting long sequences, and inferior
performance compared to Transformer architectures on con-
temporary benchmarks have diminished their adoption in
modern peptide design workflows.

Protein language models and BERT-based approaches

Pre-trained protein language models have transformed peptide-
protein interaction prediction by providing contextualized
representations of amino acid sequences. BERT-based models,
such as PepBCL, reveal substantial advantages over traditional
hand-crafted features. This approach is particularly effective for
peptide-binding residue prediction, where only approximately
5.4% of residues interact.'”" PeptideBERT represents a specia-
lized application of transformer language models to peptide
property prediction.'®® The model’s success demonstrates that
language models can effectively capture the relationship
between sequence and function for therapeutic peptide devel-
opment. The SWING (sliding window interaction grammar)
framework extends protein language model applications with

This journal is © The Royal Society of Chemistry 2025
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contrastive learning for protein-peptide interaction.'® Thus,
protein language models pre-trained on vast sequence data-
bases capture evolutionary and functional patterns, enabling
powerful transfer learning with strong zero-shot and few-shot
prediction capabilities that substantially reduce experimental
data requirements. However, their sequence-only represen-
tations fundamentally ignore structural dynamics, require
computationally intensive fine-tuning, and may inadequately
represent rare peptide classes underrepresented in natural
protein training data.

Variational autoencoders for peptide generation and
optimization

Variational autoencoders are used in peptide design and gen-
eration by learning continuous latent representations of
sequence space. The VAE-MH (variational autoencoder with
Metropolis-Hastings) represents the first deep learning-based
model explicitly designed for peptide extension. This approach
learns from protein—-protein interactions and conducts
focused searches for optimal sequences rather than random
exploration.'®*

Applications to antimicrobial peptide generation showcase
VAE effectiveness in functional peptide design. VAE models
trained on known antimicrobial peptides can generate novel
sequences retaining critical features such as high hydrophobic
moment in alpha-helical peptides while exploring sequence
variations.'®® Recent developments have widened VAE applica-
tions to protein conformational exploration. This approach
reveals VAE utility beyond sequence generation, extending to
structural modeling and conformational analysis for under-
standing peptide-protein interactions. Hence, VAEs offer con-
tinuous latent spaces, enabling smooth interpolation and
property-guided optimization, within probabilistic frameworks
that quantify uncertainty and facilitate efficient training on
moderately sized datasets. Posterior collapse frequently
reduces latent space informativeness, generated sequences
often exhibit limited diversity, and fine-grained control over
specific structural features remains challenging.

Generative Al for peptide design

Generative Al has shown a transformative approach in peptide-
based drug discovery, presenting the ability to design novel
peptide sequences with therapeutic properties. Unlike tradi-
tional methods, which rely heavily on exhaustive screening,
generative models learn the underlying patterns of protein
sequences and structures from vast biological datasets.
By leveraging architectures such as variational autoencoders
(VAE), generative adversarial networks (GAN), diffusion models,
and protein language models (PLM), these systems can design
peptides that are not only diverse but also optimized
for stability, specificity, and efficacy (Fig. 4). This paradigm
accelerates discovery while reducing cost and experimental
workload.
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Fig. 4 Advanced generative Al tools for peptide discovery. This schematic illustrates the diverse Al models that generate and refine novel peptides with
therapeutic potential. Variational autoencoders (VAE) and convolutional neural networks (CNN) enable the generation of diverse peptide candidates,
while graph adversarial Networks (GAN) incorporate structural context into design. Reinforcement learning (RL) is applied for goal-directed optimization,
guiding peptides toward desired properties. More advanced approaches, including Protein language models (PLM) and diffusion models (Diff), are
expanding the field further by learning the fundamental rules of protein structure and function, enabling the creation of highly specific and compelling

peptide therapeutics.

Variational autoencoders and generative adversarial networks

The application of generative Al to peptide design has pro-
gressed considerably over the past decade. VAEs are one such
model used for antimicrobial peptide discovery, with frame-
works like PepVAE representing semi-supervised learning
approaches that jointly model labeled and unlabeled peptide
sequences.’® These studies have shown that VAE-generated
peptides can be experimentally validated, with some novel
antimicrobial peptides discovered within 48 days of computa-
tional prediction. The HydrAMP system advances VAE applica-
tions through conditional variational autoencoders (cVAE) that
unravel antimicrobial properties from other latent features.'®”
This approach leverages parameter-controlled creativity to gen-
erate diverse peptides for multiple tasks, including unrest-
rained generation and analogue design.

Generative adversarial networks (GANs) have applications in
peptide design. PandoraGAN specifically targets bioactive anti-
viral peptides using modified GAN architectures adapted from
natural language processing.'®® AMPGAN v2 represents a
significant advancement, employing bidirectional conditional

Chem. Commun.

GANs (BiCGAN) for rational AMP design.'®® HelixGAN addresses
structural peptide design by generating de novo left-handed and
right-handed alpha-helix structures at the atomic level."'® The
model employs gradient-based latent space optimization to match
exact conformations of selected hotspot residues. However, GANs
face challenges, including mode collapse and training instability,
limiting their broader adoption.

Diffusion models for backbone and interface generation

Diffusion-based models have become noteworthy in the devel-
opment of peptide de novo and interface design in recent years.
Remarkably, RFdiffusion showed that denoising the generative
trajectories can aid in forming the backbone to fit the target
and yield high-affinity binders.""" That was comprehensive
to helical peptides using partial diffusion refinement of
the ligands, yielding picomolar binding validated experimen-
tally."'> Meanwhile, RFpeptides adapts the diffusion framework
to macrocyclic peptides to generate cyclic backbones that
match the protein pockets, aiding stability and affinity.'"
Similarly, all-atom peptide generation with the geometric latent
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diffusion (PepGLAD) conditioning on the binding site geometry
to produce sequences and 3D structures, benchmarking the
test sets."’* Further, ProteinMPNN, a message-passing neural
network for sequence design from structure, can redesign a
scaffold to bind a peptide epitope, significantly improving
affinity in experimental assays when paired with Rosetta-based
assembly.'™

DiffPepBuilder, an SE(3)-equivariant diffusion model trained
on a synthetic dataset (PepPC-F), enables de novo design of
peptide binders co-optimizing sequence and conformation, pre-
senting stabilizing disulfide bonds.'*® In comparative bench-
marks, DiffPepBuilder exceeded AfDesign and RFdiffusion with
ProteinMPNN scaffolding in producing diverse, structurally faith-
ful binding peptides with improved free energy profiles. Besides,
HYDRA represents another innovative diffusion-based approach,
combining target-aware amino acid residue generation with
binding affinity maximization.""” This hybrid model generates
high-quality, diverse, and stable peptide binders tailored to target
receptor proteins.

PepTune, introduced in 2025, uses a masked diffusion
language model guided by Monte Carlo Tree Guidance (MCTG)
to optimize for binding affinity, solubility, permeability, hemo-
lysis, and non-fouling characteristics simultaneously."'® This
modular, search-guided framework represents a powerful step
forward in optimizing multiple biophysical properties in one
model. Specialized application of antimicrobial peptides has
yielded compelling results. AMPGen integrates an autoregres-
sive diffusion generator with evolutionary information from
MSAs, a discriminative XGBoost screen for physicochemical
features, and an LSTM-based scorer for target specificity.'*
Experimental validation showed that of 40 de novo peptides
synthesized, over 80 percent displayed antibacterial activity,
and these sequences were absent from existing AMP databases,
demonstrating novelty and efficacy. Beyond AMPs, general-
purpose diffusion frameworks are emerging. CPL-Diff, a
mask-controlled diffusion model, allows length tuning during
peptide generation, offering flexibility in sequence design
that accommodates therapeutic constraints like half-life or
membrane binding."** MMCD (multimodal contrastive diffu-
sion) integrates both sequence and structure information in a
contrastive diffusion learning framework, boosting generation
quality across antimicrobial, anticancer, diversity, and docking
metrics.'*' Besides, their computational expense requiring
200-1000 denoising steps, slow inference limiting throughput,
dependence on high-quality structural training data, and prac-
tical deployment challenges without GPU infrastructure con-
strain widespread accessibility.

Flow matching models for peptide design

Flow matching models represent a new class of continuous
generative architecture that learn to map the prior distribution
into complex distributions of biologically relevant structures.
Unlike diffusion models that rely on static denoising, flow
matching uses deterministic ordinary differential equations
to transfer data points from latent to molecular space, achiev-
ing high efficiency."*>'*® This framework supports flexible
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generations, allowing for the rapid sampling of diverse struc-
tural motifs, such as alpha helices, beta sheets, and cyclic
peptides. Flow matching enables large-scale screening of
candidate peptides within seconds and could incorporate con-
straints such as secondary structure propensity.

ProtFlow">* leverages compressed protein language model
embeddings to efficiently generate peptides and antibodies in a
single inference step, while HelixFlow"'*® extends this capability
to full-atom, SE(3)-equivariant helical peptide design, including
pocket-specific inpainting for receptor-guided binder genera-
tion. Recently developed NCFlow is able to incorporate arbitrary
uses of the non-canonical amino acid in protein design."”®
However, these lack induced fit modeling, thus requiring
further refinement with docking or MD simulations to ensure
the validity. Despite these limitations, flow matching offers a
powerful tool for early-stage screening and the rapid generation
of peptide libraries.

Comparatively, diffusion models are more preferable when
structural fidelity and experimental validation are prioritized,
while flow-matching methods are ideally suited for rapid, large-
scale exploration and early-stage design under limited compu-
tational resources. In the near future, the use of hybrid archi-
tectures with diffusion and flow matching is likely to determine
the next generation of peptides, as supported by equivariant
modeling, attention mechanisms, and guided optimizations.

BindCraft AlphaFold2-based one-shot functional design

BindCraft represents a distinct paradigm in peptide design,
diverging from the diffusion and flow-based models by lever-
aging AlphaFold2 to optimize the peptide-target complex
through iterative confidence maximization directly.'>” Bind-
Craft co-folds both the target and binder, enabling induced-
fit modeling that captures the conformational adaptation upon
binding. Initially, BindCraft was tested on miniprotein (60-200
amino acids) binders, but recent studies have demonstrated its
performance on short peptides, achieving nanomolar binding
(65-650 nM) against MDM2 and WDR5.'*® The streamlined
multimer protocol allows users to define peptide length, bind-
ing hotspots, and filtering stringency, optimizing efficiency for
short peptides that primarily function as binding interfaces. Its
main limitation lies in structural diversity, as current imple-
mentations favor alpha-helical motifs, restricting applicability
to targets with helical recognition interfaces. Despite its com-
putational intensity, BindCraft’s interpretability and capacity
for target-specific sequence refinement make it a top tool for
precision-driven binder design.

