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1. Introduction

Elucidating time-resolved intracellular metabolic
dynamics via label-free Raman microspectroscopy
and 2D correlation spectroscopy

a

Zohreh Mirveis, () **° Nitin Patil ©2® and Hugh J. Byrne
Understanding dynamic metabolic processes is central to elucidating cellular function and disease
mechanisms. Glycolysis and glutaminolysis are particularly important, as they support bioenergetic and
biosynthetic pathways, and their dysregulation is strongly linked to disorders. Raman spectroscopy pro-
vides a powerful, non-invasive approach for probing cellular dynamics, and recent advances in instrumen-
tation and computational analysis have enhanced its sensitivity, enabling detection of subtle metabolic
variations in complex environments. In this study, Raman spectroscopy combined with two-dimensional
correlation spectroscopy (2D-COS) was applied to investigate metabolic responses of cells exposed
either to glucose alone or glucose supplemented with glutamine, with emphasis on glutamine’s effect on
overall metabolic dynamics. Cells were starved for 2 h and then exposed to nutrients, after which they
were fixed at 15 minute intervals for up to 2 h and spectroscopically monitored to evaluate the kinetic
evolution of the metabolic response. To validate the approach, simulated datasets were initially used to
model simplified metabolic pathway dynamics, which confirmed that 2D-COS could reliably track the
kinetic evolution of simulated variables, even in the presence of high background interference. Analysis of
cellular spectra revealed systematic temporal changes across biomolecular bands, suggesting partial syn-
chronisation of metabolic responses, with oscillatory patterns observed under glucose-only conditions. In
contrast, glucose—glutamine samples showed accelerated and amplified metabolic variability, with stron-
ger correlations and additional variable bands, particularly linked to nucleic acid vibrations. Overall, these
findings demonstrate the utility of Raman 2D-COS for resolving intracellular metabolic dynamics from
complex datasets, offering new opportunities for advancing diagnostics and therapeutic interventions.

ing molecularly specific information without the need for
labels or dyes.” In recent years, Raman-based strategies for

Understanding dynamic metabolic processes at the cellular
level is fundamental to elucidating cellular functions and
disease mechanisms."”” Among these, the glycolysis and gluta-
minolysis pathways are of particular importance, as they
provide not only energy but also biosynthetic precursors essen-
tial for cell growth and survival.>* Dysregulation of these path-
ways has been closely associated with various disorders,
including cancer, immune dysfunction, and neurological
disorders.>® As such, monitoring their kinetics offers valuable
opportunities for developing diagnostic biomarkers and
guiding therapeutic strategies.

Raman spectroscopy has emerged as a powerful, non-inva-
sive tool for monitoring cellular metabolic dynamics, provid-

“FOCAS Research Institute, TU Dublin, City Campus, Camden Row, Dublin 8,
Ireland. E-mail: D21127294@mytudublin.ie

bSchool of Physics, Optometric and Clinical Sciences, TU Dublin, City Campus,
Grangegorman, Dublin 7, Ireland

This journal is © The Royal Society of Chemistry 2026

metabolite detection have gained considerable attention, as
highlighted in recent reviews.>® Nevertheless, its full potential
for molecular characterisation remains underexploited. A
major limitation is that advances in data analysis and spectral
mining have not kept pace with improvements in measure-
ment technologies, thereby constraining the interpretation of
complex cellular spectra.'®'" In particular, analysis of time-
resolved spectral datasets at the single-cell level is inherently
challenging, as it requires extracting subtle variations from
signals dominated by high cellular background contributions,
and associated intrinsic variance.'?

