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odels accurately classify synthetic
opioids using high-dimensionality mass
spectrometry datasets

Kourosh Arasteh,a Steven Magana-Zook,b Colin V. Ponce,c Roald Leif,df Alex Vu,ef

Mark Dreyer,ef Brian P. Mayer,df Audrey M. Williamsf and Carolyn L. Fisher *a

Detection of novel threat agents presents several challenges, a principle one being the development of

untargeted methods to screen an increasing number of threat chemicals whose exact structures are

unknown. With the use of Machine Learning (ML) tools, we can guide the development of analytical

methods for broad-spectrum detection of unbounded threat chemical families in complex mixtures.

Toward this goal, we used nominal mass and high-resolution mass spectrometry data for hundreds of

synthetic opioids and non-opioid compounds. We tested two ML techniques, logistic regression and

random forest, to develop models towards a practical, implementable method for opioid detection. We

found that of these tested ML methods, random forest models resulted in the highest validation

accuracy (95+%) for both nominal mass and high-resolution classification of opioids versus non-opioids,

with low false positive and false negative rates. The RF models were then used to successfully predict

the classification of 10 compounds—five opioids and five non-opioids not part of the training and

validation analysis. This application of ML is a critical step towards the development of field-deployable

nominal mass spectrometers with ML-driven analyses for classification of emergent threats.
Introduction

Detection of novel and emerging chemical threats is a necessary
component of nonproliferation efforts.1 The clandestine
synthesis of threat materials for illegal sale and use by state and
non-state actors oen aims to skirt identication which relies
on existing databases through continual development of novel
analogs and use of uncontrolled precursors. Additionally,
combinatorial synthetic routes, such as the Ugi multicompo-
nent reaction, result in known and unknown opioid analogs
and byproducts2 that are typically not captured in chemical
reference libraries. Unfortunately, detection and identication
of the resulting products oen lag behind novel threat
synthesis, putting forensic chemists at a perpetual
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disadvantage. Detection of hazardous materials relies on exist-
ing libraries and databases containing reference data (e.g., mass
spectra) of the chemical targets.3 Such databases include
pharmaceutical-based agents, illicit drugs, and biologically
derived toxins. However, databases will always be incomplete
for emergent threats.4 Further, real-world samples may not
generate mass spectra that can be adequately ‘matched’ to
reference spectra due to minute quantities of the threat chem-
ical relative to other chemicals, background–chemical interac-
tions, or sheer complexity of chemicals in the collected sample.
With modern, high-resolution mass spectrometers and nuclear
magnetic resonance (NMR) spectrometers, de novo chemical
structure elucidation is possible, but remains time-consuming,
tedious, and dependent on subject matter expertise of the
scientist.4 In the case of chemical threat detection, rapid and
reliable identication is paramount to resolving potential
crises. Analytical chemistry requires new tools to allow rapid
detection of known and novel threats.

The development of methods that broadly screen for known
and emerging threat agents and provide their comprehensive
characterization in an ever-evolving landscape would be
instrumental to the eld of analytical chemistry. Many of the
“gold standard” eldable detection platforms include high
pressure mass spectrometers (HPMS), Fourier-Transform
Infrared (FT-IR) instruments, Raman detectors, and ion
mobility mass spectrometers (IMS), such as the MX908, Haz-
MatID Elite, TruNarc, and the IONSCAN 600, respectively.5
Anal. Methods
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These products were found to easily detect known opioids at
high concentrations in pills and powders but performed poorly
at concentrations of 10% analyte.5 At best, these techniques still
only provide presumptive evidence and conrmatory identi-
cation is still required to be done by gold-standard benchtop
analytical instruments, such as liquid chromatography-mass
spectrometry (LC-MS) and gas chromatography-mass spec-
trometry (GC-MS).6 These lab-based analytical methods supply
the denitive identication and compliance to legal standards.
Despite the gold-standard status, LC-MS and GC-MS analysis is
still limited to chemical identication using reference libraries.

Analytical chemists oen analyze complex chemical samples
by rst separating components via chromatography, followed
by electron ionization (EI) or electrospray ionization (ESI) prior
to mass spectrometry analysis. Common methods include gas
and liquid chromatography, which separate chemicals based on
volatility and polarity, respectively,7,8 yielding time-resolved
mass spectra for each substance. Soware like NIST's AMDIS,9

Agilent's Mass Proler Professional,10 and Waters' Progenesis,11

and ThermoFisher's MassFrontier12 assist in analyzing these
data through two main steps: (1) deconvolution—identifying
spectral components that uctuate together, and (2) match-
ing—comparing spectra to a database of known standards.
While this approach is valuable, it has distinct limitations. The
database-centric approach focuses on individual, known
chemicals; soware packages are incapable of identifying novel
analogs of known chemicals if they are not explicitly in the
database.4 The deconvolution step becomes problematic when
chemical separation is poor or analyte concentrations are low,
such as in recent years where opioids make up only a trace
quantity in a street drug with many other constituents and
impurities.4,13 In these cases, deconvolutionmay produce highly
unreliable spectra, at which point the matching is unlikely to
produce meaningful results. By focusing on moiety identica-
tion, instead of chemical identication, through mass spectra
analysis, we can build new analytical pipelines for chemical
characterization without the same reliance on chemical refer-
ence libraries. In this context ‘moiety identication’ refers to
ion fragments that are differentially correlated with different
chemical classes and are thus distinguishing (either individu-
ally or en masse) and helpful with chemical classication of
unknown chemicals not found in reference libraries. Develop-
ment of data processing techniques is required to enable
expedited and reliable identication of chemical classes, such
as synthetic opioids, even in the case of novel compounds, poor
chemical separation, and low analyte concentrations.