Protein language models for target-conditioned peptide
generation

Protein language models (PLMs) enable the generation of
target-conditioned peptides without explicit structural tem-
plates. PepMLM fine-tunes ESM-2 with a masking strategy that
conditions on the target protein sequence, reconstructing the
cognate peptide region and yielding binders validated both in
silico and experimentally, including degradation assays."”®
Recent reports show peptides designed directly from protein
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sequences, underscoring that sequence-only conditioning can
discover functional binders at scale when paired with robust
structural inspection.’®® These PLM-centric generators are
attractive for proteome-wide scans, and they interface naturally
with downstream structure models to eliminate false positives
and select pose-consistent candidates for synthesis. Similarly,
AMP-designer, an LLM-based model, emphasizes speed and
potency.”*" Within 48 days, it produced 18 AMP candidates, of
which nearly all were active in vitro. Two exhibited high efficacy,
low hemotoxicity, robust plasma stability, and strong in vivo
performance, suppressing bacterial load by ~100-fold in murine
lung infection models. This performance highlights the feasibility
of rapid, Al-driven design-to-validation loops even in low-data
or strain-specific contexts. Therefore, target-conditioned protein
language models integrate target protein information to generate
binder-specific sequences, leveraging evolutionary co-variation
patterns for rational, context-aware peptide design that accounts
for binding partner characteristics. The scarcity of paired peptide-
target training data, suboptimal conditioning mechanisms, and
inheritance of biases from pre-training on natural protein
sequences limit their current effectiveness for de novo therapeutic
peptide discovery.

Backbone-to-sequence decoding with (ligand) MPNN

Generative workflows commonly split shape from sequence:
diffusion proposes peptide/receptor geometries, and a decoder
assigns sequences that stabilize the interface. ProteinMPNN
remains a standard for fast, high-quality sequence design on
fixed backbones, with strong experimental validation across
diverse scaffolds."’® LigandMPNN extends this concept for
chemically rich environments by conditioning sequence design
on atomic context, including small molecules, metals, and nucleo-
tides, thereby supporting peptides and receptors that bind cofac-
tors or include bound ligands in the pocket."** In peptide design,
the pair forms a practical core to propose peptide conformations
against a target surface, decode sequences with (Ligand)MPNN to
optimize packing and polar satisfaction, and then re-score with
AlphaFold-multimer to check pose stability and side-chain realism
before experimental selection.

Reinforcement learning and search over constrained
chemistries

Reinforcement learning (RL) improves generative models by
imposing design constraints, including cyclization, incorporat-
ing non-canonical residues, and integrating cell-penetrating
motifs. Recent RL frameworks assemble and score peptides
in closed chemical spaces, for example, CYC_BUILDER for
target-specific cyclic peptides using Monte Carlo tree search
(MCTS) and bond-forming actions to optimize binding while
ensuring synthetically viable cyclization."*® Broader RL appro-
aches, including graph-attention and prior-guided RL, efficiently
explore peptide sequence/structure space, balancing novelty and
physicochemical properties.”** Diffusion or PLM proposals can
act as priors, while rewards integrate docking scores and heuristic
developability metrics. This RL layer is especially valuable for
macrocycles and stapled designs, where combinatorial chemistry
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explodes and naive generators drift from synthesizable, bioactive
regions of sequence space. Consequently, RL frameworks enable
simultaneous multi-objective optimization balancing efficacy,
safety, and drug-likeness, and incorporating iterative experi-
mental feedback for continuous model improvement. Careful
reward function design proves challenging and susceptible to
sample-inefficient training demands extensive computational
simulations, and training instability, particularly with sparse
rewards, impedes reliable convergence.

Non-canonical residues and macrocyclic design

Generative models increasingly target non-natural amino acids
and macrocycles to address protease stability and permeability.
PepINVENT reports a sequence generator explicitly beyond
natural amino acids, enabling exploration of peptidomimetic
design spaces relevant to oral bioavailability and serum
stability.'*® Diffusion pipelines specialized for macrocycles
generate cyclic backbones shaped to receptor pockets, a crucial
advance because ring closure and side-chain geometry strongly
constrain feasible sequences.'”® On the validation side, Alpha-
Fold3 (AF3) allows complex modeling with modified residues
and ligands, which helps vet non-canonical designs and flag
steric or coordination issues before synthesis. Modeling of
cyclic peptides with AF3 is emerging, indicating improved
fidelity for unnatural chemistries and providing a standardized
route for pose confirmation across modified peptide classes."*®
Thus, incorporation of non-canonical amino acids and macro-
cyclic constraints dramatically expands chemical diversity
beyond the 20 natural amino acids, enhancing protease resis-
tance, metabolic stability, and enabling novel binding modes
inaccessible to linear peptides. Limited training data for
non-standard modifications, increased synthetic complexity
and cost, unpredictable pharmacokinetic profiles, and less-
established regulatory approval pathways present substantial
barriers to clinical translation.

Programmable generative models and conditioning (Chroma &
beyond)

Programmable generators such as Chroma sample structures
and sequences under explicit constraints, symmetry, topology,
or shape, can then be conditioned toward epitope presentation
or pocket complementarity, offering scaffolds that support
short peptide motifs or present peptide-like surfaces for
binding."*” In peptide design, these scaffolds serve as templates:
a peptide motif is embedded or recognized by the generated
protein surface, after which MPNN-style decoding and AF-based
validation refine the complex. Together with PLM-conditioned
peptide generators (PepMLM) and diffusion-based macrocycle
design, such programmable models create an end-to-end toolkit.

Despite remarkable progress, several challenges persist in
Al-enabled peptide design. Current models struggle with highly
flexible regions and intrinsically disordered peptides. The
limited availability of high-quality experimental data for pep-
tide-protein complexes also constrains model training and
validation. Optimization remains computationally expensive,
and navigating these limits for multiple properties remains a
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challenge. There are also concerns about novelty versus accept-
ability as systems like AMPGen show promise, but whether
such peptides scale in manufacturability and clinical safety
remains unknown. Future designs are inclining toward founda-
tion models, self-driving lab, and richer structural conditioning
to address these.

Integration of rational design with
generative Al, genetic algorithms,
simulations, and experiments

Current peptide drug discovery approaches employ hybrid
strategies that combine rational design with generative AI
and physics-based simulations. This integrated method
enhances the strategies by providing a deeper mechanistic
understanding through rational design. Meanwhile, Al enables
rapid predictions across vast, complex spaces with atomistic
calculations from MD simulations, offering deeper insights to
advance experimental studies.'?%*%°

Chang et al. employed a latent diffusion model (AMP-
diffusion), fine-tuned on antimicrobial peptide sequences
using protein language model embeddings. From 50000
generated candidates, 46 top peptides were synthesized and
experimentally validated, demonstrating broad-spectrum anti-
bacterial activity against various pathogens."*® Chen et al.
developed deep learning models combining support vector
machines with AlphaFold2 structure predictions to design
cysteine- and lysine-stapled peptides. Experimentally validated
stapled peptides showed broad-spectrum antimicrobial activity
(MIC 2-8 pg mL "), excellent serum stability, and minimal
hemolytic activity, successfully integrating computational pre-
diction with rational stapling modifications."*" Wang et al.
employed a large language model-based foundation model
generating candidates from extensive peptide sequence data-
bases. Of the 18 synthesized peptides, 17 exhibited antimicrobial
activity against ESKAPE pathogens, with five AMPs achieving
MICs of 4-16 pug mL™' against multidrug-resistant Gram-
negative bacteria and demonstrating a reduction of ~99% in
bacterial load in mouse pneumonia models.’** Ortega et al.
combined RNN-LSTM and GAN architectures with helical wheel
analysis to generate 6004 peptide candidates. From 12 synthe-
sized peptides, 9 achieved MIC values below 10 pM against
various pathogens, with OrP1M, OrP9M, and VeP1 demonstrat-
ing MIC as low as 2 pM, and six peptides showing anticancer
activity against MCF-7 cells.'*?

Combined VAE with Metropolis-Hastings sampling to gen-
erate peptide extensions for B-catenin inhibitors, using MD
simulations for binding pose refinement and MM/GBSA affinity
calculations. Experimentally validated peptides achieved ICs,
values of 0.03 pM (B-catenin), demonstrating the effectiveness
of iterative VAE fine-tuning with MD-guided selection."** Zhao
et al. developed a conditional denoising VAE framework that
integrates a transformer architecture with guidance on physi-
cochemical properties for the generation of AMPs. The model
incorporated denoising techniques to address data sparsity and
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enhance generalization, enabling the generation of AMPs with
preserved desirable properties and reduced hemolytic activity
while maintaining antimicrobial efficacy.’*> Wang et al
employed a transformer-based VAE for the latent diffusion
model, integrating MD simulations to validate membrane-
binding stability and antibacterial mechanisms."*® Das et al.
utilized a VAE trained on 1.7 million peptide sequences com-
bined with MD simulations in explicit membrane environ-
ments to analyze conformational stability and antimicrobial
mechanisms. Generated and experimentally validated two
novel AMPs within 48 days, demonstrating rapid processing
in the drug discovery process while maintaining potent activity
and low toxicity™*’

The most successful peptide discovery programs implement
active learning cycles where experimental data continuously
refines computational models. After initial computational
design and synthesis, experimental assays (binding affinities,
antimicrobial activity, cytotoxicity, pharmacokinetics) provide
ground-truth data. These results retrain predictive models,
update reward functions in reinforcement learning frameworks,
and refine physics-based force field parameters, progressively
improving prediction accuracy and reducing experimental
attrition rates.

Therapeutic screening and
translational optimization

Transforming peptides from laboratory discoveries into viable
therapeutics requires addressing critical challenges, including
toxicity, immunogenicity, solubility, and delivery. AI has
emerged as a sophisticated tool across each domain, offering
unparalleled insights into peptide optimization (Fig. 5).

Toxicity and safety assessment

Modern toxicity prediction has evolved from simple sequence-
based approaches to sophisticated multimodal architectures.
ToxGIN represents a significant advancement, utilizing graph
isomorphism networks (GIN) to integrate structural informa-
tion with sequence data for peptide toxicity prediction.'*® The
model performs better (F1 score = 0.83, AUROC = 0.91) by
representing peptide structures as graphs where amino acids
serve as nodes and spatial interactions as edges, incorporating
ESM-2 embeddings and physicochemical properties. Similarly,
tAMPer demonstrates the power of structure-aware prediction
by combining ESM-2 protein language model embeddings with
ColabFold-predicted structures.'*® The multimodal framework
extracts structural features using graph neural networks
while capturing sequential dependencies through recurrent
networks, achieving 91.7% AUROC and establishing strong
correlations with experimental HC50 values.

Physicochemical properties prediction

Immunogenicity assessment has advanced significantly
through transformer and attention-based architectures. Uni-

fyImmun represents a unified framework that simultaneously
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Fig. 5 Al-driven therapeutic optimization in peptide drug design. This figure illustrates the use of artificial intelligence to streamline the optimization
of novel peptide therapeutics. Predictive models enable the rapid screening of candidates across key properties, including toxicity, solubility, membrane
permeability, and immunogenicity. By integrating these assessments into a computational design framework, Al facilitates efficient multi-parameter
optimization, guiding the selection of peptides with improved efficacy and an increased likelihood of clinical success.

predicts peptide binding to HLA and TCR molecules using
cross-attention mechanisms.'”® The model employs virtual
adversarial training to enhance generalizability, achieving
superior performance on multiple test sets and outperforming
state-of-the-art methods by over 10% on large-scale COVID-19
datasets. Besides, peptide solubility prediction has benefited
from advanced neural architectures addressing oral and par-
enteral delivery requirements. MahLooL,”® implemented as a
serverless bidirectional RNN model, achieves 70% overall accu-
racy in solubility prediction while excelling for short peptides
(18-50 amino acids) with 91.3% accuracy and 0.95 AUROC. The
model incorporates simulated gastric conditions, making it
valuable for oral delivery assessments.