Two-dimensional correlation spectroscopy (2D-COS), intro-
duced in 1989, provides a powerful framework for resolving
subtle spectral variations induced by external perturbations
such as time."® The utility of this technique for analysing
complex cellular datasets has been demonstrated in multiple
studies."*™*° For instance, Lasch and Noda applied 2D-COS to
spatially resolved hyperspectral images (HSI), demonstrating
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its value for spectral band assignment and for detecting subtle
correlations within and across imaging modalities."” Also,
Wang et al. demonstrated the power of combining 2D-COS
with deep learning for metabolomics, enhancing spectral
resolution and facilitating classification in traceability ana-
lysis.’® Another study by Byrne et al. validated the application
of 2D-COS to time-resolved Raman datasets.'® Their work com-
bined simulated and experimental Raman data from doxo-
rubicin-treated human lung cancer cells and demonstrated
that 2D-COS can resolve different stages of the cellular
response. In this study, synchronous correlation captured the
immediate drug-binding events as well as longer-term meta-
bolic changes, while asynchronous spectra enabled these pro-
cesses to be separated and temporally resolved.

In this study, the potential of Raman spectroscopy com-
bined with 2D-COS was investigated to track metabolic
dynamics in cells exposed to either glucose alone or a glucose-
glutamine mixture, under conditions established in previous
studies.®?° This approach enabled the assessment of cellular
responses to nutrient availability, with particular emphasis on
the effect of glutamine supplementation on overall metabolic
behaviour. 2D-COS was applied to resolve these metabolic
changes and to compare the intracellular responses between
the two nutritional conditions. As the aim of this work was to
capture systematic and simultaneous changes in intracellular
metabolism, the synchronous 2D-COS map, highlighting co-
ordinated, in-phase intensity variations, was considered the
most relevant and was therefore employed. As sequential or
time-delayed processes were not the focus of this study, the
asynchronous map was not required.

To explore the data-mining potential of 2D-COS, simulated
datasets representing simplified metabolic pathway dynamics
were first used to evaluate the method under conditions of
overlapping signals and strong cellular background. Two ODE-
based kinetic models, sequential (A — B — C) and parallel (A
— C and B — C), were constructed to represent glycolysis and
the interplay between glycolysis and glutaminolysis, respect-
ively. These models were based on a previously developed gly-
colysis-glutaminolysis model but were simplified further here
to serve as a proof-of-principle framework, enabling the repro-
duction of simplified consumption-formation kinetics for eval-
uating the 2D-COS analysis method.? The resulting kinetic pro-
files were then superimposed as perturbations onto cellular
spectra to (1) introduce intercellular variability by incorporat-
ing 25 different single-cell spectra at each time point, and (2)
to assess the detectability of subtle kinetic changes by pro-
gressively increasing the contribution of the cellular back-
ground. This incorporation of real cellular data was designed
to mimic known intracellular data-mining challenges and to
generate realistic yet simplified representative conditions for
assessing the performance of 2D-COS. Data analysis was per-
formed using synchronous maps generated through auto-cor-
relation of the spectral dataset. In auto-correlation 2D-COS, a
dataset is correlated with itself to capture the internal consist-
ency of spectral variations. The resulting synchronous maps
display diagonal peaks that reflect the magnitude of temporal
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intensity changes, and monitoring their evolution enabled the
extraction of underlying metabolic dynamics. The subsequent
analysis of cellular data with this technique reliably revealed
distinct dynamical variations under both nutritional con-
ditions and highlighted the role of glutamine in accelerating
metabolic dynamics, amplifying overall variability, and contri-
buting to biosynthetic processes.

Overall, this study demonstrates the analytical potential of
2D-COS for time-resolved single-cell Raman spectroscopy
through the evaluation of cellular responses under different
nutritional conditions. By identifying subtle correlations in the
evolution of spectral features and revealing coordinated mole-
cular variations that are often obscured by high cellular back-
ground, 2D-COS provides a powerful framework for detecting
early metabolic shifts and enhancing the interpretability of
intracellular dynamics. These capabilities position 2D-COS as
a promising tool for high-content drug screening, metabolic
phenotyping, and the development of Raman-based diagnostic
markers of cellular dysfunction.

