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AminoacidDB: a liquid chromatography-tandem
mass spectrometry-based toolkit for the
untargeted analysis of non-protein amino acids
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Non-protein amino acids (npAAs) are produced by microbes, plants and humans, with previous estimates

suggesting that there are ≈1000 of such metabolites. Most of the npAAs were discovered as human

toxins, intermediates in metabolism and byproducts of organic and pharmaceutical synthesis. We used a

text-mining approach to identify chemicals with the NHx-R-COOH moiety in PubChem and cross-

checked those for classification against amino acid databases including Web of Science, LOTUS and

HMDB to generate a dataset of compounds, which was cleaned and curated, resulting in a library of

332,154 amino acids. We established a standard set of 41 npAAs, selected to cover a wide array of struc-

tural and isomeric space for training the machine learning model and predicting chromatography elution

using the Retip tool. Derivatization added a 6-aminoquinoline (6-AMQ) tag to the N[H] group, thus select-

ing amine-carrying compounds from the sample extract, which can be identified by cleaving the 6-AMQ

carbonyl and producing the common product ion of 171.0555 m/z in positive ionization mode to selec-

tively target amino acids in unknown datasets. AminoacidDB (https://www.aminoacidDB.ca) annotates

amino acids by matching the features of accurate mass and retention time from untargeted mass spec-

trometry datasets against the aminoacidDB library. In a proof-of-concept experiment, we putatively anno-

tated 103 amino acids and their derivatives in Arabidopsis thaliana and Cannabis sativa leaf tissues. Our

original data hypothesize a wider distribution of npAAs and peptides in plants than was previously known

and indicate the need for more research to understand the prevalence and metabolism of npAAs.

Introduction

Metabolomics is broadly defined as the use of high-resolution
analytical instrumentation for the untargeted analysis of bio-
logical samples to determine their full complement of
metabolites.1,2 Such experiments generate large, complex data-
sets with thousands or tens of thousands of features corres-
ponding to unidentified metabolites.3,4 The key challenge in
any metabolomics experiment is the careful and accurate
identification of individual metabolites, biochemical path-
ways, clusters of metabolites and patterns of biological signifi-
cance. The development of tailored software and data-driven
approaches for processing and analyzing metabolomics data

has increased the accuracy power of metabolomics
analysis.2,4–7 This is especially evident in untargeted metabolo-
mics, where thousands of small molecules can be routinely
detected in a single analysis.1,3,8 Further development of new
analytical strategies and instruments has the potential to
greatly increase our understanding of metabolism.

There is an increasing interest and need for technologies
that enable to understand the biochemical mechanisms and
biological functions of amino acids. Amino acids are com-
monly defined as organic molecules with a central carbon
backbone and at least one basic amino (NH2) moiety and one
acid carboxyl (COOH) moiety.9 Amino acids are differentiated
by the molecular configuration of their central carbon back-
bone and functional definition. The term canonical amino
acids describes the 20 metabolites that commonly make up
proteins.10 Non-protein amino acids (npAAs) are characterized
by the fact that they are not normally found in proteins.11,12

The number, diversity, prevalence and metabolic importance
of npAAs in nature remain unknown. Bell (2003) estimated the
presence of about 900 to 1000 npAAs in plants.12,13 Most of
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the literature only describes a small group of npAAs found
incidentally in foods,14 meteorites15 or in the context of
human diseases.13 For example, azetidine-2-carboxylic acid
from sugar beets was discovered because it causes tissue mal-
formations in animals.16 Djenkolic acid, produced by the plant
Archidendron jiringa, was discovered because it causes severe
illness and acute kidney failure.14,17 β-N-Oxalyl-L-
α,β-diaminopropionic acid (ODAP), found in Lathyrus seeds
and plants, was identified to be associated with the neurologi-
cal disorder lathyrism.18 β-Methylamino-alanine (BMAA) was
isolated from cycad seeds in 1967, which is a neurotoxin
associated with amyotrophic lateral sclerosis/parkinsonism-
dementia complex.19 One intriguing possibility under investi-
gation is the potential of natural npAAs to be mis-incorporated
into proteins due to errors in protein synthesis or via currently
unknown RNA mechanisms.20–24 For example, levodopa has
been shown to be mis-incorporated into proteins in place of
tyrosine in patients with Parkinson’s disease.24 BMAA has
been shown to be mis-incorporated into proteins in in vitro
synthesis systems22 and cell cultures.23

New analytical tools are required to fully understand the
metabolism, biochemistry and health impacts of npAAs.
Accordingly, the objectives of our work were to (1) develop a
comprehensive database of npAAs and (2) develop and validate
a database toolkit for the analysis of npAAs in all types of
samples including plants, microbes, animals, humans and
ecosystems. Our toolkit combines methods for the analysis of
large datasets and databases4 with predictive algorithms1,7,25,26

and high-resolution mass spectrometry27,28 in an accessible
online, open-source format7 for easy use. Our technology com-
bined with emerging omics technologies and advances in
mass spectrometry will enable studies to fully understand the
amino acid complexity in proteins, cells and organisms.

Methods
Chemicals

Acetonitrile (CAS No. 75-05-8, Optima® LC/MS, Fisher
Chemical, Ottawa ON), water (CAS No. 7732-18-5, Optima® LC/
MS, Fisher Chemical, Ottawa ON; 18.2 MΩ cm, Direct Q3,
Millipore, Mississauga, ON), methanol (CAS No. 67-56-1,
Optima® LC/MS, Fisher Chemical, Ottawa ON), formic acid
(CAS No. 64-18-6, Optima® LC/MS grade, Fisher Chemical,
Mississauga, ON), 6 N hydrochloric acid (HCl, CAS No. 7732-
18-5, 7647-01-0, Fisher Chemical, Mississauga, ON), 0.1 N tri-
chloroacetic acid (TCA), which was made by dissolving TCA
reagent (>99.0%, CAS No. 76-03-9; Sigma-Aldrich) in ultrapure
water), 0.2 M borate buffer and 6-aminoquinolyl-N-hydroxysuc-
cinimidyl carbamate (AQC) (AccQ·Tag™ Ultra Derivatization
Kit, Part No. 186003836, Waters, Mississauga, ON; kit reconsti-
tuted according to manufacturer’s instructions).