Stapled peptide development

Hydrocarbon-stapled peptides represent a promising therapeutic
class requiring specialized computational approaches due to their
unique structural constraints.’>* StaPep, introduced in 2024,
provides the first comprehensive toolkit for stapled peptide
structure prediction and feature extraction.'*> The Python-
based platform supports multiple stapling chemistries and
achieved 0.85 AUC for cell penetration prediction using a
curated dataset of 201 stapled versus 384 linear peptides.
Recent deep learning advances have significantly improved
stapled peptide design capabilities. A recent study applying
CNN and LSTM models to antimicrobial stapled peptides
achieved perfect accuracy on test sets by combining AlphaFold
structural predictions with sequence-based descriptors. Experi-
mental validation confirmed robust bacterial inhibition, low
hemolysis, and excellent serum stability for designed cysteine-
and lysine-stapled peptides.'*?

Integrated screening platforms

Comprehensive screening platforms now integrate multiple
prediction capabilities. Peptipedia v2.0 is a user-friendly

Chem. Commun.

database containing over 100 000 peptide sequences from 70+
databases, incorporating 90+ binary classification models for
biological activity prediction. The platform combines tradi-
tional sequence analysis with machine learning predictions,
enabling comprehensive candidate evaluation.'** Top-ML
shows interpretable machine learning approaches for anti-
cancer peptide classification, employing topological features
to achieve state-of-the-art performance while providing inter-
pretable insights into structure-activity relationships.'® The
Extra-Trees classifier-based model outperforms existing deep
learning approaches on benchmark datasets while offering
greater transparency in prediction rationale.

Clinical and translational context

Clinical success in the peptide therapies has been transfor-
mative across multiple areas. For example, Tirzepatide was
approved by the FDA for type 2 diabetes,"*® and Zepbound for
obesity."®” Various peptide-based therapies, such as Survo-
dutide (Phase 3) for obesity’*® and Glepaglutide (registra-
tion phase) for short bowel syndrome,'* have been under
clinical trial. Besides, radiolabeled peptides such as Pluvicto,
approved in 2022 for metastatic castration resistant prostate
cancer therapy.'®® Recent clinical successes on the oral for-
mulation of Semaglutide using the absorption enhancer
SNAC displayed a practical oral medicine, expanding patient
access and adherence while preserving pharmacodynamic
benefit.’®* Constrained peptides and stapled designs that
enhance cell permeability and helicity are subjected to oncol-
ogy trials, as demonstrated by ALRN-6924. This stabilized
a-helical peptide targets the p53 regulatory axis and has
shown tolerability and pharmacodynamic activity in early-
phase studies.'®?

Peptide delivery is now clinically validated for selected
molecules using permeation enhancers and promoters. At the
same time, other formulations include the use of nanoparticles
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and conjugate strategies to address the target specificity, and
intracellular administration has been tested in clinical
trials.’®® The growing use of non-canonical amino acids and
peptidomimetics augments the stability and membrane per-
meability of the peptide-based therapeutics. However, these
modifications pose a significant challenge since they could
alter the metabolic pathways and safety profile.'®* The devel-
opment of translation has seen significant advances with
AL'®® The generative structure prediction and design with
potentially peptide candidate selection and prediction
towards the physicochemical properties have accelerated the
peptides-based drug discovery pipeline.’®®'®” Nevertheless,
translating the peptide design from computational platform
to preclinical and FDA approval requires a coordinated time-
line and clinical strategy that, upon aligning for the well-
suited study, could pave the way towards more compelling
solutions for drug discovery.

View Article Online

Highlight

Bridging computational predictions
and therapeutic efficacy: critical gaps
and emerging solutions

Al-driven peptide design has yielded notable outcomes,
including predicted binding affinities in the nanomolar range
and remarkable structural accuracy. Numerous computational
tools spanning deep learning architectures, generative
models, and therapeutic screening platforms have been devel-
oped in recent years to address distinct phases of peptide drug
discovery (Table 1). However, despite this architectural diver-
sity and experimental successes, a fundamental disconnect
persists between these in silico predictions and therapeutic
efficacy in clinical testing.'®® We discuss some of the critical
parameters that serve as crucial barriers and emerging solu-
tions to bridge the gap between computational and clinical
perspectives.

Table 1 Comprehensive overview of Al-based tools for peptide-based drug discovery

Tool/model Architecture/type Primary application

PepCNN Convolutional neural network Peptide-binding residue prediction
CAMP Multi-channel CNN Multi-level peptide-protein interaction prediction
Cross-TCR-interpreter Transformer TCR-pMHC interaction prediction
ABTrans Transformer Peptide-antibody interaction

PepNN Graph attention network Sequence & structure-based PPI prediction
TPepPro Transformer Peptide-protein interaction prediction
TP-LMMSG Hierarchical Multi-scale residual network + PLM Therapeutic peptide prediction (AMP/AVP/ACP)
PepBCL BERT-based Peptide-binding residue prediction
PeptideBERT BERT-based Peptide property prediction

VAE-MH VAE + Metropolis-Hastings Peptide extension design

PepVAE Semi-supervised VAE Antimicrobial peptide generation
HydrAMP Conditional VAE Antimicrobial peptide design
PandoraGAN GAN (LeakGAN-based) Antiviral peptide generation

AMPGAN v2 Bidirectional conditional GAN Antimicrobial peptide design

HelixGAN GAN for structural design De novo alpha-helix structural design
RFdiffusion Diffusion model Protein/peptide backbone generation
RFpeptides Diffusion model for cyclic peptides Cyclic peptide design

PepGLAD Geometric latent diffusion All-atom peptide generation
ProteinMPNN Message-passing neural network Sequence design from fixed backbones
DiffPepBuilder SE(3)-equivariant diffusion De novo peptide binder design

HYDRA Target-aware diffusion Target-aware peptide generation
PepTune Masked diffusion + MCTS guidance Multi-objective peptide optimization
AMPGen Autoregressive diffusion + XGBoost + LSTM Antimicrobial peptide generation
CPL-Diff Mask-controlled diffusion Length-tunable peptide generation
MMCD Multimodal contrastive diffusion Multimodal peptide generation
ProtFlow Flow matching on compressed PLM embeddings Fast peptide/antibody generation
HelixFlow SE(3)-equivariant flow matching Full-atom helical peptide design
NCFlow Flow matching with non-canonical residues Non-canonical amino acid incorporation
BindCraft AlphaFold2-based hallucination One-shot peptide binder design
PepMLM Masked language model (fine-tuned ESM-2) Target-conditioned peptide generation
AMP-Designer Large language model Rapid AMP design

LigandMPNN Message-passing neural network (with ligands) Sequence design with ligand context
CYC_BUILDER Monte Carlo tree search + RL Target-specific cyclic peptide design
PepINVENT Sequence generator for non-canonical AAs Non-natural amino acid exploration
AlphaFold3 Structure prediction (modified residues) Complex modeling with modified residues
Chroma Programmable generative model Constrained protein/peptide generation
AMP-Diffusion Latent diffusion model + PLM Broad-spectrum AMP generation
ToxGIN Graph isomorphism Network Peptide toxicity prediction

tAMPer Multimodal GNN + RNN (ESM-2 + ColabFold) Structure-aware toxicity prediction
UnifyImmun Transformer + Cross-attention Immunogenicity prediction (HLA/TCR)
MahLooL Bidirectional RNN Peptide solubility prediction

StaPep Structure prediction + Feature extraction Stapled peptide structure prediction
Peptipedia v2.0 Database + ML models Comprehensive peptide screening
Top-ML Classifier Anticancer peptide classification

This journal is © The Royal Society of Chemistry 2025
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The metrics-reality gap

Current Al-based models demonstrate considerable efficiency
in predicting the binding affinities, structural stabilities, and
AMP (toxic vs nontoxic) binary classification properties. How-
ever, the therapeutic efficacy is multifactorial, determined by
various biological processes that extend far beyond simple
parameters and features.'® While AI/ML models achieve an
AUROC value exceeding 0.95 in determining the AMPs, they
may provide limited transferability in in vivo efficacy against
distinct bacterial strains under varying physiological condi-
tions, such as pH and ionic strength.'’® This disparity high-
lights the importance of bridging computational model
development with experimental outcomes.

Off-target effects and selectivity

While computational predictions show success in estimating
affinity for the designated targets, they also account for binding
to off-targets. A critical gap that needs to be considered, which
could lead to adverse effects."”* In therapeutic peptide
development, selectivity is relatively important; however, most
computational screening pipelines prioritize binding over
adequately assessing specificity.'”> Thus, complex models still
struggle to distinguish between the highly selective binders and
off-targets that would lead to toxicity in clinical testing.

Metabolic stability and pharmacokinetics

The half-life of peptides in physiological conditions often
depends on a complex network of degradation pathways.'”
The current Al-based models solely rely on the predominance of
in vivo assay data collected under controlled pH and other
factors, with limited resemblance to the dynamic enzymatic
environment. Recent studies have integrated the enzymatic
cleavage site prediction and transfer learning approach to
augment model performance,'”* but these approaches remain
constrained by the shortage of pharmacokinetic data. Thus, a
persistent gap still prevails between the predicted structural
stability and the observed serum half-life, which continues to
hinder the translation of computationally designed peptides
into viable clinical candidates.

Immunogenicity and immune system interactions

The immunogenic response poses one of the most significant
yet least predictable challenges in peptide-based drug
development.'”® Although deep learning-based models for pre-
dicting T-cell epitopes and MHC binding have made substan-
tial progress,'’® they fail to capture the full complexity of
adaptive immune responses. For instance, various factors, such
as peptide aggregation propensity, PTSMs, and patient-specific
HLA, influence immunogenicity that current models cannot
fully capture.'’” While discrepancies regarding progress
towards the immune response or failed peptides are minimally
reported. This prompts the model to focus solely on predictions
that are overly optimistic and have a limited capacity to identify
novel designs.
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Physiological and microenvironmental factors

Peptide activity is highly dependent on various factors, includ-
ing pH, ionic strength, lipid composition, and the presence of
serum proteins.'””® AMPs that demonstrate potent activity
against specific bacterial strains in standardized laboratories
may lose efficacy in distinct microenvironments or when
exposed to competitive host defense peptides.'”® Similarly,
anticancer peptides optimized for binding to target proteins
often exhibit reduced activity when competing with serum
proteins or navigating the extracellular compartments.'®
These failures of the designed peptides often emerge from
the limited training datasets. The scarcity of the training
datasets spanning diverse microenvironments limits the mod-
el’s generalizability and predictive power.

ADMET prediction limitations

Machine learning and Al-based studies addressing ADMET
predictions have focused on critical gaps through reinforce-
ment learning frameworks that jointly predict various end-
points, such as membrane permeability and stability."®*
Despite these advances in the AI/ML framework, the current
models still remain constrained by biased training datasets and
poor generalization to novel peptides. Critical properties such
as bioavailability and drug-drug interactions, as well as the
dose-response relationship, still remain inadequately modeled,
which hinders the accurate prediction of clinical translatability
and optimal dose regimen.'®> ADMET prediction will represent
a significant opportunity until these critical gaps are addressed
through experimental data collection and an improved model-
ing framework in computational peptide design.