2. Methodology

2.1. Cell culture & seeding

Monkey kidney (LLC-MK2) cells were cultured in DMEM
(Sigma Aldrich, Ireland) supplemented with 10% FBS (MSC-
qualified; Sigma Aldrich, Ireland) and 1% penicillin-strepto-
mycin (GIBCO, ThermoFisher, Ireland) at 37 °C in a humidi-
fied 5% CO, incubator. Cells were seeded at 71.1 x 10* cells
per well on top of the glass already placed in 12 well plate. The
reason the glass placed at the bottom of each well plate, is that
the polystyrene has many sharp peaks and most of them
overlap on cellular key peaks like phenylalanine. Following the
protocols established in previous studies,®**' and adapted
from those of the commercially available glycolysis assay,>*
cells were starved prior to sample exposure. After seeding, they
were incubated for 16 h in nutrient-rich medium, followed by
a 2 h starvation period during which the medium was replaced
with respiration buffer (RB) and the plates were placed in a
CO,-free incubator to deplete dissolved CO, and force the cells
to consume their carbon reserves.

2.2. Sample exposure

After starvation, cells were exposed to two different nutritional
conditions: (1) glucose alone (7.5 mM) and (2) a mixture of
glucose (7.5 mM) and glutamine (2 mM). Then, cells were
fixed at 15 min intervals for up to 2 h. Fixation was carried out
by incubating the cells in 10% formalin for 15 min, followed
by replacing the formalin with PBS to prevent over-fixation.
This procedure ensured preservation of cellular morphology
and proteins for subsequent analysis.

2.3. Raman setup and measurement

Fixed-cell Raman measurements were performed using a
Horiba Jobin Yvon LabRAM HR system coupled to an upright
Olympus BX41 microscope. A 532 nm laser served as the
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source, and spectra were collected with a 100x water immer-
sion objective (LUMPIlanFL, x100, Olympus) to enhance focus
and light collection. Spectra were recorded over the
600-1800 cm™" range, covering the so-called vibrational finger-
print region. At each time point, spectra were acquired from 25
individual cells, targeting the cytoplasmic region. Pure com-
ponent spectra (glucose, glutamine, RNA, and lactate) used in
the simulation datasets were acquired with the same setup,
except with a 60x objective.

2.4. Data analysis

Data preprocessing. Following cellular spectral acquisition,
raw spectra were pre-processed by first applying a Savitzky-
Golay filter (polynomial order 5, frame length 9) to reduce
high-frequency noise, followed by the adapted Extended
Multivariate Signal Correction (EMSC) for background subtrac-
tion (glass + water), as described by Hennelly et al.>* The poly-
nomial order for EMSC was optimised by PCA clustering,
order 5 being identified as the optimum. Further details are
provided in SI.

2D-COS analysis. 2D-COS enhances spectral resolution by
correlating intensity variations as a result, and as a function of
an external perturbation, producing synchronous and asyn-
chronous maps that describe simultaneous and sequential
spectral changes, respectively.”**®> In this study, the back-
ground-corrected data were analysed using 2D-COS to resolve
coordinated metabolic variations under different nutritional
conditions as a function of time. The computations were per-
formed using the mat2dcorr MATLAB application,® with the
spectral data formatted into the required structure, including
the spectral matrix (spc), wavenumber vector (wav), and time
variable (war). For the analysis, auto-correlation was carried
out by loading the same dataset as both the X and Y inputs.
Only synchronous maps were generated, as the focus of this
study was on simultaneous, in-phase metabolic variations
rather than asynchronous, sequential processes. The synchro-
nous spectra were computed using the average spectrum as
the internal reference, with the analysis restricted to the spec-
tral region of 601-1800 cm™, as defined by the acquired
Raman spectra. In the generated synchronous maps, yellow
regions indicate positive correlations (bands varying in the
same direction), while blue regions indicate negative corre-
lations (bands varying in opposite directions). Diagonal auto-
peaks (v = v,) are always positive, with their amplitude reflect-
ing the degree of temporal variation. In this study, peaks of
the diagonal were used to identify the most variable spectral
features, which were subsequently tracked in the spectra data
to monitor their absolute changes over time.