Standards

41 authentic amino acid standards were used for method
development (Table S1). They include a standard mix of 17

protein amino acids called amino acid standard H (Thermo
Fisher Scientific™), structural isomers of protein amino acids
such as beta-alanine, DL-norvaline, and DL-norleucine, and
other npAAs including L-β-N-methylamino-L-alanine (BMAA)
and its 3 structural isomers, 1-aminocyclopropane-1-carboxylic
acid (ACC), and DL-β-3,4-dihydroxyphenylalanine (DOPA),
among others (Table S1). The amino acids were selected to
cover a wide array of structural and isomeric space. The stock
solutions of most amino acids were created by dissolving their
powder in 0.1 M aqueous HCl (details in Table S1), while
further dilutions were performed with 20 mM aqueous HCl
(Table S2). The stock solutions were stored at −20 °C.

UHPLC-MS/MS method development

A method for the untargeted analysis of amino acids by
LC-MS/MS was developed for amino acids derivatized with
AQC. Derivatization makes the polar zwitterionic amino acids
amenable to reverse phase separation and increases the repro-
ducibility of the method.29,30 The method was developed by
the modification of targeted analysis methods.29–32

AQC derivatization

Employing stock solutions of the 41 amino acid standards, a
mixture of amino acid standards was created based on the pre-
liminary analysis of MS detector response (see Table S1 for
detailed list of authentic standards). 10 μL of the amino acid
mixture was diluted with 70 μL of borate buffer in an autosam-
pler vial (2 mL amber glass with pre-slit Teflon-coated caps;
Waters Corp.) fitted with a conical bottom spring insert
(250 μL glass; Canadian Life Science, Peterborough, ON,
Canada) and derivatized with 20 μL of AccQ·Tag™, followed by
vortex mixing (Vortex Genie 2; Scientific Industries, Bohemia,
USA) and incubation at 55 °C for 10 min to complete the
reaction.

UHPLC parameters

The analysis was performed on a Vanquish UHPLC (Thermo
Scientific) system fitted with a Vanquish autosampler, coupled
to a Q Exactive hybrid quadrupole-Orbitrap mass spectrometer
(Thermo Scientific) with a heated electrospray ionization
(HESI) probe (Waltham, MA, USA) for amino acid detection.
10 μL of the derivatized amino acids was injected into a
reverse-phase CORTECS® UPLC® C18 column (2.1 × 150 mm,
1.6 μm; Part No. 186007096, Waters, Mississauga, ON) fitted
with a CORTECS® C18 VanGuard Pre-column (90 Å, 1.6 µm,
2.1 mm × 5 mm; Part No. 186007123, Waters, Mississauga,
ON) heated to 55 °C. The amino acids were eluted with a gradi-
ent-elution of water/formic acid (99.9 : 0.1; v/v) (solvent A) and
acetonitrile/formic acid (99.9 : 0.1; v/v) (solvent B) at a flow rate
of 0.4 mL min−1. The needle and seal wash solvent consisted
of water : methanol (80 : 20; v/v). The wash time was 10 s at a
speed of 25 μL s−1. The sample manager temperature was set
to 4 °C. The method was optimized for the separation of struc-
tural isomers along the retention time (RT) axis, while the
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amino acids with similar masses were resolved by high-resolu-
tion mass spectrometry (HRMS) in the Orbitrap. The opti-
mized method had a run time of 30 min with the gradient
curve, as given in Table S3.

Mass spectrometer parameters

MS data was collected between 0.5–29 min of chromatographic
run time using a full MS/data-dependent MS2 (dd-MS2) experi-
ment in a Q Exactive hybrid quadrupole-Orbitrap mass
spectrometer (Thermo Scientific) coupled to HESI. The ions
were detected in positive mode with electrospray ionization
(ESI) and default charge state of 1. The full MS data was col-
lected in profile mode for a scan range of 75 to 800 m/z at a
resolution of 70,000 at m/z 200. The automated gain control
(AGC) target was set to 1 × 106 or 50 ms as the maximum injec-
tion time. The top 5 precursor ions from each scan were frag-
mented in dd-MS2 with a stepped collision energy of 17.5, 30
and 47.5 eV. The isolation window was set to 2.0 m/z to select
the precursor ions. The parameters for MS2 were as follows,
mass resolution: 17,500 at m/z 200, scan range: 120–2000 m/z,
AGC: 1e5, Maximum IT: 50 ms, and dynamic exclusion: 2 s.

Method performance

The sensitivity, selectivity, limit of detection, limit of quantifi-
cation, accuracy and precision of the method were assessed by
repeated intra- and inter-day analysis of the authentic amino
acid standards (Table S4). A representative standard mix was
run four times per day along with the entire dilution series
over three days (Table S2) to calculate the residual standard
deviation in MS response and shift in RT (Table S4).

Data processing

Raw files from Q Exactive Orbitrap were processed using
Compound Discoverer v3.3.2.31 (Thermo Scientific) for RT
alignment, compound detection, predicting elemental compo-
sitions and compound identification. For compound detec-
tion, the mass tolerance was set to 5 ppm, min peak intensity:
10000, and min #scans per peak: 5, S/N threshold: 1.5. The
detected compounds were scored for the presence of 171.0555
m/z in MS2 as the product ion is produced upon cleavage of
the 6-aminoquinoline (6-AMQ) tag from the AQC-derivatized
amino acids in MS/MS. The m/z and RT information from the
amino acid standards was used as input to train the RT predic-
tion models for the development of aminoacidDB.

Developing web-tool for amino acid
identification, aminoacidDB

The code for the aminoacidDB web-tool was written using R,
RStudio and RShiny. This web-tool is publicly available via
aminoaciddb.ca. The code performs amino acid matching
between user-uploaded data and aminoacidDB datasets based
on accurate mass and RT. Putative compound identity is
assigned through m/z matching based on the user-defined
mass tolerance. Once putative amino acid(s) are identified for

a given m/z, then the predicted RTs are compared to the experi-
mental RT. This allows analysts to eliminate isobar amino
acids with predicted RTs that are considerably different from
the experimental RT. The predicted RTs are considered after
m/z as RT is more variable across instruments. The datasets
for aminoacidDB were curated using the following methods.
“Amino acids” were defined as chemical compounds contain-
ing at least one basic amine (primary or secondary) functional
group and one carboxyl functional group and include the
known and unknown biological functions of both protein and
non-protein classes. The “amino acid” categories in databases
such as LOTUS and HMDB (Human Metabolome Database)
contain compounds where either the amine or carboxylic acid
functional group is modified, leaving no free amine or car-
boxylic acid, respectively, and these compounds were desig-
nated as amino acid derivatives in aminoacidDB.