Data quality and bias limitations

The quality of the training dataset represents a critical yet
underappreciated limitation in the AI design.'®® Currently,
most datasets in repositories are evaluated under narrow
experimental conditions, such as specific strains, pH levels,
ionic strengths, and defined cell lines. Models trained on those
datasets achieve good performance but fail to yield better
results on different experimental models or physiological con-
ditions. Furthermore, the reported data from articles are biased
towards positive results, which often overshadow the negative
results and inactive compounds.'®*7'%°

Practical barriers to accessibility and equity

With the current developments in Al-based tools, another
important factor to be monitored is the use of infrastructure
for training computational models. This might be a barrier
to upcoming scientific discoveries, as the size of the datasets
is increasing exponentially."®” Training advanced models
demands high-performance computing resources and specia-
lized software environments, thereby forming a hurdle to
model development. The disparity in resources has also been
observed in the research ecosystems, where the expert Al
models remain concentrated in a small, well-resourced group.
Such barriers may hinder innovations in peptide therapeutics
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by limiting participation from research groups with limited
resources in developing countries.'®® Additionally, cloud-based
platforms offer an alternative to this barrier, but they still incur
costs that accumulate exponentially for intensive calculations.
Furthermore, data privacy concerns persist when working
with proprietary compounds, and the long-term use of these
platforms remains uncertain.'®’

Risks associated with generative Al in peptide design

Current advances in generative deep-learning architectures for
peptide design enable rapid development of novel peptides.
However, these models tend to introduce a set of restraints that
limit the translation from computational design to clinically
effective therapeutics. For instance, one of the key factors is the
“hallucination” where LLM models generate peptide sequences
that are biophysically unstable and synthetically infeasible."*°
Moreover, the generative AI models frequently struggle to
represent intrinsically disordered peptides (IDPs) or sequences
that adopt ensemble states. This occurs due to training dataset
bias, which heavily relies on rigid structures, thereby failing to
capture the dynamic flexibility required for many biological
interactions."" Most importantly, the development of peptides
using generative Al, when misused, poses a significant risk to
biosecurity and raises concerns about dual use. These could
lead to the development of peptides with biologically harmful
properties. A recent study demonstrated that AI can develop
peptides that bind to the toxic substance while diverging
sufficiently in their primary sequence to evade existing screen-
ing protocols.'®* This vulnerability poses a significant oversight
in current biosafety frameworks and needs improved govern-
ance strategies.

Emerging solutions to bridge the gap
between computational and
experimental studies

Bridging the gap between computational and experimental
outcomes requires a paradigm shift in the AI model develop-
ment, training, and validation. With the current development
of optimizations, multiple-objective training, and physics-
based machine learning models ensure mechanical soundness.
Further, incorporating feedback and continuous adaptation
approaches for computational validation would advance Al-
driven peptide design. Here, we report some recent advances
in Al that could aid in bridging the gap between computational
and experimental studies.

Agentic Al: adaptive multi-agent frameworks

A new generation of Al agents has emerged that differs from the
conventional predictive models. Rather than operating as static
pattern recognizers trained on a fixed dataset, agentic Al
systems dynamically incorporate new experimental data and
adapt to unexpected outcomes and reasons across diverse
knowledge domains without requiring complete retraining.'®
These systems employ multi-agent architectures, where Al
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components cooperate with distinct expertise to collaborate
autonomously and work together as a cohesive system.'**

The ProtAgents framework demonstrates this approach by
deploying multiple large language-based model agents, including
a knowledge retrieval specialist, a structural analysis module,
and a physics simulation engine that communicates through
a structured protocol.'®> When designing peptides, these
agents collaboratively integrate literature knowledge, predict
structures, simulate binding interactions, and evaluate the
outcomes. Critically, these agents can incorporate experimental
results in real-time, adjusting their design strategy without
retraining from scratch.

The Sparks system has further extended these concepts by
implementing paired generation and reflection agents that auto-
nomously brainstorm hypotheses, design computational experi-
ments, execute simulations, and iteratively refine designs based
on the outcomes.™® Sparks has successfully identified unknown
structure-property relationships in the protein mechanism, thus
suggesting that these agentic systems can generate significant
insights rather than merely interpolating existing knowledge.
Besides the ability of the agentic system to reason about trade-
off balancing conflicts, such as binding affinity versus toxicity
or stability versus permeability, this shows a significant advance
over the optimization approach.*®”

Chain-of-thought reasoning models

Conventional deep learning networks operate as black boxes,
making predictions without providing any justification for their
decisions."”® The chain of thought reasoning models decom-
pose complex design problems into logical steps, making their
decision-making process interpretable.'®® This provides ade-
quate information when the prediction fails experimentally,
which aids the researchers in tracing back the reasoning chain
to identify the missing considerations.

The PepThink-R1 model demonstrates this approach for
cyclic peptide optimization by combining chain-of-thought
reasoning with supervised fine-tuning and reinforcement learn-
ing. PepThink-R1 improved peptide sequences and explained the
reasoning behind the modifications that enhance stability.>*
This enables the researchers to critically evaluate the Al sugges-
tion and make informed decisions about the predicted candidate
peptides before the experimental validation.

The ether0 model, which was trained on 24 billion para-
meters specifically for chemistry using reinforcement learning
on more than 600 000 experimentally grounded problems span-
ning synthesizability, blood-brain barrier permeability, and
metabolic activity. This model was designed to reason through
multistep chemical problems using deterministic verification
of correct vs incorrect solutions. The model’s performance
excels in specialized chemistry models and aligns with human
experts in molecular design.?*

The PRefLexOR framework demonstrates the preference-
based recursive language models that can train Al systems to
reason through multi-step scientific problems with explicit
reflection and corrections.?®> PRefLexOR introduces thinking
tokens that mark reasoning phases, enabling models to
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evaluate the reasoning strategy and regenerate improved solu-
tions through refined cycles. Hence, the training methodology
in these reasoning models represents a paradigm shift. Rather
than relying on the pretraining datasets, these systems learn
to reason through the problem using reinforcement learning.
Thus, for peptide drug design specifically, chain-of-thought
reasoning provides critical advantages in overcoming the
barriers of data scarcity and the knowledge gap.

Physics-based data-driven models

The recent advancement in hybrid frameworks that combine
the mechanistic insight of MD simulations with the scalability
of ML. The physics-based force field developed in the MD
simulations accurately captures the properties of proteins and
peptides, including atomic interactions and thermodynamic
behavior, which are often inaccessible to data-driven methods
constrained by limited datasets. In turn, the ML models aid in
extracting the complex interactions and patterns from the MD
simulation data.>*>?°* Recently, physics-informed training,
where the MD-generated conformational ensembles and trajec-
tories serve as training inputs, enables the complete pattern to
be derived from simulation-derived data.’®> Active learning
workflows further enhance efficiency by allowing ML models
to validate top predictions and refine model accuracy.”® This
iterative, closed-loop integration not only preserves physical
rigor but also accelerates discovery, offering a balanced and
pragmatic path toward more predictive and experimentally
relevant peptide design.

Ethical considerations in Al-driven peptide drug design

The development of AI in drug discovery raises a key challenge
in terms of transparency, accountability, and bias.”*” Due to the
limited interpretability of the model and the complexity of the
training data, which tends to yield specific positive results, this
raises concerns about the therapeutic outcomes. On the other
hand, the misuse of Al-based technology for harmful purposes
underscores the need for the development of stringent govern-
ment policies and robust ethical oversigh.>°® In the absence of
a harmonized regulatory framework, the need to develop trans-
parency and sustainability with ethically responsible Al is a key
factor to consider in the development of peptide-based rugs,
with future directions toward clinical translation.

Challenges, opportunities, and future
perspectives

Peptide-based therapeutics stand at the forefront, where
Al-driven innovations accelerate drug discovery and development.
Yet, the Al-based models still face significant hurdles in design
and development. Data quality is a vital factor that provides the
foundation for the AI models. Databases such as APd3 and
CAMPR3 are curated for specific species, structural classes
(alpha-helix, beta-sheet), and assay conditions. However, these
databases are limited to non-canonical amino acids, stapled
peptides, and p-amino acid modifications that have been
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proven to exhibit clinical importance. Model interpretability
presents a significant challenge, as the need to explain AI
models in drug discovery studies becomes essential for both
scientific and regulatory acceptance.

The critical challenge in the Al-based peptide design is the
limited use of empirical knowledge from chemistry and
physics-based principles. Most models currently developed rely
on statistical associations with the training dataset rather than
thermodynamic and physicochemical properties that deter-
mine key properties, such as folding and proteolytic stability.
Various studies have highlighted that peptide efficacy is
strongly dependent on the physicochemical landscape, and
that purely data-driven models frequently fail to capture in
determining peptide efficacy.?® However, emerging hybrid
frameworks are bridging this gap by integrating molecular
simulation data and quantum chemistry-derived potentials.
These physics-informed strategies have demonstrated robust-
ness for complex targets, including macrocyclic peptides, by
effectively filtering ‘hallucinations’ and unrealistic conforma-
tional states.”'®*'" Thus, embedding first-principles physics
into generative pipelines represents a criterion for the future
of reliable peptide-based therapeutics.

The integration of advanced computational approaches into
peptide-based drug discovery offers immense opportunities.
The use of deep learning models shows potential to enhance
predictive accuracy in peptide stability, pharmacokinetics, and
interactions, thereby facilitating rational design to improve
efficacy. Integrating multiple AI approaches through ensemble
methods and consensus scoring represents a promising direc-
tion for future research. From a scientific viewpoint, peptide
applications are rapidly expanding beyond therapeutics to
include biomaterials, diagnostics, and synthetic biology. How-
ever, this therapeutic expansion requires addressing the cur-
rent challenges and the future directions. We can emphasize
that the integration of algorithmic innovations and experi-
mental validation in these domains accelerates the efficiency
of the drug discovery pipeline, bridging the gap towards clinical
and industrial implementations.

Author contributions

S. E. drafted the manuscript; N. V. D. reviewed and edited the
manuscript and provided guidance and supervision throughout
the work. All authors have approved the manuscript.

Conflicts of interest

There are no conflicts to declare.

Data availability

No primary research results, software, or code have been
included, and no new data were generated or analyzed as part
of this review.

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cc04998a

Open Access Article. Published on 05 December 2025. Downloaded on 1/13/2026 4:18:59 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

ChemComm

Acknowledgements

We acknowledge support from the NIH grant 1R35GM134864
(to N. V. D.)

References

1

2

3
4

5

o)}

9

10
11

12

13

14

15

16

17

18

19

20
21

22

23

24

25

L. Wang, N. Wang, W. Zhang, X. Cheng, Z. Yan, G. Shao, X. Wang,
R. Wang and C. Fu, Signal Transduction Targeted Ther., 2022, 7, 48.
W. Xiao, W. Jiang, Z. Chen, Y. Huang, J. Mao, W. Zheng, Y. Hu and
J. Shi, Signal Transduction Targeted Ther., 2025, 10, 74.

D. A. Scott and C. H. Best, Ind. Eng. Chem., 1925, 17, 238-240.

K. Fosgerau and T. Hoffmann, Drug Discovery Today, 2015, 20,
122-128.

O. Al Musaimi, J. Pept. Sci., 2024, 30, €3627.

M. Shabsigh and L. A. Solomon, Chem. Biomed. Imaging, 2024, 2,
615-630.

S. Gupta, N. Azadvari and P. Hosseinzadeh, BioDesign Res., 2022,
2022, 9783197.

L. R. Hoegen Dijkhof, T. K. E. Ronkko, H. C. von Vegesack,
J. Lenzing and A. S. Hauser, Briefings Bioinf., 2025, 26, bbaf186.
F. Lu, X. Zhang, Y. Geng, H. Wang and ]. Tang, Chem. Commun.,
2024, 60, 7942-7945.

