A Bst-driven Cas12a cascade amplification strategy for microRNA detection
Abstract
Quantification of trace microRNAs is crucial for early disease diagnosis but remains technically challenging. Herein, we developed an ultrasensitive fluorescence platform for microRNA-21 (miR-21) detection by integrating Bst DNA polymerase-assisted target recycling with CRISPR/Cas12a-mediated signal amplification. In this design, the target miRNA triggers toehold-mediated opening of a hairpin probe, followed by Bst-driven primer extension that enables efficient target recycling and the generation of abundant DNA duplex activators. Subsequently, these activators induce strong trans-cleavage activity of Cas12a, producing markedly enhanced fluorescence responses. Benefiting from the dual amplification of enzymatic recycling and Cas12a activation, the proposed assay exhibits high sensitivity toward miR-21 with a detection limit down to 9.25 × 10 -12 M. Furthermore, the platform exhibited excellent sequence selectivity and was successfully applied to monitor miR-21 in both cell lysates and clinical serum samples. Considering its convenient operation, strong analytical performance, and simple readout mode, this method holds great potential for trace biomarker analysis in clinical diagnostics.
Please wait while we load your content...