Machine Learning (ML), a subeld of articial intelligence,
involves the use of computational systems to learn from
problem-specic training data and automate the analysis of
new data within the problem space.14 Use of ML has increased
dramatically in recent years as the set of practical applications
for the technology has developed.15 Initially concerned with
data-driven methods of analysis, the ML eld has grown beyond
pattern recognition to a widespread set of techniques useful
across domains of imaging,16 physical sciences,17 and human
social interaction,18 among others. Along with advancement of
data-driven ML techniques, improved instrumentation in
Anal. Methods
academia and industry has yielded volumes of data so vast that
traditional analysis methods can become infeasible.19 Creation
of ‘big datasets’ has led to the development of ML models that
are robust to systemic noise, sensitive to latent patterns and
trends, quick to provide decision support, and interpretable to
human users. Despite these advances, the success of new ML
approaches is heavily dependent upon having a high-quality
dataset, data features easily encoded into a machine-
interpretable format, and a well-dened problem statement.

ML has been applied to liquid chromatography-high reso-
lution mass spectrometry (LC-HRMS) and GC-MS data in
previous work. ML techniques have been applied to LC-HRMS
data for identication of structurally similar trichothecene
toxins without dependence on reference standards.20 Other
efforts have focused on predicting structural features of
metabolites from raw GC-MS spectra21 and curated features
from GC-MS data22 using decision trees.23 A decision tree is an
ML structure that recursively splits a dataset based on the values
of the dataset's variables and uses this to make decisions. A
Random Forest (RF) is an ensemble of many decision trees and
is an established and powerful ML technique.28 More recent
works in automated GC-MS-based chemical property predic-
tion29,30 have utilized RF models,28 an ML method that uses
ensembles of diverse decision trees produced by training on
randomized features and subsamples of a dataset (Fig. 1). RF
models have exhibited robustness and high performance
without extensive tuning, and their structure can be interpreted
to extract the most valuable features during training.

The application of ML to GC-MS spectra of opioids, synthetic
opioids, and fentanyl-related compounds in the literature has
been largely focused on the subjective identication of
discriminative fragments. For example, previous efforts identi-
ed potential screening fragments manually, focusing mainly
on high-intensity fragment ions derived from the analysis of
‘parent’ chemicals with the use of computer-aided analysis.24

However, chemical fragments can be identiedmore objectively
using statistically driven methods and models. Statistical
analysis methods were leveraged for determination of chemical
attribution signatures for 3-methylfentanyl and three methods
of its production.25 More recently, atmospheric pressure solids
analysis probe (ASAP) mass spectrometry was used to rapidly
analyze 250 synthetic opioids, generating a high quality mass
spectral library that could be utilized for ML model training to
expedite data processing and screening.26 However, not every
foray into ML has been successful. For example, the METLIN
team tried to predict MS fragmentation patterns using ML for
an in silico dataset but failed to provide accurate chemical
identications in practice and was subsequently removed from
the database.27 Ultimately, the quality of the ML algorithm that
is produced is directly related to the data type, quality, and
quantity it is trained on. Sophisticated and complex ML models
are not always necessary for producing successful algorithms if
data quality and quantity is sufficiently high to address
a particular problem.

Here we describe our work leveraging ML techniques to
automate the classication of mass spectral data as either
‘opioid’ or ‘non-opioid’ with high accuracy (>95%). To
This journal is © The Royal Society of Chemistry 2026
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Fig. 1 Diagram summarizing the ML methods and techniques applied to the MS datasets used in this study. In the first run through of the ML-
methods for model development, GC-MS data (defined as 245 synthetic opioids and 294 non-opioids) have n = 10 benchmark data removed
before preparation of the remaining data for the stratified 80/20 train/test split and subsequent steps. Likewise, in the second (2) run through of
the ML-methods above, HRMS data (defined as 245 synthetic opioids and 400 non-opioids) have n = 10 benchmark data removed before
preparation of the data and the remaining steps in the method. Orange refers to the benchmark dataset; green refers to the various methods of
calculating error; blue refers to the dataset split into training and testing sets; purple refers to steps involving the ML model development or
application.
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determine the best ML model for this specic binary classi-
cation task, we compared the performance of random forest
(RF) and logistic regression (LR) models trained on GC-MS data
and high-resolution MS/MS (HR MS/MS) data. The GC-MS and
HRMS/MS data were generated on a non-exhaustive list of∼250
synthetic opioids and ∼480 non-opioid chemicals. Unlike
Monroy et al. 2025,31 we collected data from two different
chemical groups using two different analytical techniques, with
different levels of resolution (i.e., nominal mass and high
accuracy mass). Through these additional data collection and
curation efforts, we were able to assess the value for both elec-
tron and electrospray ionization (EI and ESI), low and highmass
accuracy data, and binary classication for two chemical
groups. Due to differences in the analytical methods used, not
all compounds resulted in usable data by both GC-MS and HR
MS/MS analytical methods. Still, we found that nominal mass
GC-MS data and HR MS/MS data both resulted in highly effec-
tive ML models (validation accuracy >95%) for binary classi-
cation of synthetic opioids from non-opioid compounds.
Surprisingly, the MLmodels based on the nominal GC-MSmass
data performed at the same level of efficacy as the ML models
based on HR MS/MS data. These results demonstrate the utility
of ML applications on even low resolution (e.g., nominal mass)
data sets. Further development of ML classication techniques
This journal is © The Royal Society of Chemistry 2026
will enable expedited and reliable identication of chemical
groups without available reference spectra.
Materials and methods
Materials and sample preparation