2.5. Spectral simulations for evaluating 2D-COS

To establish a reference for cellular data analysis and to assess
the ability of 2D-COS to detect the most variable bands under
high background variance, simulated spectral datasets were
generated. These datasets provided simplified representations
of the pathways of interest, glycolysis and glutaminolysis. For
glycolysis, a sequential metabolic model with three com-
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ponents (glucose - RNA — lactate) was constructed. RNA was
chosen purely as a representative spectral component available
in-house, and no physiological significance is implied by this
label. The kinetic evolution of their concentrations was simu-
lated using ordinary differential equations (ODEs) under a
sequential scheme (A —» B — C) with rate constants k; =
0.075 min~"' and k, = 0.02 min~". To represent the interplay
between glycolysis and glutaminolysis, a parallel pathway
model (A - C, B — C) was designed, using the same rate con-
stants. In this model, both glucose and glutamine converge to
the same end product, lactate, consistent with their estab-
lished metabolic interactions.>’*®* Notably, the kinetic rate
constants were selected to produce smooth, distinguishable
temporal profiles and were not intended to represent physio-
logically measured reaction rates. Their specific values were
informed in part by the study by Mirveis et al., in which a gly-
colysis—glutaminolysis kinetic model was developed and
trained using a kinetic assay.’

To evaluate whether temporal patterns of the main vari-
ables could still be detected under increasing cellular back-
ground noise, simulated data were constructed by superimpos-
ing the component variations onto the spectra of real cellular
measurements, using the same 25 individual cell spectra at
each time point. Spectra were acquired from human lung
adenocarcinoma (A549) cells using a 785 nm laser (LabRam
HR800, Horiba) over 600-1800 cm™" with a ~1 um spot size.
The relative contribution of the cellular background was sys-
tematically increased, reducing the relative intensity of the
variable signals and thereby evaluating the detection sensi-
tivity of 2D-COS.

3. Results and discussion

3.1. Simulated data as a guide for evaluating and data
mining in 2D-COS

The metabolic pathway was modelled as a progression of cellu-
lar states (A - B — C), each characterised by distinct spectral
profiles. Each simulated component represents a spectral
fluxome or fluxotype, an aggregate of overlapping vibrational
signatures from multiple intracellular species.>® The purpose
of simulating intracellular dynamics was to evaluate whether
2D-COS could detect temporal transitions between these states
and to provide an interpretable framework before applying the
method to cellular measurements.

The simulated spectroscopic representation of the glycolysis
pathway is shown in Fig. 1, providing a reference framework
for interpreting the 2D-COS results. Fig. 1a presents the con-
centration profiles of glucose, RNA, and lactate over time,
while Fig. 1b shows their spectral signatures, with character-
istic peaks highlighted: glucose (1000-1200 cm™'), RNA
(~790 em™), and lactate (~850 cm™'). Fig. 1c presents the
simulated dynamic profiles of the components, highlighting
their continuous spectral intensity changes throughout the
time course. Fig. 1d shows the temporal variation of these
components superimposed on a cellular background (weight-
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Fig. 1 Simulated representation of the glycolysis pathway. (a) Concentration profiles of glucose, RNA, and lactate over time. (b) Corresponding
Raman spectral signatures with characteristic peaks highlighted. (c) Simulated time evolution of the spectral components over 2 h. (d) Temporal vari-
ation of the components combined with cellular spectra (25 cells per time point), discretised into 15 minute intervals.

ing = 1), generated from 25 cell spectra per time point and dis-
cretised into 15 minute intervals to mimic the experimental
sampling conditions.

The simulated data analysed using 2D-COS, and the corres-
ponding results are shown in Fig. 2. In the results, the synchro-
nous map (Fig. 2a) shows a clear separation between positive
(yellow) and negative (blue) correlations. As shown in Fig. 2b,
vertical and horizontal slices at, for example ~1127 cm™" and
~855 cm™ " do not return the pure spectra of any of the individ-
ual components, although they do indicate relative corre-
lations between the different components, for example a nega-
tive correlation between lactate and glucose, one increasing as
the other decreases, although the map alone does not specify
direction. The slices also reveal further correlations; for
example, the 1127 cm™' band correlates positively with
~1380 cm ™, suggesting either the same metabolite or distinct
metabolites varying together.