LOTUS

LOTUS is a natural product database with >250 000 metabolites
from biological organisms including plants.33 LOTUS includes
a biological and chemical classification of metabolites based
on biological origin and chemical structure, respectively.
Based on the chemical classification, we downloaded the
small peptides class in LOTUS from PubChem containing
amino acids, dipeptides, tripeptides and non-classified cat-
egories [June 2025]. The dataset was filtered to remove com-
pounds not containing C, N or less than 2 O atoms as well as
duplicated chemical structures (represented by duplicate
SMILES/InChIKey). The dataset was manually investigated to
avoid removing any unique amino acid structures. The dataset
contains name, monoisotopic mass, molecular formula,
chemical structure (SMILES and InChIKey) and LOTUS classifi-
cation for each of the compounds.

HMDB

HMDB is a database of >200 000 small molecule metabolites
found in the human body.34 The compounds in HMDB are
classified into various classes using ClassyFire35 including a
class called amino acids, peptides and analogues. We down-
loaded the classified HMDB dataset from the ClassyFire
website (released 2016-08-31) and selected metabolites in
classes containing the term “amino acid”. The HMDB IDs from
the selected metabolites were searched against the latest
HMDB data (released 2021-11-17) to retrieve metabolite infor-
mation including name, monoisotopic mass, molecular
formula, chemical structure (SMILES and InChIKey) and
ClassyFire classification. Similar to LOTUS, the dataset was fil-
tered to remove duplicate amino acid entries and combined
with the LOTUS dataset.

Web of science

The above-mentioned LOTUS and HMDB datasets were sup-
plemented with known npAAs in plants from Web of
Science™. Text-mining was performed using Web of Science™
with terms (“non protein* amino acid*” OR “nonprotein*
amino acid*” OR “noncanonical amino acid*” OR “non cano-
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nical amino acid*” OR “noncoded amino acid*” OR “non-
protein* amino acid” OR “non-canonical amino acid” (all
fields) + plant* (all fields)) [May 2025]. The publications from
the search were manually curated to extract known npAAs. The
SMILES, InChIKey, monoisotopic mass and molecular formula
of npAAs were retrieved from PubChem. The npAAs were com-
bined with the above-mentioned LOTUS and HMDB datasets.

PubChem

The PubChem database was downloaded in SDF format on
January 16, 2021 from https://pubchem.ncbi.nlm.nih.gov/
source. 109,050,179 chemicals were extracted and saved in CSV
files. All data processing was achieved in R (v4.2.1). Prior to
any further processing, deuterated chemicals and chemicals
with nitrogen in the form of an ammonium cation were
excluded from the PubChem database. Afterwards, several cri-
teria were applied to find the chemicals containing both car-
boxylic and amine (primary or secondary) groups. The pres-
ence of the carboxylic group was determined by checking the
presence of ‘(C(vO)O)’ and ‘C(vO)O’ in SMILES. The presence
of non-charged primary and secondary amine groups was
determined using fingerprint. The SMILES was first converted
to fingerprint using the get.fingerprint() function with the
‘maccs’ method in the ‘fingerprint’ R package. The chemicals
with bit of 84 in their fingerprint are primary amine com-
pounds and directly retained. The chemicals with bit of 151 in
their fingerprint are possible secondary amines(–NH) and
subject to further confirmation. If their –NH substructures are
all in the form of a peptide (amide) bond, these possible sec-
ondary amines will be excluded. For the selected compounds,
their metadata, including name, molecular formula,
PubChemID, SMILES, InChIKey and type of amine groups,
were output in CSV files. The above-mentioned extracted com-
pounds were filtered to remove heavy isotopes and chemical
mixtures, from which unique SMILES representing unique
compounds were selected. The dataset was limited to
uncharged chemicals containing CHNOS with the number of
carbons ranging from 2 to 11 to limit the database similarity
to protein amino acids.

For each of the compounds in the above-mentioned data-
sets, their functional information including number of
primary and secondary amine groups, and number of car-
boxylic acid groups was calculated using RDKit v2025.03.536 in
Python v3.13.5. The figures were plotted using the ggplot237

and ggbreak38 packages in R and RStudio, respectively.
Further, seven common MS adducts including [M + H]+, [M −
H]−, [M + NH4]

+, [M + Na]+, [M + K]+, [2M + H]+ and [2M +
NH4]

+ were calculated for each analyte in all the datasets.

Retention time prediction using Retip 2.0

The RT for selected amino acids in aminoacidDB (LOTUS,
HMDB, WoS, and PubChem) was predicted based on a model
built using Retip 2.039 in R (v4.5.0). 198 known analytes cover-
ing a wide array of metabolite space including amino acid
standards (non-derivatized and AQC derivatized), phenolics,
hormones, cannabinoids, and terpenes (Table S5) were used to

build a robust RT prediction model. The standards were ana-
lyzed using the above-mentioned optimized UHPLC-MS/MS
method and their RT and m/z were extracted from Compound
Discoverer. The structural information (SMILES and InChIKey)
along with RT was used as input in Retip to build an RT pre-
diction model. Based on the structural information, Retip 2.0
calculates chemical descriptors using cdk for each compound,
all of which are used as predictors in model building. The data
from 198 analytes was split randomly, where 80% was used for
training the model and 20% was left out for external validation
of the model performance. Within the training dataset,
10-times k-fold cross validation was also performed.

Retip 2.0 has five built-in algorithms for RT prediction
including random forest (RF), bidirectional recurrent neural
networks (BRNNs), XGBoost, light gradient-boosting machine
(lightGBM), and H2O auto machine learning (autoML).
Multiple models were built within each of the algorithms
using multiple iterations of parameters (e.g., 10 values of
tuning parameters for random forest, 5 unique neural network
architectures for BRNN, and 30 for autoML), the best of which
was selected using 10-times k-fold cross validation.39 The best
model among them was selected based on the R2, root mean
square estimate (RMSE) and mean absolute error (MAE) of the
external validation dataset and was used to predict RT for the
amino acids in aminoacidDB.

Method testing and validation
Test plant materials

Arabidopsis thaliana L. Heynh (Col. 0). A. thaliana Col 0
plants were propagated from seeds and grown via in vitro
tissue culture under sterile conditions. The sterile controlled
growth environment room was set at 25 °C, under a 16 : 8
photoperiod at a light intensity of 25–45 µmol m−2 s−1 at the
bench level, and at a positive pressure (+2.9–3.7 Pa) under
HEPA-filtered air. Briefly, the seeds were surface sterilized with
a sterilization solution (70% Clorox and 0.1% Tween in sterile
water) for 5 min, followed by multiple washes with sterile
water. The sterilized seeds were planted in magenta boxes con-
taining Murashige & Skoog Modified Basal Medium with
Gamborg B5 Vitamins (PhytoTechnology Laboratories, Lenexa,
Kansas) solidified with 0.3% Phytagel™ (Sigma-Aldrich) and
1% sucrose at pH 5.7. The medium was sterilized by autoclav-
ing at 121 °C and 15 psi for 20 min (Steris, Mississauga, ON).
One magenta box served as one replication unit. Shoots from 4
replicates were harvested 3 weeks after sowing.