All solvents were purchased from Fisher-Scientic (Hampton,
NH, USA); acetonitrile and methanol (99.9% minimum) were
Optima LC-MS grade reagents, while dichloromethane (99.8%
minimum) and ethyl acetate (99.9% minimum) were GC-MS
grade reagents. Ultrapure water was produced using a Milli-Q
IQ 7000 with QPOD dispenser. A Fentanyl Analog Screening
(FAS) kit and FAS Emergent Panels 1–4 were acquired from
Cayman Chemical (Ann Arbor, MI) in collaboration with the
Centers for Disease Control and Prevention. Each compound of
the opioid kit was reconstituted and dissolved using LC-MS
grade methanol producing a nominal 400 mg mL−1 solution.
Further dilution in methanol was carried out to produce a 10 mg
mL−1 standard amendable to GC-MS analysis. Additionally,
serial dilutions were performed using a mixture of ultrapure
water and methanol to prepare standards for HR MS/MS anal-
ysis. Similarly, a “non-opioid” set of chemical compounds were
compiled from multiple sources and diluted with ethyl acetate
to 10 mg mL−1. This included a set of ISO-certied multi-
Anal. Methods
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† For any given observation, there are several trees in a random forest that have
not “seen” this observation (or in our case, mass spectra for a specic chemical)
during training. We can use only those trees that have not trained on this
observation to attempt to predict the observation's class, and in this way we
evaluate prediction error. A classication is thus generated for all such
observations, and when compared to the true classication of these
observations, an error rate can be estimated. This error rate is known as OOB
error.
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component pesticide reference materials that were obtained
from Thermo Scientic (Waltham, MA). These standards were
available as part of the Thermo Scientic Pesticide Explorer
Collection. Additional non-opioid reference materials were ob-
tained from AccuStandard (New Haven, CT), in a custom multi-
component analyte mix (S-22329) and as single-component
solutions. These substances were selected to represent
compounds from the following classes of chemicals: organo-
chlorine, organobromine, organophosphorus, organosulfur,
nitroaromatic, polycyclic aromatic hydrocarbon, N-heterocyclic
aromatic, alkane hydrocarbon, fatty acid methyl ester, and
phthalate ester. All chemicals used in this study are summa-
rized in SI Table 1 and 2.

Gas chromatography-mass spectrometry data collection

Chemicals were analyzed on an Agilent 7890A GC coupled to an
Agilent 5975CMS detector. The GC column used for the analysis
was an Agilent JW DB-5ht capillary column (30 m × 0.25 mm id
× 0.10 mm lm thickness). Ultra-high purity helium, at 1.0
mL min−1, served as the carrier gas. The inlet was operated in
pulsed splitless mode (25 psi for 1 minute, followed by a 50
mLmin−1 purge ow), with the injector temperature set at 265 °
C and injection volumes of 1 mL. The oven temperature program
was as follows: 50 °C, held for 1min, increased at 30 °Cmin−1 to
335 °C, held for 4.5 min. The MS ion source and quadrupole
temperatures were 230 and 150 °C, respectively. Electron ioni-
zation was used with an ionization energy of 70 eV. The MS was
scanned from m/z 29 to 600 in 0.4s, with a solvent delay of
5 min. Through the use of chromatographic separation and the
Automated Mass Spectral Deconvolution and Identication
System (AMDIS) soware program developed by the National
Institute of Standards and Technology (NIST), an individual
mass spectrum was exported for each chemical (regardless of
whether it was in a mixture or a pure analytical standard). This
was done using an automated process to extract consistent and
unbiased mass spectral data for every compound in the GC-MS
les. The tabulated mass spectral data (nominal mass) for every
chemical were normalized to the base peak in each mass
spectrum and exported as a text le for ML applications.