The diagonal plot (Fig. 2c) reveals the peaks which vary sys-
tematically as a function of time, wherein higher intensities
reflect stronger temporal variations. Characteristic bands of all

580 | Analyst, 2026, 151, 577-588

three components clearly contribute, the strongest peaks
appearing at 1125 cm™' (glucose), 860 cm™" (lactate), and
787 cm™" (RNA). To track the temporal evolution of the diag-
onal peaks, all identified peaks were plotted with 25 replicates
at each time point and subsequently averaged across time
points to better visualise overall patterns (Fig. S3). Since
several peaks showed nearly identical trends, one representa-
tive band was chosen for each variable to avoid redundancy,
while preserving distinct spectral changes. As shown in
Fig. 2d, the temporal evolution of the three identified charac-
teristic peaks is clearly resolved and is consistent with the
simulated data.

The results of increasing the cellular background to test the
sensitivity of 2D-COS are shown in Fig. 3. In all cases, the
average spectra were removed prior to 2D-COS analysis to
ensure that only dynamic spectral variations contributed to
the correlations. The results show that while component inten-
sities decrease proportionally with increasing cellular weight,
the temporal evolution patterns remain consistent up to a
weighting of 40. The synchronous maps and diagonal peaks

This journal is © The Royal Society of Chemistry 2026
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Fig. 2 2D correlation spectroscopy (2D-COS) results for simulated glycolysis pathway. (a) Auto-synchronous 2D-COS map. (b) Vertical and horizon-
tal slices at 1127 and 855 cm™. (c) Diagonal of the 2D-COS map identifying the strongest variable peaks. (d) Temporal evolution of representative

bands (787, 860, and 1125 cm™), consistent with simulated kinetics.

remain stable from weights 10 to 40, only the relative intensi-
ties changing (Fig. S4). This suggests that 2D-COS captures cel-
lular background signals alongside the main variables; for
example, strong peaks at 1000, 1337, and 1650 cm ™, although
their temporal evolution does not change significantly com-
pared with the main variables (Fig. S5). Importantly, the key
variables remain detectable even at a cellular weight of 40,
underscoring the sensitivity and reliability of 2D-COS in
extracting meaningful trends under strong cellular noise.

In the simulated model of the interplay of the glycolysis-
glutaminolysis pathways (A - C, B — C), the main challenge
arises from the overlap of two key variables, glucose and gluta-
mine, both of which decrease over time but, with different
dynamics. Despite this complication, the main variable peaks
at 855 cm ™" (lactate), 1132 cm™" (glucose), and 1333 cm ™" (glu-
tamine) are well resolved in the auto-synchronous map (diag-
onal peaks), and their temporal evolution can be reliably
tracked (results shown in Fig. S6). These kinetic trends are con-
sistent with the simulated data, highlighting the effectiveness
of the 2D-COS technique. Notably, the strongest glutamine

This journal is © The Royal Society of Chemistry 2026

peak near 850 cm™' is completely overlapped by the lactate
band at the same wavenumber, obscuring the glutamine trend
in this region. However, the distinct glutamine peak at
1333 cm™' serves as a reliable marker, accurately representing
its kinetic behaviour.

3.2. Data mining of label-free spectral profiles of intracellular
metabolism under two nutritional conditions

In comparison to the simulated datasets, the cellular data are
inherently more complex, as countless biomolecular processes,
including those related to growth, stress responses, and other
cellular functions, fluctuate continuously alongside metabolic
pathways.’**! Consequently, it is unrealistic to expect com-
plete resolution of dynamic changes attributable to a single
pathway such as glycolysis. What can be achieved, however, is
a broad overview of the most variable features identified by the
auto-synchronous map, which allows comparisons between
the two nutritional conditions and provides insight into how
glutamine supplementation influences the overall dynamic
behaviour of the cells.