Cannabis sativa L. CV ‘Black Cherry Punch #2’. Samples of
C. sativa ‘Black Cherry Punch #2’ leaves were provided by a
commercial research facility (Hawthorne/Flowr R&D Facility,
Kelowna, BC) to our licensed research cannabis facility (Health
Canada License LIC-0IW2D2L5JY-2024-1) under a Material
Transfer Agreement for research. The cannabis plants were
grown in a controlled environment growth room under full-
spectrum LED light (Gavita 1700e, Hawthorne) with a 14-day
propagation stage, 22-day vegetative growth phase and 49-day
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flowering cycle. The plants were grown in rock wool cubes (6″
cubes, Grodan) with optimized fertigation (FloraPro Series
‘Expert’; General Hydroponics). Samples were provided from
the dry trim cut 7 days after transplanting propagation plugs
into the rockwool cubes, transported to UBC and stored at
−80 °C until analysis. Four biological replicates were used for
further analysis.

Amino acid extraction and sample preparation

Free soluble amino acids were extracted from the leaf samples
using 0.1 N TCA to avoid highly abundant protein amino acids
in the protein pellet. Briefly, leaf tissue was ground with liquid
N2 and weighed (∼200 mg) into a 1.5 mL microcentrifuge tube
(Fisher Scientific, USA). The ground leaf tissue was homogen-
ized with 1000 μL of 0.1 N TCA by vortexing at full speed for 30
s. The homogenized samples were centrifuged (5 min at 13 000
rpm) to pellet the proteins. An aliquot of 800 μL of the super-
natant was filtered through an Ultrafree®–MC GV centrifugal
filter tube (Durapore® 0.22 μm PVDF membrane; Merck
Millipore) by centrifugation (5 min at 13 000 rpm) to yield the
filtered free amino acid extract. The filtered amino acid extract
was stored at −20 °C until analysis. 10 μL of the extract was
derivatized with 20 μL of AccQ·Tag™ similarly to the standards
and used for untargeted analyses in UHPLC-MS/MS. A derivati-
zation blank was prepared, where 10 μL of extraction buffer
(0.1 N TCA) was added instead of the sample extract. An extrac-
tion blank was prepared following the extraction protocol
without the plant material. 10 μL of the derivatized mixture
was injected onto the instrument for analysis using the above-
mentioned optimized LC and Orbitrap parameters. A sample
of A. thaliana was prepared separately and used as a quality
control sample for the analysis. Additionally, solvent blanks
were run at the start, middle and end of the runs to assess
carryover.

Data processing and annotation of non-protein amino acids

The raw files from Orbitrap were processed using Compound
Discoverer (v3.3.2.31), as described above. For the predicted
compositions, the minimum element count was described as
C10H7N2O similar to the elemental formula of 6-AMQ tag
added by AQC derivatization to limit the predicted compo-
sitions. Features with a peak area greater than 5e4 were
selected and manually curated to remove artifacts, adducts
and tag peaks. The m/z and RT information from the curated
peaks was used as input for aminoacidDB for putative com-
pound annotation. The features where accurate mass (<5 ppm
mass error), MS/MS, RT and predicted composition can be
matched with authentic analytical standards were annotated at
Metabolomics Standard Initiative (MSI) level 1 confidence.40

The features that matched with <5 ppm mass error, percent RT
match >75% and predicted composition were putatively anno-
tated at MSI level 2.40 The features with <5 ppm mass error
and percent RT match <75% or that matching multiple
isomers with <5 ppm mass error and percent RT match >75%
were putatively annotated at MSI level 3.40 Finally, the features
where only elemental composition could be predicted with

confidence were putatively annotated at MSI level 4.40 A t-test
followed by Benjamini-Hochberg correction was applied for
the comparison of npAAs detected in both species.

Meta-analysis of previous metabolomics studies

To validate the use of the aminoacidDB web interface for versa-
tile metabolomics datasets, we performed npAA annotation on
untargeted metabolomics datasets from the Metabolomics
Workbench (https://www.metabolomicsworkbench.org/). We
decided to focus on studies conducted on our selected study
species, A. thaliana and C. sativa. As of June 2025, there were
24 studies on A. thaliana and 0 studies on C. sativa in the
Metabolomics Workbench. The list was filtered to remove
studies using nuclear magnetic resonance (NMR), gas chrom-
atography-mass spectrometry (GC-MS), hydrophilic interaction
chromatography (HILIC), or reversed phase LC techniques
with low-resolution detection methods. We also excluded
studies with only unaligned raw data. In the case of studies
analyzing multiple species, features not detected in A. thaliana
were removed. This resulted in 3 studies with 6 datasets
including 3 in ESI+ mode and 3 in ESI− mode (Table S7). The
features that were common between ionization modes were
counted as one. The features within 0.01 mass tolerance were
considered common across the studies. The m/z and RT were
searched against aminoacidDB data using a mass tolerance of
10 ppm and RT threshold of 50% given that none of the
selected studies had the exact chromatography conditions
(column, mobile phases and gradient) as the LC method used
to predict the elution profiles in aminoacidDB.

Results and discussion
Standardized operating protocol for npAA analysis and
identification

The standardized operating protocol (SOP) including sample
preparation, UHPLC-MS/MS method and data processing was
optimized for the analysis of npAAs in plants (Fig. 1). The
amino acids were targeted during sample preparation by the
derivatization of their amine group with AQC. AQC derivatiza-
tion adds a 6-AMQ tag to the N[H] group, thus selecting
amine-carrying compounds from the sample extract.29,30