High-resolution orbitrap mass spectrometry data collection

High-resolution accurate mass MS/MS data were collected on
a ThermoFisher Scientic Q Exactive HF-X Orbitrap mass
spectrometer equipped with a heated electrospray source in
positive polarity. Material was directly injected into the mass
spectrometry using direct infusion, bypassing any liquid chro-
matographic separation. Data from 10 mg mL−1 50 : 50 meth-
anol:water dilutions of all compounds were collected over
a range of 20 collision energies (CE) repeated six times. To
increase the breadth of fragments generated by each chemical
and to test a wide range of CEs to generate ML models opti-
mized for opioid detection, both synthetic opioid and non-
opioid chemical precursors were evaluated using both linearly
spaced (i.e., 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130,
140, 150, 160, 170, 180, 190, 200) andmultiplicatively spaced (or
‘nonlinearly spaced’; i.e., 10, 12, 14, 16, 19, 22, 26, 30, 35, 41, 48,
Anal. Methods
57, 66, 78, 91, 106, 125, 146, 171, 200) CE series. The RAW les
generated for each directly infused compound were converted
to processable text les for use in the Python3 environment
using the RawConverter program developed previously by He
et al. (2015).32
Machine learning methods

Random Forest (RF) and Linear Regression (LR) models for
both GC-MS and HR MS/MS datasets were evaluated. First, ve
randomly selected synthetic opioid and ve non-opioid mass
spectra (from both GC-MS and HR MS/MS datasets) were
removed to create a benchmark dataset and to be used to test
the best model (Fig. 1); the mass spectra from the benchmark
dataset were not previously used in the training or testing of any
ML model. For the remaining spectra in both the GC-MS and
HR MS/MS datasets, a standard ML holdout procedure (in
which 20% of the data is uniformly at random selected to be
‘held out’ for testing purposes and not used for training) was
applied. Data were stratied to maintain equal ratios of
synthetic opioids versus non-opioids for all ML models tested.
We used the ‘f1_score’ function from the scikit-learn metrics
library, where the F1 score is calculated as the harmonic mean
of precision and recall for the model's predictions on the vali-
dation set (i.e., test set). This randomized method of training, or
“bootstrapping” samples to build the trees, also provides
a valuable estimate of generalizability and error of a model. The
data that are not used for the construction of a given tree are
considered an “out-of-bag” (OOB) observation (additional
explanation below in note† and summarized in Fig. 2). Addi-
tionally, we applied ve-fold cross validation which divides the
dataset equally into ve equally sized sets and then trains and
tests the model ve times. We validated models using three
modes of calculating error: validation accuracy for each test set,
cross validation accuracy summarized as an F1-score, and OOB
error. All three are standard, well-accepted methods of
measuring performance23 and calculating error using orthog-
onal methods is a best practice in ML model assessment and
validation.23
GC-MS model selection, training, and testing

Using the GC-MS data, LR and RFmodels for classifying opioids
from non-opioids were assessed for performance. The perfor-
mance of RF models with forest sizes with 1–200 trees were
evaluated with bootstrapped samples to evaluate out-of-bag
(OOB) error. Due to a slight imbalance in number of members
in each of the two classes, class weighting during training was
employed to avoid known issues with RF models trained on
imbalanced data.35 The RFmodel with the lowest tree count and
This journal is © The Royal Society of Chemistry 2026
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Fig. 2 Diagram of training by bootstrap aggregation (bagging) during RF model. For each round of training, the original training set of spectra is
subsampledwith-replacement to create an “in-bag set” for each decision tree in the random forest to be trained on. Each tree is evaluated on the
complementary set of samples for each in-bag set, known as the “OOB set”, and the consensus of the forest on theseOOB samples produces the
OOB error metric recorded over the training of the random forest model.
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a stable, relatively low OOB error were further evaluated. This
trained RF model was used on the benchmark dataset (e.g., the
10 compounds pulled before the 80/20 split) and evaluated
classication accuracy.

A binary, single-class LR model was utilized to serve as
a baseline measurement of linear model efficacy on the GC-MS
classication task. The LR model employed class-weighting
similar to the RF models. To explore hyperparameter settings,
a grid search was used to evaluate penalty norm (L1 vs. L2) and
regularization strength (20 values from 10−4 to 104 spaced on
a log scale). All possible combinations of these hyperparameters
were trained via stratied ve-fold cross-validation. The best
hyperparameter tuning was determined by nding the model
with the highest accuracy on the le-out data in the cross-
validation sets. The highest-scoring hyperparameters were
used to create a new LR model, which was then trained on the
training set, tested using the benchmark dataset, and evaluated
for accuracy. As in the case of RF, a high accuracy on the test set
would suggest the model will generalize to previously unseen
data. The LR model that performed best used the L1 norm for
loss and had an inverse regularization strength of C = 4.28133.

HR MS/MS model selection, training, and testing

As with the GC-MS data, the approach for applying RFmodels to
HR MS/MS data utilized class weighting during training with
bootstrapped samples. OOB error was used for quantifying
model prediction errors when evaluating different forest sizes.
For HRMS/MS data, RFmodels were trained with all forest sizes
with 1–200 trees and RF model with minimal tree count that
had a stable, relatively low OOB error was selected. This trained
RF model was used on the benchmark dataset (e.g., the 10
compounds pulled before the 80/20 split) and evaluated accu-
racy. Aer training, highest performing HRMS/MS RFmodel on
the validation set was queried for the highest importance frag-
ment ions. Due to the nature of higher-precision HR MS/MS
This journal is © The Royal Society of Chemistry 2026
data being reported in accurate mass, rather than nominal
mass, fragment ions were aggregated to the nearest nominal
mass (nearest integer) to compare feature importance with
those found in the GC-MS case. (Fragment ions were not
aggregated during the RF model training and validation; only
during the process to generate Fig. 3B).