Analyst, 2026, 151, 577-588 | 581
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Spectral data obtained from LLC-MK2 cells exposed to two
different nutritional conditions, (1) glucose alone and (2) a
mixture of glucose and glutamine, were analysed using
2D-COS. The corresponding results are shown in Fig. 4, the
left panels representing cells fed with glucose alone and the
right panels representing cells fed with the glucose-glutamine
mixture.

As shown in the auto-synchronous maps (Fig. 4a and b),
both datasets display distinct regions of positive (yellow) and
negative (blue) correlations. The correlation intensities are
generally weaker for the glucose-only sample (scale bar: —0.08
to 0.08; Fig. 4a), whereas they are stronger for the glucose-glu-
tamine sample (scale bar: —0.2 to 0.2; Fig. 4b), indicating
greater spectral variability and enhanced dynamic behaviour
when glutamine is added. In both conditions, the band
around ~1440 cm™" exhibits strong negative correlations with
several other spectral regions, most notably with the band
near ~780 cm ™. This negative correlation is illustrated in the
slice plots (Fig. 4c and d), whereby the vertical slices at

582 | Analyst, 2026, 151, 577-588

1 horizontal slices at

~780 cm™ (red curves) and the
~1440 cm™ " (blue curves) show clear opposing trends.

The diagonal plots provide further insight into the most variable
peaks over time. In the glucose-only condition (Fig. 4e), among the
pronounced peaks, the sharpest and most intense include those at
~1000 cm™" (assigned to phenylalanine in proteins), ~1440 cm™"
(CH, vibrations mainly from lipids), ~1650 cm™ (C=0 stretching
of the amide group in proteins), and ~788 cm™ (nucleic acid
vibrations).*>* In the glucose-glutamine condition (Fig. 4f), the
strong bands at ~788, ~1000, and ~1440 cm™" remain prominent,
with additional features from nucleic acids (~670, ~950 cm™", O-P-
O stretching) and proteins (~1050, ~1520 cm ™", N-H bending/C-N
stretching).**”* These extra variable peaks indicate a more complex
metabolic response, consistent with glutamine’s role as both a
structural precursor and a major nitrogen donor supporting the syn-
thesis of amino acids and nucleotides, including purines and pyri-
midines, in the cytoplasm.*®

Notably, the broad features observed in the diagonal plots,
such as the ~1570-1650 cm™' region in the glucose-only

This journal is © The Royal Society of Chemistry 2026
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tical slices at selected wavenumbers, illustrating band-specific correlation behaviour. (e and f) Diagonal plots of the 2D-COS maps, identifying the

most variable peaks in each condition.

sample, and several broad shoulders in the glucose-glutamine
sample, including ~630-750, ~850-1000, and
~1050-1150 cm™", likely arise from the combined contri-
butions of multiple biomolecules. When several overlapping
vibrational modes vary on similar time scales, their signals

This journal is © The Royal Society of Chemistry 2026

merge into broad peaks rather than sharp, well-resolved
bands. All peaks identified from the auto-synchronous diag-
onal plots were subsequently tracked as a function of time to
compare the kinetic evolution of glucose-only and glucose-glu-
tamine conditions. The corresponding plots, which include all
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replicates at each time point as well as averaged trends for
clearer visualisation, are shown in Fig. S7.

As presented in Fig. 5, many peaks display strong simi-
larities in their temporal trajectories under both nutritional
conditions. These coordinated trajectories occur across bands
assigned to different biomolecular classes such as lipids,
nucleic acids, proteins, and carbohydrates, as detailed in
Table S1. Notably, in the glucose-only condition, the co-
ordinated peaks exhibit an overall trend which seems to
increase, decrease, and increase again, as a function of time.
Such oscillations in band intensities may reflect intrinsic gly-
colytic oscillations, a well-documented phenomenon whereby
metabolite concentrations fluctuate rhythmically due to
inherent feedback regulation within glycolysis.>® In 1967,
Ibsen and Schiller reported oscillations of nucleotides and gly-
colytic intermediates in aerobic suspensions of starved Ehrlich
ascites tumour cells following the addition of glucose.?” More
recently, glycolytic oscillations have also been observed in
HeLa cervical cancer cells at the single-cell level using a mono-
layer culture system.*® One likely reason why only a few studies
have reported glycolytic oscillations in cells is the inherently
low degree of synchronisation between individual cells, which
makes such dynamics difficult to detect at the population
level.*® So, the patterns observed in this study could reflect
partial synchronisation, potentially induced by the 2 h star-
vation step prior to nutrient exposure, which resets cellular
metabolism and triggers a partially coordinated recovery
response upon refeeding.