C. Wynne and R. B. P. Elmes, Sens. Diagn., 2024, 3, 987-1013.

L. Lombardi, V. D. Genio, F. Albericio and D. R. Williams, Chem.
Rev., 2025, 125, 7099-7166.

Y. Du, L. Li, Y. Zheng, J. Liu, J. Gong, Z. Qiu, Y. Li, J. Qiao and
Y.-X. Huo, Appl. Environ. Microbiol., 2022, 88, e01617-22.

Q. Zhu, Z. Chen, P. K. Paul, Y. Lu, W. Wu and J. Qi, Acta Pharm. Sin.
B, 2021, 11, 2416-2448.

C. Lamers, Future Drug Discovery, 2022, 4, FDD75.

J. Southworth, K. Migliaccio, J. Glover, J. Glover, D. Reed,
C. McCarty, J. Brendemuhl and A. Thomas, Comput. Educ.: Artif.
Intell., 2023, 4, 100127.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O.
Ronneberger, K. Tunyasuvunakool, R. Bates, A. Zidek, A.
Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J. Ballard,
A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain, J. Adler, T. Back,
S. Petersen, D. Reiman, E. Clancy, M. Zielinski, M. Steinegger,
M. Pacholska, T. Berghammer, S. Bodenstein, D. Silver, O. Vinyals,
A. W. Senior, K. Kavukcuoglu, P. Kohli and D. Hassabis, Nature,
2021, 596, 583-589.

Y. Xu, X. Liu, X. Cao, C. Huang, E. Liu, S. Qian, X. Liu, Y. Wu,
F. Dong, C.-W. Qiu, J. Qiu, K. Hua, W. Su, J. Wu, H. Xu, Y. Han,
C. Fu, Z. Yin, M. Liu, R. Roepman, S. Dietmann, M. Virta,
F. Kengara, Z. Zhang, L. Zhang, T. Zhao, J. Dai, J. Yang, L. Lan,
M. Luo, Z. Liu, T. An, B. Zhang, X. He, S. Cong, X. Liu, W. Zhang,
J. P. Lewis, ]J. M. Tiedje, Q. Wang, Z. An, F. Wang, L. Zhang,
T. Huang, C. Lu, Z. Cai, F. Wang and J. Zhang, Innovation, 2021,
2, 100179.

M. Elahi, S. O. Afolaranmi, J. L. Martinez Lastra and J. A. Perez
Garcia, Discov. Artif. Intell., 2023, 3, 43.

Z. Lin, H. Akin, R. Rao, B. Hie, Z. Zhu, W. Lu, N. Smetanin,
R. Verkuil, O. Kabeli, Y. Shmueli, A. dos Santos Costa, M. Fazel-
Zarandi, T. Sercu, S. Candido and A. Rives, Science, 2023, 379,
1123-1130.

1. H. Sarker, SN Comput. Sci., 2021, 2, 420.

1. ]. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville and Y. Bengio, arXiv, 2014, preprint,
arXiv:1406.2661, DOI: 10.48550/arXiv.1406.2661.

L. Yang, Z. Zhang, Y. Song, S. Hong, R. Xu, Y. Zhao, W. Zhang,
B. Cui and M.-H. Yang, arXiv, 2024, preprint, arXiv:2209.00796,
DOI: 10.48550/arXiv.2209.00796.

D. P. Kingma and M. Welling, FNT in Machine Learning, 2019, 12,
307-392.

M. Goles, A. Daza, G. Cabas-Mora, L. Sarmiento-Vardn, ]J.
Sepulveda-Yafez, H. Anvari-Kazemabad, M. D. Davari, R. Uribe-
Paredes, A. Olivera-Nappa, M. A. Navarrete and D. Medina-Ortiz,
Briefings Bioinf., 2024, 25, bbae275.

S. Singh, H. Gupta, P. Sharma and S. Sahi, Artif. Intell. Chem., 2024,
2, 100039.

This journal is © The Royal Society of Chemistry 2025

26

27

28

29

30

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

View Article Online

Highlight

S. A. Rettie, K. V. Campbell, A. K. Bera, A. Kang, S. Kozlov,
Y. F. Bueso, J. De La Cruz, M. Ahlrichs, S. Cheng, S. R. Gerben,
M. Lamb, A. Murray, V. Adebomi, G. Zhou, F. DiMaio,
S. Ovchinnikov and G. Bhardwaj, Nat. Commun., 2025, 16, 4730.
C.-H. Wu, L-J. Liu, R-M. Lu and H.-C. Wu, J. Biomed. Sci., 2016,
23, 8.

A. T. Tucker, S. P. Leonard, C. D. DuBois, G. A. Knauf, A. L.
Cunningham, C. O. Wilke, M. S. Trent and B. W. Davies, Cell,
2018, 172, 618-628.

W. Jaroszewicz, J. Morcinek-Orlowska, K. Pierzynowska, L. Gaffke
and G. Wegrzyn, FEMS Microbiol. Rev., 2022, 46, fuab052.

A. B. Sloth, B. Bakhshinejad, M. Jensen, C. Stavnsbjerg,
M. B. Liisberg, M. Rossing and A. Kjaer, Viruses, 2022, 14, 2402.
A. Mondal, L. Chang and A. Perez, QRB Discov., 2022, 3, el7.

M. Ciemny, M. Kurcinski, K. Kamel, A. Kolinski, N. Alam,
O. Schueler-Furman and S. Kmiecik, Drug Discovery Today, 2018,
23, 1530-1537.

M. Kurcinski, M. Pawel Ciemny, T. Oleniecki, A. Kuriata, A. E.
Badaczewska-Dawid, A. Kolinski and S. Kmiecik, Bioinformatics,
2019, 35, 4170-4172.

P. Zhou, B. Jin, H. Li and S.-Y. Huang, Nucleic Acids Res., 2018, 46,
W443-W450.

A. Khramushin, Z. Ben-Aharon, T. Tsaban, J. K. Varga, O. Avraham
and O. Schueler-Furman, Proc. Natl. Acad. Sci. U. S. A., 2022,
119, €2121153119.

A. E. Badaczewska-Dawid, S. Kmiecik and M. Kolinski, Briefings
Bioinf., 2021, 22, bbaa109.

C. Agoni, R. Fernandez-Diaz, P. B. Timmons, A. Adelfio, H. Gomez
and D. C. Shields, Molecular Modelling in Bioactive Peptide
Discovery and Characterisation, Biomolecules, 2025, 15(4), 524,
DOLI: 10.3390/biom1504052, (accessed August 21, 2025).

A. Lamiable, P. Thévenet, J. Rey, M. Vavrusa, P. Derreumaux and
P. Tufféry, Nucleic Acids Res., 2016, 44, W449-W454.

M. Vincenzi, F. A. Mercurio and M. Leone, Int. J. Mol. Sci., 2024,
25, 1798.

B. Xue, R. Li, Z. Cheng and X. Zhou, ACS Cent. Sci., 2024, 10,
2111-2118.

K. N. Amarasinghe, L. De Maria, C. Tyrchan, L. A. Eriksson,
J. Sadowski and D. Petrovi¢, J. Chem. Inf. Model., 2022, 62,
2999-3007.

J. Verma, V. M. Khedkar and E. C. Coutinho, Curr. Top. Med. Chem.,
2010, 10, 95-115.

A. B. Nongonierma and R. J. FitzGerald, RSC Adv., 2016, 6,
75400-75413.

J. C. Nielsen, C. Hjorringgaard, M. M. Nygaard, A. Wester, L. Elster,
T. Porsgaard, R. B. Mikkelsen, S. Rasmussen, A. N. Madsen,
M. Schlein, N. Vrang, K. Rigbolt and L. S. Dalbooge, J. Med. Chem.,
2024, 67, 11814-11826.

M. De Vivo, M. Masetti, G. Bottegoni and A. Cavalli, J. Med. Chem.,
2016, 59, 4035-4061.

H. Geng, F. Chen, J. Ye and F. Jiang, Comput. Struct. Biotechnol. J.,
2019, 17, 1162-1170.

E. A. Proctor and N. V. Dokholyan, Curr. Opin. Struct. Biol., 2016, 37,
9-13.

E. Srinivasan and R. Rajasekaran, J. Neurol. Sci., 2019, 405, 116425.
A. Tuan Do, T. Hai Nguyen, M. Quan Pham, H. Truong Nguyen,
N. Phuoc Long, V. Van Vu, H. T. Thu Phung and S. Tung Ngo, RSC
Adv., 2025, 15, 12866-12875.

F. Moraca, I. Vespoli, D. Mastroianni, V. Piscopo, R. Gaglione,
A. Arciello, M. D. Nisco, S. Pacifico, B. Catalanotti and S. Pedatella,
RSC Med. Chem., 2024, 15, 2286-2299.

G. Chandrasekhar, E. Srinivasan, S. Nandhini, G. Pravallika,
G. Sanjay and R. Rajasekaran, J. Biomol. Struct. Dyn., 2023, 0, 1-12.
O. Dagliyan, E. A. Proctor, K. M. D’Auria, F. Ding and
N. V. Dokholyan, Structure, 2011, 19, 1837-1845.

M. M. Gomari, S. S. Arab, S. Balalaie, S. Ramezanpour, A. Hosseini,
N. V. Dokholyan and P. Tarighi, Proteins, 2024, 92, 76-95.

J. Hao, A. W. R. Serohijos, G. Newton, G. Tassone, Z. Wang,
D. C. Sgroi, N. V. Dokholyan and J. P. Basilion, PLoS Comput. Biol.,
2008, 4, €1000138.

F. Ding and N. V. Dokholyan, PLoS Comput. Biol., 2006, 2, e85.

J. Clayton, L. Baweja and J. Wereszczynski, Methods Mol. Biol.,
2022, 2405, 151-167.

W. Wang, Phys. Chem. Chem. Phys., 2021, 23, 777-784.

Chem. Commun.


https://doi.org/10.48550/arXiv.1406.2661
https://doi.org/10.48550/arXiv.2209.00796
https://doi.org/10.3390/biom1504052
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cc04998a

Open Access Article. Published on 05 December 2025. Downloaded on 1/13/2026 4:18:59 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Highlight

58
59

60
61

62

63

64

65

66

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

R. Appadurai, J. Nagesh and A. Srivastava, Nat. Commun., 2021, 12, 958.
V. Salmaso, M. Sturlese, A. Cuzzolin and S. Moro, Structure, 2017,
25, 655-662.

J. Ouyang, Y. Sheng and W. Wang, Cells, 2022, 11, 4016.

C. Agoni, R. Fernandez-Diaz, P. B. Timmons, A. Adelfio, H. Gomez
and D. C. Shields, Biomolecules, 2025, 15, 524.

B. Senthilkumar, D. Meshach Paul, E. Srinivasan and
R. Rajasekaran, J. Cluster Sci., 2017, 28, 2549-2563.

P. C. Sekar, D. M. Paul, E. Srinivasan and R. Rajasekaran, J. Mol.
Model., 2021, 27(1), 10.

P. C. Sekar, E. Srinivasan, G. Chandrasekhar, D. M. Paul, G. Sanjay,
S. Surya, N. S. A. R. Kumar and R. Rajasekaran, J. Mol. Model., 2022,
28, 128.