As with the GC-MS data set, a binary, single-class LR model
was also used to produce a baseline expectation of model effi-
cacy on the HRMS classication task. Class weighting was used
and explored both L1 and L2 norms but modied the set of
inverse regularization strengths to 10 values between 10−20 to
1010 spaced on a log scale. This modication was done to
explore higher degrees of regularization to ensure convergence
of the classier. To compare performance with the LRmodel for
GC-MS data, the highest-scoring hyperparameters were used to
create a new LR model, which was then trained on the HRMS
training set, tested using the benchmark dataset, and evaluated
for accuracy. As in the case of RF, a high accuracy on the test set
would suggest the model will generalize to previously unseen
data.

Benchmark evaluation testing for GC-MS and HR MS/MS ML
models

The best-performing, highest-accuracy ML models (dened by
the validation accuracy percentage) were used to predict the
classication of 5 synthetic opioids and 5 non-opioids that were
randomly selected and previously set aside in the benchmark
dataset.

Results and discussion

Mass spectral data obtained from synthetic opioids and non-
opioid chemicals were collected on two instruments: (1) an
electron ionization GC-MS for nominal mass data and (2) a HR
MS with positive mode electrospray ionization for HR MS/MS
Anal. Methods
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Fig. 3 (A) Out-of-bag (OOB) error during bootstrap selection of GC-MS training data for random forest models with 1–200 trees. (B) GC-MS
feature importance scores determined from mean decrease in impurity (MDI) for the highest accuracy RF model we evaluated (75 trees).
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data. Due to differences inherent to the GC-MS and HR MS/MS
analytical techniques and instrumentation, only 245 of the
synthetic opioids were analyzed by GC-MS and a different set of
245 were analyzed by HR MS/MS, with 242 synthetic opioids
analyzed by both techniques (SI. Table 1). Of the ∼480 non-
opioid chemicals, 294 were analyzed by GC-MS, 400 were
analyzed by HR MS/MS, and 216 chemicals were analyzed by
both techniques (SI. Table 2). The total number of synthetic
opioids and non-opioids that were analyzed by GC-MS, HR MS/
MS, and both techniques is summarized in Table 1. Our goal
was to develop ML models for classication with at least 95%+
accuracy in the validation data set, and we found this goal to be
easily achievable for most LR and RF models for both the GC-
MS and HR MS/MS datasets. As we utilized class-weighting
and our data were relatively balanced, a high accuracy on the
validation set would suggest the model will generalize to data
not used to create the model.
Table 1 Total number of synthetic opioids and non-opioids analyzed by
for chemicals analyzed by each analytical technique)

Number of sy
analyzed (ou

GC-MS 245
HR MS/MS 245
Both GC-MS and HR MS/MS 242

Table 2 Performance of models trained on GC-MS and HR MS/MS data

Model Training accuracy

GC-MS RF (75 trees) 0.979
GC-MS LR (best model) 0.949
HR MS/MS RF (125 trees) 0.955
HR MS/MS LR (best
model)

0.812

Anal. Methods
Applying ML models to GC-MS data

Using the GC-MS data, random forest (RF) and linear regression
(LR) models for classifying opioids from non-opioids were
assessed. The best LR model had a mean training accuracy of
94.9% over ve folds of cross-validation and a 96.2% accuracy
on the validation test set (Table 2). The RF models for the GC-
MS data generated higher training and validation accuracies,
97.9% and 99.1% respectively, than the LR models (Table 2).
Thus, we next tested a range of RF decision tree ensembles up to
200 trees. Our results indicated that the model's out-of-bag
(OOB) error rate stabilized at approximately 2.5% when the
ensemble size reached around 75 trees, suggesting that further
increases in the number of trees provided diminishing returns
in terms of model performance (Fig. 3A). As described above,
RFs are an ensemble of decision trees and RF models become
more powerful as more trees are added to the ensemble. Thus,
as all ensemble methods (including RF) have accuracies that
GC-MS, HR MS/MS, or both analytical techniques (see SI Tables 1 and 2

nthetic opioids
t of 250)

Number of non-opioids
analyzed (out of 478)

294
400
216

Validation accuracy Validation F1-score

0.991 0.991
0.962 0.963
0.959 0.957
0.813 0.813

This journal is © The Royal Society of Chemistry 2026
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eventually plateau as the ensemble grows. 75 trees were not
required for a high-validation accuracy RFmodel; we found that
only 11 trees were needed to generate an RF model with a lower
4.6% OOB error (Fig. 3A). However, we chose to utilize the 75
tree RF model as this forest size was the smallest for which OOB
error appeared to stabilize. In predicting the classes of the
validation test set, the 75-tree RFmodel exhibits a validation F1-
score of 99.1%.