In the glucose-glutamine samples, the addition of gluta-
mine resulted in smoother metabolic dynamics over the first
hour, followed by more pronounced changes over the second
hour compared with glucose alone. Interestingly, the
maximum intensity of these coordinated peaks occurred about
15 minutes earlier in the glucose-glutamine condition
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(~90 min) than in the glucose-only condition (~105 min), and,
unlike in the glucose-only sample, the overall trend continued
to rise at the final time point of the experiment. These obser-
vations suggest that glutamine not only enhanced the varia-
bility of the metabolic response but also accelerated the overall
cellular dynamics, consistent with its dual role in supporting
biosynthetic and bioenergetic processes.®

In addition to examining intensity profiles, the differential
2D-COS evolution of two variable bands (788 and 1440 cm™)
was evaluated for both samples (Fig. 6). In this approach, the
synchronous diagonal element is recalculated for each succes-
sive interval (e.g., 0-15, 15-30 min), highlighting periods when
a band shows greater or lesser dynamic variance relative to the
first interval. Unlike raw intensity plots that reflect absolute
signal changes, this method pinpoints the specific intervals
contributing most to kinetic fluctuations: peaks mark
increased activity, while troughs indicate relative stability.

For the band at 788 cm ™" (Fig. 6a), mainly corresponding to
DNA/RNA vibrations (O-P-O stretching), the glucose sample
shows an early rise at 30-45 min, followed by a temporary
decrease and a later increase at ~90-120 min. This pattern
may reflect transient changes in nucleic acid metabolism,
such as an early transcriptional response to glucose avail-
ability, characterised by rapid RNA synthesis and short-term
metabolic reprogramming via energy-sensing pathways.>*™*" As
an illustrative example, the Fos gene, a well-known gene to
early transcriptional response, is rapidly induced after stimu-
lation, peaking at 30-60 min and returning to basal levels by
~90 min.*” In contrast, in the glucose-glutamine sample, this
band exhibits a delayed activation (after ~60 min) compared to
glucose alone. This shift might be associated with glutamine’s
multifaceted metabolic role, although contributions from
other pathways cannot be excluded. Glutamine supplies nitro-
gen for purine and pyrimidine synthesis and, through glutami-
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Fig. 5 Temporal evolution of selected Raman bands in cells fed with (a) glucose or (b) glucose—glutamine. Each time point represents 25 single-
cell measurements (biological replicates), with no additional technical averaging applied. The plotted curves show the mean intensity profiles of the
selected Raman bands over the 0—-120 min period (15 min intervals), illustrating differences in intracellular dynamic responses between the two

nutritional conditions.
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b) Differential evolution of 1440 cm™
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Fig. 6 Differential 2D-COS evolution of the nucleic acid band (788 cm™, panel a) and the lipid band (1440 cm™, panel b) in cells fed with glucose

(blue) or a glucose—glutamine mixture (red).

nolysis, is converted to glutamate and subsequently
a-ketoglutarate, replenishing the TCA cycle via anaplerosis.® By
providing both nitrogen and TCA intermediates, glutamine
may transiently reduce the reliance on glucose-derived carbon
for nucleotide biosynthesis during the early phase of nutrient
exposure. As glutamine metabolism becomes progressively
engaged, nucleotide precursor pools are replenished more
gradually, leading to a delayed but sustained increase in RNA-
associated spectral signals.*>** It should also be recognised
that glucose and glutamine participate in multiple intercon-
nected metabolic pathways; therefore, some of the observed
spectral variations may arise from parallel processes such as
amino acid synthesis, redox regulation, and energy metab-
olism, rather than exclusively from the glycolysis-glutaminoly-
sis axis.