F. Ding, D. Tsao, H. Nie and N. V. Dokholyan, Structure, 2008, 16,
1010-1018.

E. A. Proctor and N. V. Dokholyan, Curr. Opin. Struct. Biol., 2016, 37,
9-13.

S. Peng, F. Ding, B. Urbanc, S. V. Buldyrev, L. Cruz, H. E. Stanley
and N. V. Dokholyan, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys., 2004, 69, 041908,

S. Barton, R. Jacak, S. D. Khare, F. Ding and N. V. Dokholyan,
J. Biol. Chem., 2007, 282, 25487-25492.

F. Ding, J. M. Borreguero, S. V. Buldyrey, H. E. Stanley and
N. V. Dokholyan, Proteins, 2003, 53, 220-228.

S. D. Khare and N. V. Dokholyan, Curr. Protein Pept. Sci., 2007, 8,
573-579.

D. Tsao and N. V. Dokholyan, Phys. Chem. Chem. Phys., 2010, 12,
3491-3500.

G. Chandrasekhar and R. Rajasekaran, Int. J. Pept. Res. Ther., 2021,
27, 1555-1575.

P. C. Sekar and R. Rajasekaran, Int. J. Pept. Res. Ther., 2021, 27,
1043-1056.

J. Hao, A. W. R. Serohijos, G. Newton, G. Tassone, Z. Wang, D. C.
Sgroi, N. V. Dokholyan and J. P. Basilion, PLoS Comput. Biol., 2008,
4, €1000138.

M. M. Gomari, S. S. Arab, S. Balalaie, S. Ramezanpour, A. Hosseini,
N. V. Dokholyan and P. Tarighi, Proteins, 2024, 92, 76-95.

C. Coppa, A. Bazzoli, M. Barkhordari and A. Contini, J. Chem. Inf.
Model., 2023, 63, 3030-3042.

J. Miao, A. P. Ghosh, M. N. Ho, C. Li, X. Huang, B. L. Pentelute,
J. D. Baleja and Y.-S. Lin, J. Phys. Chem. B, 2024, 128, 5281-5292.
M. J. Amundarain, A. Vietri, V. I. Dodero and M. D. Costabel,
J. Phys. Chem. B, 2023, 127, 2407-2417.

P. Robustelli, S. Piana and D. E. Shaw, Proc. Natl. Acad. Sci. U. S. A.,
2018, 115, E4758-E4766.

J. Huang, S. Rauscher, G. Nawrocki, T. Ran, M. Feig, B. L. de Groot,
H. Grubmiiller and A. D. MacKerell, Nat. Methods, 2017, 14, 71-73.
T. Hou, ]J. Wang, Y. Li and W. Wang, J. Chem. Inf. Model., 2011, 51,
69-82.

G. Rossino, E. Marchese, G. Galli, F. Verde, M. Finizio, M. Serra,
P. Linciano and S. Collina, Molecules, 2023, 28, 7165.

J. Abramson, J. Adler, J. Dunger, R. Evans, T. Green, A. Pritzel,
O. Ronneberger, L. Willmore, A. J. Ballard, J. Bambrick, S. W.
Bodenstein, D. A. Evans, C.-C. Hung, M. O’Neill, D. Reiman,
K. Tunyasuvunakool, Z. Wu, A. iemgulyté, E. Arvaniti, C. Beattie,
O. Bertolli, A. Bridgland, A. Cherepanov, M. Congreve, A. I. Cowen-
Rivers, A. Cowie, M. Figurnov, F. B. Fuchs, H. Gladman, R. Jain,
Y. A. Khan, C. M. R. Low, K. Perlin, A. Potapenko, P. Savy, S. Singh,
A. Stecula, A. Thillaisundaram, C. Tong, S. Yakneen, E. D. Zhong,
M. Zielinski, A. Zidek, V. Bapst, P. Kohli, M. Jaderberg, D. Hassabis
and ]J. M. Jumper, Nature, 2024, 630, 493-500.

E. F. McDonald, T. Jones, L. Plate, J. Meiler and A. Gulsevin,
Structure, 2023, 31, 111-119.

M. Baek, F. DiMaio, I. Anishchenko, J. Dauparas, S. Ovchinnikov,
G. R. Lee, J. Wang, Q. Cong, L. N. Kinch, R. D. Schaeffer, C. Millan,
H. Park, C. Adams, C. R. Glassman, A. DeGiovanni, J. H. Pereira,
A. V. Rodrigues, A. A. van Dijk, A. C. Ebrecht, D. J. Opperman, T.
Sagmeister, C. Buhlheller, T. Pavkov-Keller, M. K. Rathinaswamy,
U. Dalwadi, C. K. Yip, J. E. Burke, K. C. Garcia, N. V. Grishin,
P. D. Adams, R. ]J. Read and D. Baker, Science, 2021, 373, 871-876.
M. Baek, R. McHugh, I. Anishchenko, H. Jiang, D. Baker and
F. DiMaio, Nat. Methods, 2024, 21, 117-121.

M. Mirdita, K. Schiitze, Y. Moriwaki, L. Heo, S. Ovchinnikov and
M. Steinegger, Nat. Methods, 2022, 19, 679-682.

Chem. Commun.

88
89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105
106

107

108

109

110

111

112

113

114

115

116

View Article Online

ChemComm

M. Mou, Z. Zhang, Z. Pan and F. Zhu, Research, 2025, 8, 0615.

A. Chandra, A. Sharma, I. Dehzangi, T. Tsunoda and A. Sattar, Sci.
Rep., 2023, 13, 20882.

Y. Lei, S. Li, Z. Liu, F. Wan, T. Tian, S. Li, D. Zhao and J. Zeng, Nat.
Commun., 2021, 12, 5465.

K. Koyama, K. Hashimoto, C. Nagao and K. Mizuguchi, Front.
Bioinform., 2023, 3, 1274599.

0. Abdin, S. Nim, H. Wen and P. M. Kim, Commun. Biol., 2022,
5, 503.

X. Jin, Z. Chen, D. Yu, Q. Jiang, Z. Chen, B. Yan, J. Qin, Y. Liu and
J. Wang, Bioinformatics, 2024, 41, btae708.

N. Pancino, C. Gallegati, F. Romagnoli,
M. Bianchini, Int. J. Mol. Sci., 2024, 25, 5870.
N. Chen, J. Yu, L. Zhe, F. Wang, X. Li and K.-C. Wong, Briefings
Bioinf., 2024, 25, bbae308.

K. Jha, S. Saha and H. Singh, Sci. Rep., 2022, 12, 8360.

K. Jha, S. Karmakar and S. Saha, Sci. Rep., 2023, 13, 5663.

M. Ansari and A. D. White, J. Chem. Inf. Model., 2023, 63,
2546-2553.

J. Mao, S. Guan, Y. Chen, A. Zeb, Q. Sun, R. Lu, J. Dong, J. Wang
and D. Cao, Comput. Struct. Biotechnol. J., 2023, 21, 463-471.

A. Papanikolaou, V. Sivtsov, E. Zereik, E. Ruggiero, C. Bonini and
F. Bonsignorio, bioRxiv, 2025, preprint, DOL 10.1101/2025.03.
18.643937.

R. Wang, K. Nakai and L. Wei, Methods Mol. Biol., 2025, 2941,
269-278.

C. Guntuboina, A. Das, P. Mollaei, S. Kim and A. Barati Farimani,
J. Phys. Chem. Lett., 2023, 14, 10427-10434.

J. C. Siwek, A. A. Omelchenko, P. Chhibbar, S. Arshad,
A. Rosengart, I. Nazarali, A. Patel, K. Nazarali, J. Rahimikollu,
J. S. Tilstra, M. J. Shlomchik, D. R. Koes, A. V. Joglekar and ]. Das,
Nat. Methods, 2025, 22, 1707-1719.

S. Chen, T. Lin, R. Basu, J. Ritchey, S. Wang, Y. Luo, X. Li, D. Pei,
L. B. Kara and X. Cheng, Nat. Commun., 2024, 15, 1611.

S. N. Dean and S. A. Walper, ACS Omega, 2020, 5, 20746-20754.
S. N. Dean, ]J. A. E. Alvarez, D. Zabetakis, S. A. Walper and
A. P. Malanoski, Front. Microbiol., 2021, 12, 725727.

P. Szymczak, M. Mozejko, T. Grzegorzek, R. Jurczak, M. Bauer,
D. Neubauer, K. Sikora, M. Michalski, J. Sroka, P. Setny, W. Kamysz
and E. Szczurek, Nat. Commun., 2023, 14, 1453.

S. Surana, P. Arora, D. Singh, D. Sahasrabuddhe and J. Valadi, SN
Comput. Sci., 2023, 4, 607.

C. M. Van Oort, J. B. Ferrell, J. M. Remington, S. Wshah and J. Li,
J. Chem. Inf. Model., 2021, 61, 2198-2207.

X. Xie, P. A. Valiente and P. M. Kim, Bioinformatics, 2023,
39, btad036.

J. L. Watson, D. Juergens, N. R. Bennett, B. L. Trippe, J. Yim,
H. E. Eisenach, W. Ahern, A. J. Borst, R. J. Ragotte, L. F. Milles,
B. I. M. Wicky, N. Hanikel, S. J. Pellock, A. Courbet, W. Sheffler,
J. Wang, P. Venkatesh, 1. Sappington, S. V. Torres, A. Lauko, V. De
Bortoli, E. Mathieu, S. Ovchinnikov, R. Barzilay, T. S. Jaakkola,
F. DiMaio, M. Baek and D. Baker, Nature, 2023, 620, 1089-1100.
S. Vazquez Torres, P. J. Y. Leung, P. Venkatesh, I. D. Lutz, F. Hink,
H.-H. Huynh, J. Becker, A. H.-W. Yeh, D. Juergens, N. R. Bennett,
A. N. Hoofnagle, E. Huang, M. J. MacCoss, M. Exposit, G. R. Lee,
A. K. Bera, A. Kang, J. De La Cruz, P. M. Levine, X. Li, M. Lamb,
S. R. Gerben, A. Murray, P. Heine, E. N. Korkmaz, ]J. Nivala,
L. Stewart, J. L. Watson, J. M. Rogers and D. Baker, Nature, 2024,
626, 435-442.

S. A. Rettie, D. Juergens, V. Adebomi, Y. F. Bueso, Q. Zhao, A. N.
Leveille, A. Liu, A. K. Bera, J. A. Wilms, A. Uffing, A. Kang,
E. Brackenbrough, M. Lamb, S. R. Gerben, A. Murray, P. M. Levine,
M. Schneider, V. Vasireddy, S. Ovchinnikov, O. H. Weiergriber,
D. Willbold, J. A. Kritzer, J. D. Mougous, D. Baker, F. DiMaio and
G. Bhardwaj, bioRxiv, 2024, preprint, DOIL: 10.1101/2024.11.18.622547.
X. Kong, Y. Jia, W. Huang and Y. Liu, arXiv, 2024, preprint,
arXiv:2402.13555, DOI: 10.48550/arXiv.2402.13555.

J. Dauparas, 1. Anishchenko, N. Bennett, H. Bai, R. J. Ragotte,
L. F. Milles, B. I. M. Wicky, A. Courbet, R. ]. de Haas, N. Bethel, P. J. Y.
Leung, T. F. Huddy, S. Pellock, D. Tischer, F. Chan, B. Koepnick,
H. Nguyen, A. Kang, B. Sankaran, A. K. Bera, N. P. King and D. Baker,
Science, 2022, 378, 49-56.