Aer this RF model with 75 trees in the ensemble was
generated, its structure was queried for the highest importance
fragment ions that could be utilized for identifying the most
discriminative fragment ions to separate the synthetic opioids
from the non-opioids (Fig. 3B). We used both impurity-based
feature importance (i.e., “impurity proling”) and permuta-
tion importance to evaluate the highest importance fragment
ions in differentiating between the opioids and non-opioids in
our dataset. Impurity-based feature importance is computed
from the structure of the RF model and can indicate how well
a feature can be used to split the dataset cleanly when the
feature's importance is measured across all trees in the model.
Impurity-based feature importance tends to highlight features
with many different values, such as m/z ratio, that vary widely
between compounds. For example, if you have both m/z ratios
and compound types (such as opioid or non-opioid), the model
may focus more on the m/z ratio because it has more possible
values. This measure shows which features help the model sort
the training data, but it does not always mean those exact
features will be useful for future samples, such as in the test
dataset. Despite this caveat, it is interesting to note the model's
resultant highly “important” features discovered experimentally
via impurity-based calculations oen corresponded to known
fragments that are characteristic of the synthetic opioid class.

Permutation importance is a more computationally expen-
sive metric that overcomes drawbacks of impurity based
importance. This metric is calculated by randomly shuffling, or
permuting, the values of a given feature, and computes the
change in model performance. Permutation importance is less
useful in cases where features are highly correlated. For
example, we observed adjacent ions to be highly correlated,
which can be expected for 13C fragment isotope patterns.
Nevertheless, we see some features selected via permutation
importance that correspond to known fragmentation of
opioids. Fig. 3B shows the top 25 fragment ions ranked in
descending order of impurity-based feature importance for the
best RF model (75 trees, 99.1% accuracy, Table 2). Specically,
these listed ions are not to be interpreted as necessary for
dening the synthetic opioid class, but rather, these ions are the
most important for distinguishing the opioids from non-
opioids in our training set. Despite this caveat, one might
expect some overlap between “dening” ions and “di-
stinguishing” ions; indeed, ions 57, 77 and 105 all made the list,
and these ions can be easily traced back to structural compo-
nents (i.e., fragments ions) of many fentanyls.24,33 However,
many other ions are of similarly high importance but cannot be
directly traced back to a fentanyl moiety (e.g., 63, 43, 50). Since
the task assigned to the ML model was to distinguish two
classes of chemicals, it is possible that these distinguishing
This journal is © The Royal Society of Chemistry 2026
ions are not descriptive for the opioid class but are present in
the non-opioid class. Ultimately, depending on the classica-
tion task and data used, the feature importances will vary.

It is important to note that while decision trees generally
have an ease of interpretability, other ML techniques do not.
Random forests of decision trees introduce stochastic sub-
sampling and tree construction that confound this property.
However, RF models do allow for some understanding of
feature importance during the training process and the
decrease in accuracy that can result from removing certain
features. For the problem of MS classication, these feature
understanding methods can be used to derive fragments that
are more diagnostic than others in classifying spectral signa-
tures. This is useful in developing more targeted screens for
better identication of opioids from trace samples or samples
with a complex background, though future work is necessary to
validate this as a path forward.

Testing the predictive power of the GC-MS RF model through
evaluation of benchmark dataset

Our nal validation for the GC-MS RF model was the classi-
cation of 10 compounds simulated to be of ‘unknown’ origin
(i.e., outside of the training and validation datasets). The 10
compounds, shown in Table 4, were randomly selected from
both the synthetic opioid and non-opioid data sets to use for
this benchmark dataset. This prediction step was also used to
understand classication and feature selection processing time
on a typical computer (4 cores @ 1.9 GHz). Table 4 includes the
prediction (1/0) and the prediction score based on this RF
model. Although this is only a small sample size of synthetic
opioids (n = 5) and non-opioid chemicals (n = 5), the GC-MS RF
model classied all ten compounds in a total of 0.037 seconds,
or a rate of 270.02 compounds/second, with high RF scores,
resulting in accurate classication assignments for all 10
simulated ‘unknown’ chemicals.