Further, in MS/MS, the 6-AMQ carbonyl cleaves from the deri-
vatized structure, producing a common product ion of
171.0555 m/z in positive ionization, which is used to selectively
target amino acids post-acquisition.29,30 Among the 41 amino
acid standards, DL-4-chlorophenylalanine methyl ester and
kynurenic acid failed to derivatize with AQC. This might be
due to the presence of delocalized electrons in the quinoline
ring of kynurenic acid, resulting in a weakly nucleophilic
N. Only one dissociation event was observed for kynurenic acid
at pKa of 2.43,41 with no dissociation event at basic pH, indi-
cating that the quinoline N does not dissociate, contrary to its
structural inference.41 These findings suggest that weakly
nucleophilic amines (with an aromatic ring system or bonding
to an electron-withdrawing group) might not derivatize with
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AQC, and hence are not targeted by the current method. The
LC-MS/MS method parameters were optimized for the remain-
ing 39 amino acid standards. The finalized method has a
runtime of 30 min (Table S3) and uses solvents and instru-
ments employed for routine amino acid analyses29,30 for wide-
range applicability across biology and analytical chemistry lab-
oratories. HRMS helped separate close masses (<5 ppm accu-
racy), which is instrumental in the annotation of npAAs in
mass spectrometry datasets with accurate mass matching and
prediction of elemental compositions. Structurally similar
isomers cannot be differentiated in MS due to their same
mass, and thus were resolved along the RT axis and differential
MS/MS patterns (Fig. S1). Recent advancements in ion mobility
(IM) techniques such as trapped ion mobility spectrometry
(TIMS) offer the orthogonal separation of isomers based on
their gas-phase mobility (shape, size, and charge) via their col-
lision with a buffer gas (nitrogen or helium) under the influ-
ence of an electric field.42 A unique advantage of IM experi-
ments is that the collision cross section (CCS, Ω) value of an
ion could be used to characterize isomers, especially in cases
where chromatographic separation and MS/MS are

insufficient.42,43 Comprehensive two-dimensional separation
(LC × LC and GC × GC) is another technique for resolving
structural isomers such as amino acids by subjecting analytes
to two stationary phase chemistries in one injection before MS
or MS/MS.44 Unlike IM, separation occurs before ionization,
mitigating ion suppression by physically separating the coelut-
ing matrix components before ionization.45 Structured chro-
matograms also arise in comprehensive separations, revealing
characteristic patterns of analytes sharing physiochemical pro-
perties.46 The developed SOP expands amino acid analyses by
including npAAs missing in traditional amino acid analyses,
along with a derivatization-based selection strategy, allowing
the discovery of novel amino acids using tools readily available
in laboratories.

AminoacidDB web-tool

AminoacidDB is an open-source web-tool (available at aminoa-
ciddb.ca) for the identification of npAAs post-acquisition. It
allows users to annotate amino acids including npAAs in
untargeted metabolomics datasets from any source (plants,
animals, microbes, and humans) by matching accurate mass

Fig. 1 Standard operating protocol (SOP) for the analysis, discovery and identification of amino acids using aminoacidDB.
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and RT against the aminoacidDB datasets. Currently,
aminoacidDB contains 332,154 amino acids and derivatives
from LOTUS, HMDB, and PubChem. Additionally, there are 4
different adduct classes users can search against: monoisoto-
pic (the monoisotopic mass of amino acids from LOTUS/
HMDB or PubChem datasets), [M + H]+ ([M + H]+ adduct of
amino acids in ESI+ mode), [M–H]− ([M–H]− adduct of amino
acids in ESI− mode), and adducts ([M + Na]+, [M + K]+, [M +
NH4]

+, [2M + H]+, and [2M + NH4]
+ adducts of amino acids in

ESI+ mode).
Data input and output. User data are uploaded in CSV

format with m/z in the first column, RT in the second column
and sample concentration (area or intensity) in the remaining
columns. The CSV format provides versatility to aminoacidDB
given that metabolomics datasets could be collected using any
available HRMS instrument (Orbitrap, time-of-flight (TOF),
FT-ICR etc.) as well as processed with a variety of software
(such as XCMS, MS-DIAL, MZmine and vendor software). Prior
to uploading data, the user selects the datasets (LOTUS/HMDB
and/or PubChem) and adducts to search against: monoisoto-
pic, [M + H]+, [M − H]− or adducts, along with the mass toler-
ance (±Da or ppm). The mass error to be selected depends on
the type of instrument and methods used for data collection.
For example, 0–5 ppm mass error is generally recommended
for Orbitrap instruments and 10–15 ppm for TOF instruments.
The output of aminoacidDB can be viewed in the “Screener
Output” tab on the app or downloaded as a CSV file by clicking
the “Download Results” on the “m/z Screener” tab. Searching
is performed first by m/z, followed by RT, as predicted RTs are
more variable across systems. However, no holistic scoring
metric is used considering both m/z and RT. An example
dataset to familiarize users with the formatting and use of
aminoacidDB is provided on the website.

AminoacidDB dataset curation. There are 332,154 amino
acids in the current version of aminoacidDB curated from
LOTUS, HMDB or PubChem resources. The “All Amino Acids”
tab presents all the relevant information for amino acids
including name, structure, formula, monoisotopic mass,
source of the amino acid, class (amino acid or amino acid
derivative), LOTUS classification, and HMDB ClassyFire classi-
fication. The datasets are also available to download in CSV
format using the “Download All Amino Acids” button in the
“Instructions” tab.

LOTUS/HMDB dataset. Amino acids from the LOTUS and
HMDB datasets could be considered as classified amino acids.
Using Lotus, there were 3194 analytes in the small peptide cat-
egory including amino acids (1509), dipeptides (1103), tripep-
tides (503) and not classified (79). The classification in LOTUS
is non-exclusive, resulting in the same compound classified
into multiple categories. Only one unique entry per compound
was kept, along with the removal of duplicate structures (rep-
resented by SMILES/InChIKey), resulting in a dataset of 2460
compounds from LOTUS.

The ClassyFire dataset of HMDB contained 4686 unique
HMDB IDs from the “amino acid” classes. Searching HMDB
did not retrieve any results for 159 of these HMDB IDs.

Further, multiple IDs matched one compound, only one of
which was kept, along with the removal of duplicate and non-
amino acid structures, producing a dataset of 4467 compounds
from HMDB. 429 analytes were common between the HMDB
and LOTUS datasets. The dataset was supplemented with 27
known npAAs from Web of Science™ (WoS) that were not
found in either the HMDB or LOTUS datasets. This resulted in
a final dataset of 6525 putative npAAs and derivatives, high-
lighting the extent of known amino acids that are missing in
traditional metabolomics and amino acid analysis and can be
targeted using the aminoacidDB protocol.

More than 42% of the analytes from LOTUS, HMDB and
WoS had either their amine or carboxylic acid functional
moiety modified, leaving no free amine/carboxylic acid group,
and were classified as amino acid derivatives; the rest were
classified as amino acids (Fig. 2A). Approximately 2/3rd of the
compounds contained a primary amine group, while the rest
contained a secondary or tertiary amine or other N functional
groups (Fig. 2A). In the amino acid class, >75% of primary
amino acids had one NH2 moiety, while <5% had 3 or more
NH2 groups. 46% of the secondary amino acids had one N[H],
23% had two, and 5% had more than 4 N[H] groups (Fig. 2A).
Further, >90% of the amino acids had 2 or less COOH func-
tional groups (Fig. 2A). Given that the amino acid derivatives
had their carboxylic or amino group modified, >90% of the
compounds in this class did not have a free COOH group
(Fig. 2A), while ∼90% of the compounds had at least one NH2

or N[H] moiety (Fig. 2A). The wide variation in molecules
based on their functional groups and position and length and
structure of their carbon chain highlights the structural diver-
sity of amino acids known from biological sources (plants,
microbes or humans) beyond the 20 protein amino acids.
Profiling this diversity of npAAs in biological samples would
provide an opportunity to better understand their role in
protein chemistry and metabolism.