F. Wang, Y. Wang, L. Feng, C. Zhang and L. Lai, J. Chem. Inf.
Model., 2024, 64, 9135-9149.

P. Bongini and

This journal is © The Royal Society of Chemistry 2025


https://doi.org/10.1101/2025.03.&QJ;18.643937
https://doi.org/10.1101/2025.03.&QJ;18.643937
https://doi.org/10.1101/2024.11.&!QJ;18.622547
https://doi.org/10.48550/arXiv.2402.13555
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cc04998a

Open Access Article. Published on 05 December 2025. Downloaded on 1/13/2026 4:18:59 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

ChemComm

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

V. S. R, S. Choudhuri and B. Ghosh, J. Chem. Inf. Model., 2024, 64,
6912-6925.

S. Tang, Y. Zhang and P. Chatterjee, arXiv, 2025, arXiv:2412.
17780v4, , DOI: 10.48550/2412.17780v4.

S. Jin, Z. Zeng, X. Xiong, B. Huang, L. Tang, H. Wang, X. Ma,
X. Tang, G. Shao, X. Huang and F. Lin, Commun. Biol., 2025, 8, 839.
Z.Luo, A. Geng, L. Wei, Q. Zou, F. Cui and Z. Zhang, Adv. Sci., 2025,
12, 2412926.

Y. Wang, X. Liu, F. Huang, Z. Xiong and W. Zhang, arXiv, 2024,
preprint, arXiv:2312.15665, DOI: 10.48550/arXiv.2312.15665.

Z.Li, Z. Zeng, X. Lin, F. Fang, Y. Qu, Z. Xu, Z. Liu, X. Ning, T. Wei,
G. Liu, H. Tong and ]. He, arXiv, 2025, preprint, arXiv:2507.17731,
DOI: 10.48550/arXiv.2507.17731.

Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel and M. Le,
arXiv, 2023, preprint, arXiv:2210.02747, DOI: 10.48550/arXiv.2210.
02747.

Z. Kong, Y. Zhu, Y. Xu, H. Zhou, M. Yin, J. Wu, H. Xu, C.-Y. Hsieh,
T. Hou and J. Wu, arXiv, 2025, preprint, arXiv:2504.10983, DOLI:
10.48550/arXiv.2504.10983.

X. Xie, P. A. Valiente, J. Kim, J. S. Lee and P. M. Kim.

J. S. Lee and P. M. Kim, bioRxiv, 2025, preprint, DOI: 10.1101/
2025.07.31.667780.

M. Pacesa, L. Nickel, C. Schellhaas, J. Schmidt, E. Pyatova,
L. Kissling, P. Barendse, J. Choudhury, S. Kapoor, A. Alcaraz-
Serna, Y. Cho, K. H. Ghamary, L. Vinué, B. J. Yachnin, A. M.
Wollacott, S. Buckley, A. H. Westphal, S. Lindhoud, S. Georgeon,
C. A. Goverde, G. N. Hatzopoulos, P. Gonczy, Y. D. Muller,
G. Schwank, D. C. Swarts, A. ]J. Vecchio, B. L. Schneider,
S. Ovchinnikov and B. E. Correia, Nature, 2025, 646, 483-492.

M. Filius, T. Patsos, H. Minee, G. Turco, J. Liu, M. Gnatzy,
R. S. M. Rooth, A. C. H. Liu, R. D. T. Ta, I. H. A. Rijk, S. Ziani,
F. J. Boxman and S. J. Pomplun, bioRxiv, 2025, preprint, DOI:
10.1101/2025.07.23.666285.

T. Chen, M. Dumas, R. Watson, S. Vincoff, C. Peng, L. Zhao,
L. Hong, S. Pertsemlidis, M. Shaepers-Cheu, T. Z. Wang, D.
Srijay, C. Monticello, P. Vure, R. Pulugurta, K. Kholina, S. Goel,
M. P. DeLisa, R. Truant, H. C. Aguilar and P. Chatterjee, arXiv,
2024, preprint, arXiv:2310.03842v3, DOI: 10.48550/2310.03842v3.
S. Bhat, K. Palepu, L. Hong, J. Mao, T. Ye, R. Iyer, L. Zhao, T. Chen,
S. Vincoff, R. Watson, T. Z. Wang, D. Srijay, V. S. Kavirayuni,
K. Kholina, S. Goel, P. Vure, A. J. Deshpande, S. H. Soderling,
M. P. DeLisa and P. Chatterjee, Sci. Adv., 2025, 11, eadr8638.

J. Wang, J. Feng, Y. Kang, P. Pan, J. Ge, Y. Wang, M. Wang, Z. Wu,
X. Zhang, J. Yu, X. Zhang, T. Wang, L. Wen, G. Yan, Y. Deng, H. Shi,
C.-Y. Hsieh, Z. Jiang and T. Hou, Sci. Adv., 2025, 11, eads8932.

J. Dauparas, G. R. Lee, R. Pecoraro, L. An, I. Anishchenko,
C. Glasscock and D. Baker, Nat. Methods, 2025, 22, 717-723.

F. Wang, T. Zhang, J. Zhu, X. Zhang, C. Zhang and L. Lai,
Reinforcement Learning-Based Target-Specific De Novo Design of
Cyclic Peptide Binders, J. Med. Chem., 2025, 68(16), 17287-17302,
DOLI: 10.1021/acs.jmedchem.5c00789, (accessed August 22, 2025).
Q. Wang, X. Hu, Z. Wei, H. Lu and H. Liu, Reinforcement learning-
driven exploration of peptide space: accelerating generation of
drug-like peptides, Briefings Bioinf., 2024, 25(5), bbae444.

G. Geylan, J. P. Janet, A. Tibo, J. He, A. Patronov, M. Kabeshov,
W. Czechtizky, F. David, O. Engkvist and L. De Maria, Chem. Sci.,
2025, 16, 8682-8696.

C. Zhang, W. Wang, N. Zhu, Z. Cao, Q. Mao, C. Zhu, C. Zhang,
J. Guo and H. Duan, bioRxiv, 2025, preprint, DOI: 10.1101/
2025.05.24.655528.

J. B. Ingraham, M. Baranov, Z. Costello, K. W. Barber, W. Wang,
A. Ismail, V. Frappier, D. M. Lord, C. Ng-Thow-Hing, E. R. Van
Vlack, S. Tie, V. Xue, S. C. Cowles, A. Leung, J. V. Rodrigues,
C. L. Morales-Perez, A. M. Ayoub, R. Green, K. Puentes, F. Oplinger,
N. V. Panwar, F. Obermeyer, A. R. Root, A. L. Beam, F. J. Poelwijk
and G. Grigoryan, Illuminating protein space with a programmable
generative model, Nature, 2023, 623(7989), 1070-1078, DOI:
10.1038/s41586-023-06728-8, (accessed August 22, 2025).

N. Qayyum, H. Seo, N. Khan, A. Manan, R. Ramachandran,
M. Haseeb, E. Kim and S. Choi, Int. J. Biol. Macromol., 2025,
316, 144652.

L. Chang, A. Mondal, B. Singh, Y. Martinez-Noa and A. Perez, Wiley
Interdiscip. Rev.: Comput. Mol. Sci., 2024, 14, €1693.

This journal is © The Royal Society of Chemistry 2025

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160
161

162

163

164

165

166
167

168

View Article Online

Highlight

M. D. T. Torres, T. Chen, F. Wan, P. Chatterjee and C. de la Fuente-
Nunez, bioRxiv, 2025, preprint, DOI: 10.1101/2025.01.31.636003.
R. Chen, Y. You, Y. Liu, X. Sun, T. Ma, X. Lao and H. Zheng, Microb.
Biotechnol., 2025, 18, €70121.

J. Wang, J. Feng, Y. Kang, P. Pan, J. Ge, Y. Wang, M. Wang, Z. Wu,
X. Zhang, J. Yu, X. Zhang, T. Wang, L. Wen, G. Yan, Y. Deng, H. Shi,
C.-Y. Hsieh, Z. Jiang and T. Hou, Sci. Adv., 2025, 11, eads8932.

A. Mesa, A. Orrego, ]J. W. Branch-Bedoya, C. Mera-Banguero and
S. Orduz, Curr. Microbiol., 2025, 82, 379.

S. Chen, T. Lin, R. Basu, J. Ritchey, S. Wang, Y. Luo, X. Li, D. Pei,
L. B. Kara and X. Cheng, Nat. Commun., 2024, 15, 1611.

W. Zhao, K. Hou, Y. Shen and X. Hu, Bioinformatics, 2025, 41,
btaf069.

Y. Wang, M. Song, F. Liu, Z. Liang, R. Hong, Y. Dong, H. Luan,
X. Fu, W. Yuan, W. Fang, G. Li, H. Lou and W. Chang, Sci. Adv.,
2025, 11, eadp7171.

P. Das, T. Sercu, K. Wadhawan, I. Padhi, S. Gehrmann, F. Cipcigan,
V. Chenthamarakshan, H. Strobelt, C. dos Santos, P.-Y. Chen,
Y. Y. Yang, J. P. K. Tan, J. Hedrick, J. Crain and A. Mojsilovic,
Nat. Biomed. Eng., 2021, 5, 613-623.

Q. Yu, Z. Zhang, G. Liu, W. Li and Y. Tang, Briefings Bioinf., 2024,
25, bbae583.

H. Ebrahimikondori, D. Sutherland, A. Yanai, A. Richter, A. Salehi,
C. Li, L. Coombe, M. Kotkoff, R. L. Warren and I. Birol, Protein Sci.,
2024, 33, 5076.

C. Yu, X. Fang, S. Tian and H. Liu, Nat. Mach. Intell., 2025, 7,
278-292.

Y. Li, M. Wu, Y. Fu, J. Xue, F. Yuan, T. Qu, A. N. Rissanou, Y. Wang,
X. Li and H. Hu, Pharmacol. Res., 2024, 203, 107137.

Z. Wang, J. Wu, M. Zheng, C. Geng, B. Zhen, W. Zhang, H. Wu,
Z. Xu, G. Xu, S. Chen and X. Li, /. Chem. Inf. Model., 2024, 64,
9361-9373.

R. Chen, Y. You, Y. Liu, X. Sun, T. Ma, X. Lao and H. Zheng, Microb.
Biotechnol., 2025, 18, €70121.

G. Cabas-Mora, A. Daza, N. Soto-Garcia, V. Garrido, D. Alvarez,
M. Navarrete, L. Sarmiento-Varoén, J. H. Sepulveda Yafiez, M. D.
Davari, F. Cadet, A. Olivera-Nappa, R. Uribe-Paredes and D. Medina-
Ortiz, Database, 2024, 2024, baae113.

J. Z. E. Tan, J. Wee, X. Gong and K. Xia, J. Chem. Inf. Model., 2025,
65, 4232-4242.

D. Dahl, Y. Onishi, P. Norwood, R. Huh, R. Bray, H. Patel and
A. Rodriguez, JAMA, 2022, 327, 534-545.

L. J. Aronne, N. Sattar, D. B. Horn, H. E. Bays, S. Wharton, W.-Y.
Lin, N. N. Ahmad, S. Zhang, R. Liao, M. C. Bunck, I. Jouravskaya
and M. A. Murphy, and SURMOUNT-4 Investigators, JAMA, 2024,
331, 38-48.

S. Wharton, C. W. le Roux, M. N. Kosiborod, E. Platz, M.
Brueckmann, A. M. Jastreboff, S. Ajaz Hussain, S. D. Pedersen,
L. Borowska, A. Unseld, I. M. Kloer and L. M. Kaplan, Obesity, 2025,
33, 67-77.