Applying ML to the HR MS/MS data to generate a high
accuracy model

All GC-MS data was acquired at the conventionally accepted
70 eV, which provides adequate fragmentation for most
compounds. The HR MS/MS data, which uses the so ioniza-
tion technique of ESI, relies on collisional dissociation for
fragmentation. Since no single CE will generate all possible
fragments, we applied linearly spaced and nonlinearly spaced
collision energies (CEs) between 10–200 to maximize the
number of fragments available to the ML models. The wide
range of CEs was necessary to increase the full range of possible
fragments that could be important for higher accuracy chemical
classication. For small molecules, determining the appro-
priate CE to use for optimal precursor and fragment detection is
impossible without prior efforts. The types of chemical bonds
found in small molecules are too variable and selecting for only
a single CE is usually a compromise between the detection of
larger and smaller fragments. Furthermore, the appropriate CE
selection for an unknown chemical is near impossible to know
or predict, even if information about CEs for the chemical class
Anal. Methods
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is known. Therefore, trying a wide range of CEs and evaluating
which ones have an impact on the model makes the most sense
when training ML models to classify unknown chemicals.
Traditionally, analytical chemists utilize linearly spaced CEs, yet
we found that the nonlinearly spaced CEs at lower voltage
provided a comprehensive detection of mid-range fragments
and were preferable for downstream ML models (Table 3).
Notably, while a CE of 35 created the highest accuracy RF
models with only 25 trees and the highest mean accuracy of
96%, a CE of 10 was able to use only 7 trees to create an RF
model with an 84%mean accuracy (Table 3). Beyond a CE of 41,
mean accuracy drops from 96% to 91%, indicating that higher
CEs are a bit less distinguishing between the two chemical
classes than lower CEs. However, despite the fact the CE of 200
is incredibly high and likely not the most optimal choice for any
chemical analyzed in this dataset, this result showing that even
a CE of 200 can generate a highly accurate ML model with a RF
of 35 trees and 91% accuracy (Table 3) in distinguishing
synthetic opioids from non-opioids is nonetheless noteworthy.
Our results show that even a sub-optimal CE for two entire
classes of chemicals still produced an ML model that effectively
distinguished the two classes. This result is important to the
eld of ML in MS as new ML approaches continue to be
explored, tested, and optimized.The HR MS/MS RF model with
the highest testing accuracy, and included all CEs, was 95.5%
for an ensemble of 125 trees with the lowest OOB error (Table 2
and Fig. 4A). For HR MS/MS data, OOB error decreases linearly
until around 125 trees, perhaps due to higher cardinality of ion
features. It is interesting to note that both nominal mass GC-MS
data and the HR MS/MS data both resulted in RF models with
Table 3 Number of trees in each Random Forest (RF) ensemble at
specific Collision Energies (CEs) with the highest corresponding mean
accuracy as determined by five-fold cross validation (CV5)

HRMS collision
energy used

Lowest number of RF trees in an
ensemble with the highest mean
accuracy (%) using CV5

Number of
trees

Mean
accuracy (%)

10 7 84
12 35 89
14 45 92
16 45 94
19 25 95
22 45 96
26 45 96
30 45 96
35 25 96
41 40 96
48 40 95
57 45 95
66 35 94
78 25 94
106 45 94
125 25 93
146 25 93
171 35 92
200 35 91

Anal. Methods
very high accuracy (>95%); one dataset did not distinctly out-
perform the other. We expected the HR MS/MS data–which
included comprehensive coverage (20 nonlinearly spaced CEs)
of high mass accuracy fragmentation data for all compounds–
would generate models with much higher validation accuracies
than the GC-MSmodels. Instead, we found that the best HRMS/
MS RFmodel had a validation accuracy of 95.9% and the GC-MS
RF model had 99.1% (Table 1). Additionally, the best LR model
for the HR MS/MS data only had 81.3% validation accuracy,
about 15 percentage points behind the GC-MS LR model with
96.2% validation accuracy (Table 2).

We report the top 25 fragment ions aggregated to the nearest
nominal mass for easy comparison to the features in the GC-MS
analysis (Fig. 4B). Viewing the top 25 fragment ions, we note two
of the same characteristic ions of fentanyl (77 and 105) as highly
important to the model along with two other ions (91 and 188)
as well, all of which are in alignment with previously published
work.24–26 Such ions are characteristic of many (but not all)
fentanyl analogs [summarized in 33]. The dependence of both
the GC-MS and HR MS/MS trained RF models on some of the
same m/z ions (especially 105 and 77) suggests the two RF
models might have some similar structure, despite different
datasets and data structures. As such, the ions that are denoted
with high feature importance by the models do not need to be
chemically characterized or identied to be of use for di-
stinguishing between chemical classes using an MLmodel or in
the development of a targeted MS experiment. While this might
seem counter-intuitive to a chemist, the chemical identity of
fragment ions is of no consequence to theMLmodels developed
in this work.

It is well understood that inherent biases exist for all ML
methods due to differences in datasets, and the GC-MS and HR
MS/MS training data that were used to generate these ML
models were indeed different (see SI Tables 1 and 2). However,
we also believe that the differences in the models could also
potentially be because of the accurate mass readings of HR MS/
MS. The diffuse peak intensities across several features can be
more difficult for the RF model to analyze. For example, m/z
fragments 188.1434, 188.1435, and 188.1436 were present
within the HR MS/MS dataset for several chemicals in the
synthetic opioid datasets (data not shown) yet all three are
within the 3-ppmmass error for the instrument. Thus, from the
perspective of the instrument, all represent the same chemical
fragment ion. However, the machine learning model we devel-
oped and employed did not bin any ions as a signal feature.
When binning is not performed, the model treats 188.1434,
188.1435, 188.1436 as three separate features (instead of one
chemical identied by the instrument), and thus further
increases the complexity of the dataset. In ML, complexity is
hard to learn and can inhibit model development, renement,
and validation. We attempted one method of binning by “clip-
ping off” the last decimal point for detected ions to lower the
complexity of the dataset (e.g., the 188.1434, 188.1435, and
188.1436 ions would all coalesce into a single “188.143” m/z ion
and a single feature for the ML model to learn). By doing so, the
ML models accuracies increased for the HR MS/MS data (data
not shown), but this method was overly simplistic and needs to
This journal is © The Royal Society of Chemistry 2026
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Fig. 4 (A) Out-of-bag (OOB) error during bootstrap selection of HR MS/MS training data for random forest models with 1–200 trees. (B) Feature
importance scores determined frommean decrease in impurity (MDI) for the highest accuracy RF model we evaluated (125 trees) on HR MS/MS
data. Testing the predictive power of the HR MS/MS RF model through evaluation of benchmark dataset.