PubChem dataset. The PubChem search for amino acids (>1
C(vO)O + >1 (N[H])) resulted in 2,631,019 compounds, which
were filtered to remove artifacts, heavy isotopes and stereoi-
somers. The remaining 2,184,228 unique structures had a
monoisotopic mass following a normal distribution, with 90%
of compounds falling between 209.1052 Da and 665.2957 Da
(Fig. S2). This is interesting considering that the heaviest
protein amino acid, tryptophan, has a mass of 204.2 Da and
majority of the PubChem matches are larger. These data may
reflect the composition of the PubChem literature, which
includes both naturally occurring and synthetic npAAs as well
as short peptides and amino acid conjugates. To better reflect
the biological relevance in the dataset, we restricted the
included compounds to those with a molecular formula con-
taining C, H, O, N and S and between 2–11 carbons. This
resulted in a dataset of 325,843 compounds (Fig. 2B). Within
this subset of data, we identified 8358 unique molecular
masses, 2800 of which were non-isomeric, while 5558
accounted for most of the observed structural diversity. The
full dataset can be accessed through the online tool and has
been made available through Borealis (https://borealisdata.ca/
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dataset.xhtml?persistentId=doi:10.5683/SP3/DTAZ1G). The
average number of isomers per compound was 58.2. There
were >2200 structural isomers for 20 protein amino acids, with
as many as 525 isomers for tryptophan, highlighting the struc-
tural diversity of the dataset (Fig. S3). Most of the structural
diversity is in the length of the carbon chain and position of
the functional groups given that >50% of the amino acids con-
tained one amino and one carboxylic group (Fig. 2B). Only
28.5% of the compounds were primary amino acids (i.e. con-
taining NH2), while the rest were secondary amino acids
(Fig. 2B). Within the primary amino acids, 88% had one
amino group, 10% had two, and <2% had 3 or more amino
groups. Among the secondary amino acids, 63% of the com-
pounds had one N[H] group, 30% had two, and <1% of the
compounds had 3 or more amino groups. >95% of the amino
acids contained only 1 COOH group (Fig. 2B).

RT prediction of aminoacidDB datasets. Retip 2.0, an R
package for predicting the retention times of small molecules
in HPLC,39 was used to build models for predicting the RT of
amino acids in the aminoacidDB datasets. Among the five
algorithms tested, autoML performed the best with R2 of 0.99,
mean absolute error (MAE) of 0.89 min and 95% confidence
interval for the predicted retention time of ±1.8 min for the
external validation dataset (Table 1 and Fig. 3). The model per-
formed well for training data with R2 of 0.96 and standard
error of 1.9 ± 3.1 min (Table 1 and Fig. 3). Retip 2.0 could not
predict the RT for compounds containing unusual elements
(Si, Gd, and As). The final npAA datasets with predicted RT are
LOTUS/HMDB (6485 compounds) and PubChem (325,669

compounds). We advise users to use our method conditions to
appropriately use the RT matching criterion in aminoacidDB,
which annotate npAAs at MSI level 2,40 along with running a
set of authentic standards covering the space of gradient
elution parameters to account for unintentional differences
across systems. If the authentic standards are not run with a
similar LC method (column type and solvent system), an RT
matching algorithm could be employed to reject candidates,
thereby reducing the target space. With the use of different LC
conditions, the RT matching criterion is not advised as the RT
tends to vary. The use of aminoacidDB for hypothesis gene-
ration should be guided by an assessment of biological plausi-
bility, statistical significance analysis, metabolite cluster ana-
lysis and pathway mapping to ensure the valid interpretation
of the results.

AminoacidDB custom search tool. AminoacidDB has a
special feature where the code was modified to create the
“Custom Database Search”, which allows users to use the exist-

Fig. 2 Functional analyses of amino acids in the aminoacidDB dataset: (A) LOTUS/HMDB and (B) PubChem. Blue, red and grey colors in the pie
charts indicate the proportion of compounds containing primary amine, secondary amine or other N-functional groups, respectively. The bar graphs
show the number of NH2 (dark blue), N[H] (red) or COOH (light blue) moieties per compound on the X-axis plotted against percentage of com-
pounds on the Y-axis.

Table 1 Model performance characteristics for testing (external vali-
dation) and training datasets for auto machine learning (autoML) Retip
model for retention time prediction. Retention time units are in minutes.
RMSE: root mean square estimate and MAE: mean absolute error (in
minutes)

autoML RMSE R2 MAE (minutes) 95% ± min

Training 1.92 0.96 0.98 3.06
Testing 1.22 0.99 0.89 1.79
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ing search algorithm and user interface to search against a
user uploaded database rather than the internal amino acid
datasets. To use this feature, the user first makes their own
database of compounds in a CSV file using the same standard
format as the “m/z screener” and uploads it to “Custom
Database Search” along with their input files. The results can
be viewed in “Custom Database Output” or downloaded using
the “Download Results” button.

Method testing and validation

Putative annotation of npAAs in plants. After manual cura-
tion, 229 compounds were found across A. thaliana and
C. sativa leaves, 103 of which were putatively annotated using
aminoacidDB and 106 were predicted at MSI level 4 with a
molecular formula (Fig. 4). By matching with authentic stan-
dards, 15 npAAs were identified at MSI-1 with fully validated
analytical methods,29,40,47 19 were putatively annotated at
MSI-27,25,40 by matching the accurate mass (<5 ppm) and RT
(>75%) against aminoacidDB datasets, and 50 were putatively
annotated at MSI-31,40 (Tables 2, S6 and Fig. 4). Given that
aminoacidDB contains amino acid derivatives and peptides,
29 dipeptides and 2 tripeptides were also putatively annotated.

The npAA profile of C. sativa was more diverse and unique
than A. thaliana, with 44 npAAs putatively annotated (Fig. 4).
This may be attributed to the difference in their species, stage

of growth and/or environmental conditions.12,27,28,48,49 npAAs
are used as a tool in chemotaxonomy as many are produced by
specific species, families or taxa of plants,50,51 while a change

Fig. 3 Model performance for Retip retention time prediction model, autoML: (A) training dataset and (B) external validation dataset.