P. B. Jeppesen, T. Vanuytsel, S. Subramanian, F. Joly, G. Wanten,
G. Lamprecht, M. Kunecki, F. Rahman, T. S. S. Nielsen, M. Berner-
Hansen, U.-F. Pape and D. F. Mercer, Gastroenterology, 2025, 168,
701-713.

U. Hennrich and M. Eder, Pharmaceuticals, 2022, 15, 1292.

C. Solis-Herrera, M. P. Kane and C. Triplitt, Clin. Diabetes, 2024, 42,
74-86.

V. Guerlavais, T. K. Sawyer, L. Carvajal, Y. S. Chang, B. Graves,
J--G. Ren, D. Sutton, K. A. Olson, K. Packman, K. Darlak, C. Elkin,
E. Feyfant, K. Kesavan, P. Gangurde, L. T. Vassilev, H. M. Nash,
V. Vukovic, M. Aivado and D. A. Annis, J. Med. Chem., 2023, 66,
9401-9417.

S. Kim, Y. H. No, R. Sluyter, K. Konstantinov, Y. H. Kim and
J. H. Kim, Coord. Chem. Rev., 2024, 500, 215530.

D. Wang, F. Yin, Z. Li, Y. Zhang and C. Shi, J. Nanobiotechnol., 2025,
23, 305.

N. Nissan, M. C. Allen, D. Sabatino and K. K. Biggar, Biomolecules,
2024, 14, 1303.

O. Bayley, E. Savino, A. Slattery and T. Noél, Matter, 2024, 7, 2382-2398.
Y. N. Talluri, S. K. Sankaranarayanan, H. C. Fry and R. Batra, Sci.
Adv., 2025, 11, eadt9466.

T. D. D. Kazmirchuk, C. Bradbury-Jost, T. A. Withey, T. Gessese,
T. Azad, B. Samanfar, F. Dehne and A. Golshani, Genes, 2023,
14, 1194.

Chem. Commun.


https://doi.org/10.48550/2412.17780v4
https://doi.org/10.48550/arXiv.2312.15665
https://doi.org/10.48550/arXiv.2507.17731
https://doi.org/10.48550/arXiv.2210.&QJ;02747
https://doi.org/10.48550/arXiv.2210.&QJ;02747
https://doi.org/10.48550/arXiv.2504.10983
https://doi.org/10.1101/2025.07.31.667780
https://doi.org/10.1101/2025.07.31.667780
https://doi.org/10.1101/2025.07.23.666285
https://doi.org/10.48550/2310.03842v3
https://doi.org/10.1021/acs.jmedchem.5c00789
https://doi.org/10.1101/2025.05.24.655528
https://doi.org/10.1101/2025.05.24.655528
https://doi.org/10.1038/s41586-023-06728-8
https://doi.org/10.1101/2025.01.31.636003
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cc04998a

Open Access Article. Published on 05 December 2025. Downloaded on 1/13/2026 4:18:59 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Highlight

169 M. Z. Gladysz, M. Stevanoska, M. K. Wlodarczyk-Biegun and
A. Nagelkerke, Adv. Drug Delivery Rev., 2022, 184, 114183.

170 R. Yang, X. Ma, F. Peng, J. Wen, L. W. Allahou, G. R. Williams,
J. C. Knowles and A. Poma, Biotechnol. Adv., 2025, 81, 108570.

171 L. Xie, L. Xie and P. E. Bourne, Curr. Opin. Struct. Biol., 2011, 21,
189-199.

172 A. Mondal, B. Singh, R. H. Felkner, A. D. Falco, G. Swapna,
G. T. Montelione, M. ]J. Roth and A. Perez, Angew. Chem., Int. Ed.,
2024, 63, €202405767.

173 ]. Pei, X. Gao, D. Pan, Y. Hua, J. He, Z. Liu and Y. Dang, Curr. Res.
Food Sci., 2022, 5, 2162-2170.

174 X. Tan, Q. Liu, Y. Fang, S. Yang, F. Chen, J. Wang, D. Ouyang,
J. Dong and W. Zeng, Briefings Bioinf., 2024, 25, bbae350.

175 K. Achilleos, C. Petrou, V. Nicolaidou and Y. Sarigiannis, J. Pept.
Sci., 2025, 31, €70016.

176 S. Y. Seo and ].-K. Rhee, Bioinformatics, 2025, 41, i125-i132.

177 M. Puig and S. Shubow, Front. Immunol., 2025, 16, 1608401.

178 B. Ha Gan, J. Gaynord, S. M. Rowe, T. Deingruber and D. R. Spring,
Chem. Soc. Rev., 2021, 50, 7820-7880.

179 C. G. Starr, J. He and W. C. Wimley, ACS Chem. Biol., 2016, 11,
3391-3399.

180 G. Ghaly, H. Tallima, E. Dabbish, N. Badr EIDin, M. K. Abd El-
Rahman, M. A. A. Ibrahim and T. Shoeib, Molecules, 2023, 28, 1148.

181 S. Hashemi, P. Vosough, S. Taghizadeh and A. Savardashtaki,
Heliyon, 2024, 10(22), e40265.

182 M. Venkataraman, G. C. Rao, J. K. Madavareddi and S. R. Maddi,
ADMET DMPK, 2025, 13, 2772.

183 L. Alzubaidi, J. Bai, A. Al-Sabaawi, J. Santamaria, A. S. Albahri,
B. S. N. Al-dabbagh, M. A. Fadhel, M. Manoufali, J. Zhang, A. H. Al-
Timemy, Y. Duan, A. Abdullah, L. Farhan, Y. Lu, A. Gupta, F. Albu,
A. Abbosh and Y. Gu, J. Big Data, 2023, 10, 46.

184 F. Wan, F. Wong, J. ]J. Collins and C. de la Fuente-Nunez, Nat. Rev.
Bioeng., 2024, 2, 392-407.

185 K. Sidorczuk, P. Gagat, F. Pietluch, J. Kala, D. Rafacz, L. Bakala,
J. Stowik, R. Kolenda, S. Rodiger, L. C. H. W. Fingerhut, I. R. Cooke,
P. Mackiewicz and M. Burdukiewicz, Briefings Bioinf.,, 2022,
23, bbac343.

186 C. A. Brizuela, G. Liu, J. M. Stokes and C. de la Fuente-Nunez,
Microb. Biotechnol., 2025, 18, €70072.

187 L. Bornmann, R. Haunschild and R. Mutz, Humanit. Soc. Sci.
Commun., 2021, 8, 224.

188 D. Deshpande, K. Chhugani, T. Ramesh, M. Pellegrini, S. Shiffman,
M. S. Abedalthagafi, S. Alqahtani, J. Ye, X. Shirley Liu, J. T. Leek,
A. Brazma, R. A. Ophoff, G. Rao, A. J. Butte, J. H. Moore, V. Katritch
and S. Mangul, Cell, 2024, 187, 4449-4457.

189 Y. Joly, S. O. M. Dyke, B. M. Knoppers and T. Pastinen, Cell, 2016,

167, 1150-1154.

Chem. Commun.

190

191

192

193

194
195

196

197

198

View Article Online

ChemComm

H. Li, L. Lv, H. Cao, Z. Liu, Z. Yan, Y. Wang, Y. Tian, Y. Li and
L. Yuan, arXiv, 2025, preprint, arXiv:2504.12314, DOI: 10.48550/
arXiv.2504.12314.

A. Abbaszadeh and A. Shahlaee, arXiv, 2025, preprint, arXiv:
2508.18446, DOI: 10.48550/arXiv.2508.18446.

B. J. Wittmann, T. Alexanian, C. Bartling, J. Beal, A. Clore, ]J.
Diggans, K. Flyangolts, B. T. Gemler, T. Mitchell, S. T. Murphy,
N. E. Wheeler and E. Horvitz, Science, 2025, 390, §2-87.

U. Nisa, M. Shirazi, M. A. Saip and M. S. M. Pozi, J. Autom. Intell.,
2025, DOI: 10.1016/j.jai.2025.08.003.

S. Hosseini and H. Seilani, Array, 2025, 26, 100399.

A. Ghafarollahi and M. ]J. Buehler, Digital Discovery, 2024, 3,
1389-1409.

A. Ghafarollahi and M. ]J. Buehler, arXiv, 2025, preprint, arXiv:
2504.19017, DOI: 10.48550/arXiv.2504.19017.

A. Unlii, P. Rohr and A. Celebi, arXiv, 2025, preprint, arXiv:
2508.03444, DOI: 10.48550/arXiv.2508.03444.

C. Rudin, Nat. Mach. Intell., 2019, 1, 206-215.

199 J. Wei, X. Wang, D. Schuurmans, M. Bosma, B. Ichter, F. Xia,

200

201

202

203

204

205

206

207

208

209

210
211

E. Chi, Q. Le and D. Zhou, arXiv, 2023, preprint, arXiv:2201.11903,
DOI: 10.48550/arXiv.2201.11903.

R. Wang, H. Zhang, T. Nguyen, S. Feng, H.-W. Pang, X. Yu, L. Xiao
and P. Z. Zhang, arXiv, 2025, preprint, arXiv:2508.14765, DOI:
10.48550/arXiv.2508.14765.

S. M. Narayanan, J. D. Braza, R.-R. Griffiths, A. Bou, G. Wellawatte,
M. C. Ramos, L. Mitchener, S. G. Rodriques and A. D. White, arXiv,
2025, preprint, arXiv:2506.17238, DOI: 10.48550/arXiv.2506.17238.
M. J. Buehler, npj Artif. Intell., 2025, 1, 4.

C. M. Sha, J. Wang and N. V. Dokholyan, Briefings Bioinf., 2024,
25, bbad456.

O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger, 1. Poltavsky,
K. T. Schiitt, A. Tkatchenko and K.-R. Miiller, Chem. Rev., 2021, 121,
10142-10186.

G. P. P. Pun, R. Batra, R. Ramprasad and Y. Mishin, Nat. Commun.,
2019, 10, 2339.

A. Venkatraman, M. A. Wilson and D. Montes de Oca Zapiain, npj
Comput. Mater., 2025, 11, 24.

A. L. Boudi, M. Boudi, C. Chan and F. B. Boudi, Cureus, 2024,
16(11), €74495.

D. Bloomfield, J. Pannu, A. W. Zhu, M. Y. Ng, A. Lewis, E. Bendavid,
S. M. Asch, T. Hernandez-Boussard, A. Cicero and T. Inglesby,
Science, 2024, 385, 831-833.

S. Zhai, T. Liu, S. Lin, D. Li, H. Liu, X. Yao and T. Hou, Drug
Discovery Today, 2025, 30, 104300.

D. de Raffele and 1. M. Ilie, Chem. Commun., 2024, 60, 632-645.
S. Yang, J. Ren, W. Gao, L. Cao and S. Ling, npj Soft Matter, 2025,
1, 4.

This journal is © The Royal Society of Chemistry 2025


https://doi.org/10.48550/arXiv.2504.12314
https://doi.org/10.48550/arXiv.2504.12314
https://doi.org/10.48550/arXiv.2508.18446
https://doi.org/10.1016/j.jai.2025.08.003
https://doi.org/10.48550/arXiv.2504.19017
https://doi.org/10.48550/arXiv.2508.03444
https://doi.org/10.48550/arXiv.2201.11903
https://doi.org/10.48550/arXiv.2508.14765
https://doi.org/10.48550/arXiv.2506.17238
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5cc04998a