Table 4 GC-MS and HR MS/MS RF predictions during ML model development and testing were generated with each prediction score as
a probability that the model would generate the true label of “1”, where a synthetic opioid = 1 and non-opioid = 0

‘Unknown’ Chemical GC-MS RF score HR MS/MS RF score True label

alpha-methylacetylfentanyl 0.97 0.85 1
despropionyl ortho-uorofentanyl 0.89 0.92 1
Ethiofencarb 0.11 0.07 0
N-6-APDB fentanyl 0.95 0.82 1
Phenylfentanyl 0.80 0.90 1
Pirimiphos ethyl 0.08 0.25 0
Quizalofop ethyl 0.03 0.07 0
Rotenone 0.13 0.22 0
Thiazopyr 0.05 0.17 0
Thiofentanyl 0.95 0.69 1
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be further rened. As such, binning is an important consider-
ation for future ML models using MS datasets, especially with
high resolution and multi-dimensional datasets. For this
current work, the HR MS/MS ML models are correlating all
dispersive ions (e.g., 188.1434, 188.1435, 188.1436, etc) for
a fragment into the correct classication with high accuracy
(Table 2). By correctly binning fragment ions, the classication
accuracies will increase beyond these already high values. We
suggest further work toward developing a more nuanced
representation of groups of ions as features, rather than treating
each accurate mass as a separate feature for some applications,
to yield better results with learning methods that use features as
decision boundaries.

We performed the same nal prediction test on the best HR
MS/MS RF model (125 trees, 95.9% accuracy) through classi-
cation of the same 10 compounds in the benchmark dataset
(Table 4). As with the GC-MS RF model, the HR MS/MS RF
model classied all ten compounds in a total of 0.169 seconds,
or a rate of 59.0 compounds/second, with high RF scores and
accurate chemical classications. The prediction scores
between the GC-MS and HR MS/MS RF models varied,
This journal is © The Royal Society of Chemistry 2026
conrming that different RF models were generated based on
the different datasets used. However, both models were still
successful in their prediction task for binary classication of
“unknown” chemicals.

Conclusions

Opioids are a signicant chemical threat category in the land-
scape of the 21st century, and the ML methodologies developed
through this work can eventually be applied to real-world
sample analyses and rapid eld-deployable screening tools to
counter this threat. We used ML to develop a binary classica-
tion model to separately identify pure chemical standards of
a non-exhaustive list of synthetic opioids and non-opioids (i.e.,
structurally diverse pesticides, pollutants and hydrocarbons).
MS data obtained from both nominal mass GC-MS and HR MS/
MS instruments were used to develop models for binary clas-
sication to separate synthetic opioids and non-opioid chem-
icals with 95–99%+ accuracy. Interestingly, the nominal mass
GC-MS data generated ML models with similar very high vali-
dation accuracy as the HR MS/MS ML models. While there are
Anal. Methods
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several reasons this could be the case (such as different
instrumentation biases that resulted in different usable data-
sets), we hypothesize that high resolution accurate mass read-
ings are simply not required for the RF model to effectively
distinguish the studied chemical classes. Notably, both the GC-
MS RF model and the HR MS/MS RF model generated predic-
tions with RF scores that matched the true-label identication
for each of the 10 chemicals in the benchmark dataset (Table 4).
These results support that with high quality mass spectral data
and optimizedMLmodels, classication of unknown chemicals
is achievable with high accuracy. Future work to increase the
number of chemical classes, the complexity of the sample (e.g.,
concentration of analyte, matrix conditions, etc), and the
amount of data in the mass spectral databases leveraged for ML
model development are necessary next steps before this tech-
nology can be implementable for real-world samples.

Our results support that traditional nominal mass GC-MS
instruments can generate high quality data for building
highly effective ML models. Such a result is noteworthy for
future potential eld-deployable operations when an HRMS
instrument might not be a feasible option for data collection.
Currently ion-trap mass spectrometer with so electrospray
ionization and MS/MS capabilities have been successfully
transported and deployed in the eld for rapid drug screening
analysis.34 Coupling such current capabilities with a ML-based
analytical workow would further expedite screening and data
processing. Additionally, our work shows that by training ML
models to classify chemical groups, reference-free classication
of unknown chemicals is possible. Current eld-deployable and
benchtop mass spectrometers all rely heavily on reference
libraries and mass spectral databases for identication. An
impactful future workow to screen samples on mass spec-
trometers and then leverage ML models for fast analysis and
classication of chemicals into groups of interest would cut
down on the number of missed unknown chemicals and data
analysis time. This overall workow, which includes the data
curation and processing, ML model application and testing,
and prediction testing and method error analysis, represents
a broadly applicable approach that could be applied to
screening and identifying other classes of threat compounds
including novel biotoxins and explosives. Furthermore, ML
models and importance feature determination could be used in
developing a targeted data analysis method for opioid identi-
cation. Overall, this work supports the development of science
and technology tools and capabilities to meet challenges in
emerging threat identication.
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