Fig. 4 Level of certainty and distribution of metabolites putatively
annotated in Arabidopsis thaliana and Cannabis sativa leaf tissues using
aminoacidDB. Metabolites in the darker shaded region are commonly
present in both species.
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Table 2 Detection of non-protein amino acids in Arabidopsis thaliana and Cannabis sativa

Amino acid detected

MSI
confidence
level40

Detected in
Arabidopsis

Literature
report on
Arabidopsis

Detected in
Cannabis

Literature
report in
Cannabis

Glutamate, GABA, and alanine metabolism
L-Alanine 1 ✓ ✓
L-Glutamine 1 ✓ ✓
L-Glutamic acid 1 ✓ ✓
Beta-alanine 1 ✓ ✓ ✓
Gamma-aminobutyric acid 1 ✓ ✓ ✓
L-2,4-Diaminobutyric acid 1 ✓ ✓
N-(2-Aminoethylglycine) 1 ✓
Beta-N-methylamino-L-alanine 1 ✓
Pyroglutamic acid 2 ✓ ✓ ✓
Alpha-aminobutyric acid 2 ✓ ✓
N-Methylalanine 2 ✓
Gamma-acetyldiaminobutyric acid; 4-acetamido-2-aminobutanoic acid 3 ✓
3-(N-methylamino)glutaric acid, 4-Amino-5-methoxy-5-oxopentanoic acid;
(±)-2,2′-iminobispropanoic acid

3 ✓ ✓

N-Carboxyethyl-g-aminobutyric acid 3 ✓
Gamma-glutamyl-beta-cyanoalanine 3 ✓
Iminodiacetic acid 3 ✓
4-Methylglutamate, (2S,4S,5S)-4,5-dihydroxypiperidine-2-carboxylic acid,
O-acetyl-L-homoserine, 4-Amino-5-methoxy-5-oxopentanoic acid, glutamic
acid gamma-methyl ester, 2-aminoadipic acid, (±)-2,2′-iminobispropanoic
acid

3 ✓

(3S,4R)-3-Hydroxy-4-methyl-L-glutamic acid, (2s,4r)-4-hydroxy-4-methyl-
glutamic acid, (2S,3R,4R,5S)-3,4,5-trihydroxypiperidine-2-carboxylic acid

3 ✓

Norophthalmic acid, glutaminylglutamic acid, glutamyl-Gamma-glutamate,
glutamylglutamine, N-gamma-Glutamylglutamine

3 ✓

(2S)-2-Amino-3-ethylsulfinylpropanoic acid; C5H11NO3S 4 ✓ ✓
3-Aminopropyl(methyl)carbamic acid; C5H12N2O2 4 ✓
2-Amino[(propan-2-yl)amino]butanoic acid; C7H16N2O2 4 ✓
4-Amino-5-mercapto-2-methylpentanoic acid; C6H13NO2S 4 ✓
2-(3-Furanylmethylamino)propanoic acid; C8H11NO3 4 ✓
2-(5-Ethyl-1H-1,2,4-triazol-3-yl)propanoic acid; C7H11N3O2 4 ✓
Arginine, proline, citrulline, and ornithine metabolism
L-Asparagine 1 ✓ ✓
L-Aspartic acid 1 ✓ ✓
L-Arginine 1 ✓ ✓
DL-Citrulline 1 ✓ ✓ ✓ ✓
L-Proline 1 ✓ ✓
DL-Ornithine 1 ✓ ✓ ✓ ✓
4-Oxo-L-proline 2 ✓ ✓
4-Hydroxyornithine 2 ✓
N-Acetyl-L-ornithine 2 ✓ ✓ ✓ ✓
Glycylprolylhydroxyproline 2 ✓
Prolyl-arginine, arginylproline 3 ✓ ✓
2-Aminoacrylic acid 3 ✓
Spermic acid 2 3 ✓
Asymmetric dimethylarginine, symmetric Dimethylarginine 3 ✓
Valylproline, dethiobiotin, monascustin 3 ✓
Isoleucylproline, leucylproline, 5S-hydroxynorvaline-S-Ile, Pro-leu 3 ✓
Histidine metabolism
Leucyl-histidine 2 ✓
2-Pyrrolidinecarboxylic acid; C5H9NO2 4 ✓
3-Methyl-2,3-dihydro-1H-pyrrole-5-carboxylic acid; C6H9NO2 4 ✓
2,3-Dihydro-1H-pyrazine-4-carboxylic acid; C5H8N2O2 4 ✓ ✓
3-(2-Aminoethyl)-4-imidazolecarboxylic acid; C6H9N3O2 4 ✓ ✓
Thiazolidine-2,5-dicarboxylic acid; C5H7NO4S 4 ✓
2,6-Dimethyl-1,4-dihydropyridine-3-carboxylic acid; C8H11NO2 4 ✓
2-(4,5-Dihydro-1H-imidazol-2-yl)ethyl carbamic acid; C6H11N3O2 4 ✓
Lysine degradation pathways
L-Lysine 1 ✓ ✓
N(6)-Methyllysine 2 ✓ ✓
Saccharopine; C11H20N2O6 4 ✓ ✓
Shikimate Metabolism
L-Phenylalanine 1 ✓ ✓
L-Tyrosine 1 ✓ ✓
DL-Beta-3,4-dihydroxyphenylalanine 1 ✓
4-Chloro-L-phenylalanine 1 ✓
N-(1-Deoxy-1-fructosyl)tyrosine 2 ✓
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in environment, including exposure to stress, also affects the
production of npAAs in plants.12,27,28,48,49 12 npAAs including
ACC, beta-alanine, 5-hydroxy-L-tryptophan, gamma-aminobu-
tyric acid (GABA), Cit, Orn, N-acetyl-L-ornithine (AcOrn),
L-cystine, L-2,4-diaminobutyric acid (DAB), pyroglutamic acid,
4-oxo-L-proline (4-OP), and N(6)-methyllysine were detected in
both species (Fig. 5). N-(2-Aminoethylglycine) (AEG) was
detected in A. thaliana, while 13 npAAs including 6-aminohex-
anoic acid, 4-chloro-L-phenylalanine, β BMAA, L-kynurenine,
DOPA, alpha-aminobutyric acid (AABA), N-methylalanine,
O-acetylserine, homo-L-arginine, rhizobitoxine, N-(1-deoxy-1-
fructosyl)tyrosine, terazosin and 4-hydroxyornithine were
specific to C. sativa (Table 2 and S6 and Fig. 5). Cit, Orn,
AcOrn, GABA, pyroglutamic acid, 4-OP, and L-cystine are found
commonly across the plant kingdom as part of primary
metabolism.52–55 L-kynurenine and 5-hydroxy-L-tryptophan are
metabolites of tryptophan metabolism involved in phytohor-
mone regulation in plants25,48,56 and neuromodulating func-
tions in humans.56,57 Kynurenine was recently quantified in
the µg g−1 range in C. sativa.56 DAB, BMAA and AEG are struc-
tural isomers produced by cyanobacteria and other
microbes.29,58,59 DAB and BMAA are potentially neurotoxic,
whereas AEG functions as a component of peptide nucleic

acids, which are genetic materials before RNA/DNA.22,29,60

Within the plant kingdom, DAB and BMAA have been reported
in Cycas revoluta and Lathyrus sativus previously.21,61,62

Our data demonstrate the wider distribution of these npAAs
in plants. Given that npAAs contain highly reactive amino and
carboxylic acid functional groups, it would be interesting to
understand their role in protein chemistry through (mis)-
incorporation and direct or indirect interactions.20,63 For
example, post-translational methylation of the ε-amino groups
of lysine in proteins is a known mechanism for regulating
protein–protein interactions, protein function, and
transportation.64,65 The presence of N(6)-methyllysine in
A. thaliana and C. sativa indicates the free-form availability of
this metabolite in plants with unknown roles.

Among the peptides, leucyl-histidine and cyclo(-his-phe)
were found in A. thaliana, while valylvaline, glycylprolylhydrox-
yproline, and oxiglutathione were observed in C. sativa
(Table 2 and S6 and Fig. 5). Dipeptides (linear or cyclic) have
emerged as small molecule regulators in plants but limited
knowledge is available on their diversity, distribution and
function.66,67

Meta-analysis of previous data from published studies.
Three previous studies on A. thaliana with their data shared

Table 2 (Contd.)

Amino acid detected

MSI
confidence
level40

Detected in
Arabidopsis

Literature
report on
Arabidopsis

Detected in
Cannabis

Literature
report in
Cannabis

Histidylphenylalanine, phenylalanylhistidine 3 ✓ ✓
(1R,6S)-6-Amino-5-oxocyclohex-2-ene-1-carboxylic acid, (5R,6R)-6-amino-5-
hydroxycyclohexa-1,3-diene-1-carboxylic acid

3 ✓

2,5-Dihydrophenylalanine, L-dihydrophenylalanine, (2S)-2-amino-3-
cyclohexa-2,4-dien-1-ylpropanoic acid, Norpandamarilactonine A

3 ✓

Tryptophan metabolism
L-Tryptophan 1 ✓ ✓
5-Hydroxy-L-tryptophan 1 ✓ ✓
L-Kynurenine 1 ✓ ✓
Asparaginyl-tryptophan, tryptophyl-asparagine 3 ✓
Lysyltryptophan, tryptophyl-lysine 3 ✓
Serine family metabolism
Glycine 1 ✓ ✓
L-Serine 1 ✓ ✓
L-Cysteine 1 ✓
L-Methionine 1 ✓ ✓
L-Cystine 1 ✓ ✓
1-Aminocyclopropane-1-carboxylic acid 1 ✓ ✓ ✓
Oxiglutathione 2 ✓ ✓ ✓
Homo-L-arginine 2 ✓ ✓
O-Acetylserine 2 ✓
Rhizobitoxine 2 ✓
DL-Homoserine 3 ✓ ✓
Threonylglycine, alanylserine 3 ✓ ✓
4-Hydroxyphenylglycine 3 ✓
Branched chain amino acid metabolism
L-Valine 1 ✓ ✓
L-Threonine 1 ✓ ✓
L-Isoleucine 1 ✓ ✓
L-Leucine 1 ✓ ✓
L-2-Amino-5-hydroxypentanoic acid; (2s,4s)-4-hydroxynorvaline;
L-pentahomoserine; 3-hydroxynorvaline

3 ✓ ✓

5-Methylnorleucine, N-methyl-L-isoleucine, (2S)-2-amino-4-methylhexanoic
acid

3 ✓
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publicly were compared to our primary data (Fig. 6). 26% of
the metabolites in our A. thaliana dataset were also present in
at least one of the studies from the Metabolomics Workbench,
while <1% (3 features) were common across all the datasets
(Fig. 6). The previously published data was generated from
different extraction solvents and sample preparation methods
that were not optimized for amino acids. Also, the plants were
grown under different conditions and the data acquisition and
processing parameters varied across the studies (Table S7).
More than 84% of the features that were common between at
least two studies from the Metabolomics Workbench were
shared by study 1 and 2 (Fig. 6), which were conducted by the
same researchers using the same analysis (column, solvents,
gradient and instruments) conditions (Table S7). Using
aminoacidDB datasets, we putatively annotated 86 metabolites
across the three studies, 20 of which were also present in our

A. thaliana dataset (Table S8) including 12 protein amino acids
and 6 npAAs such as pyroglutamic acid, 4-oxo-L-proline, DL-
norleucine, N-allylglycine, and 5-hydroxy-4-oxonorvaline
(Table S8). Norvaline was added as an internal standard by the
researchers in one of the previously published datasets
(Table S7) and was annotated with ∼88% RT match and
∼2 ppm mass error, highlighting the wider applicability of our
method in annotating npAAs given that the study employs a
different C18 column and LC-system than the method used to
develop aminoacidDB (Table S7). 12 additional npAAs and 23
peptides were also putatively annotated across the A. thaliana
studies, demonstrating the unexplored diversity of npAAs in
existing datasets.

Future directions and applications

npAAs remain an under-investigated class of small molecules
despite their potent roles in physiology, stress response and
ecosystems. AminoacidDB contains over 300,000 amino acids
from diverse sources, along with various MS adducts for use
with untargeted MS datasets collected with a wide variety of
instruments, techniques and methodologies. Using
aminoacidDB, researchers can dissect the identity of wide
diversity of npAAs and unravel the complexity of proteins in
combination with emergent protein sequencing platforms.
Future studies to profile npAAs in free-form or in complex with
proteins would help elucidate their roles in protein biochemis-
try and cellular physiology, with applications in human health,
agriculture and food safety.

Fig. 5 Box plots depicting the distribution of selected amino acids across various amino acid families in the leaf tissues of Arabidopsis thaliana and
Cannabis sativa. X-Axis shows peak areas (n = 4) for each of the amino acids on Y-axis. Asterisk denotes significant differences at p < 0.05.

Fig. 6 Comparison of public data from three previous studies on
Arabidopsis thaliana from the Metabolomics Workbench (Study 1–3)
with A. thaliana dataset from the current study.
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