Similarly, for the ~1440 cm™" band (Fig. 6b), associated
with lipid CH, vibrations, the glucose condition shows an
early increase that might involve the same early response
signals as the transcriptional activation. Cellular exposure to
glucose can activate nutrient-responsive signalling pathways
that stimulate anabolic processes, including protein and lipid
biosynthesis. Consistent with this, the study by Porstmann
et al.®® demonstrated that glucose-responsive phosphoinosi-
tide 3-kinase/protein kinase B (PI3K/Akt) signalling promotes
coordinated increases in protein and lipid synthesis by activat-
ing anabolic transcriptional programs, including sterol regulat-
ory element-binding protein (SREBP)-regulated lipogenic path-
ways, which could contribute to the early increas in lipid-
associated Raman signals observed here.

For the glucose-glutamine sample, the ~1440 cm™" band,
indicative of lipid-related fluctuations, emerges later (from
~75 min onward). This delay may be linked to glutamine’s role
in replenishing the TCA cycle, which gradually generates
citrate that can be exported to the cytosol to support de novo
fatty acid and lipid biosynthesis.*®

This journal is © The Royal Society of Chemistry 2026

4. Conclusion

This study demonstrated the potential of label-free Raman
microspectroscopy, combined with 2D-COS, for mining
complex time-resolved spectral datasets and resolving meta-
bolic dynamics at the single-cell level. Simulated datasets first
confirmed that 2D-COS can reliably distinguish variable peaks
associated with glucose, RNA, lactate, and glutamine, allowing
their kinetic behaviours to be tracked even under strong cellu-
lar background signals (up to weights of 40). These results
highlight the sensitivity and reliability of 2D-COS for monitor-
ing metabolic pathway kinetics in noisy conditions.

Experimental Raman spectra from cells exposed to two
nutritional conditions (glucose alone or glucose plus gluta-
mine) were then analysed using 2D-COS. Auto-synchronous
maps (diagonal peaks) revealed coordinated temporal trajec-
tories across multiple biomolecular bands, reflecting partially
synchronised metabolic behaviour likely induced by the star-
vation step prior to nutrient exposure. Oscillatory patterns
observed in glucose-only samples are consistent with intrinsic
glycolytic oscillations, whereby metabolite levels fluctuate
periodically due to feedback regulation within glycolysis. In
contrast, glutamine supplementation smoothed early meta-
bolic dynamics but produced more pronounced responses
later, peak responses occurring earlier (~90 min vs. ~105 min)
and continuing to rise. This suggests that glutamine acceler-
ates and amplifies metabolic activity, consistent with its bio-
synthetic and bioenergetic roles.

Differential 2D-COS analysis of the 788 and 1440 cm™
bands further highlighted distinct temporal coordination
between nucleic acid and lipid dynamics. In glucose-only
samples, both bands showed early activation, consistent with
rapid transcriptional and lipid biosynthetic responses trig-
gered by glucose re-feeding. In the glucose-glutamine con-
dition, these bands displayed delayed but sustained activation,

1
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reflecting glutamine’s contribution to nucleotide biosynthesis
and anaplerotic metabolism, which gradually supports RNA
and lipid production.

Overall, while cells under both conditions shared common
dynamic peaks, the glucose-glutamine samples exhibited
stronger correlations and additional variable bands, particu-
larly linked to nucleic acid vibrations, suggesting enhanced
nucleotide biosynthesis. These findings indicate that gluta-
mine not only accelerates and amplifies overall metabolic
variability but also drives specific biosynthetic pathways,
underscoring its broader role in cellular metabolism beyond
energy provision. Beyond the specific metabolic findings, this
work demonstrates how 2D-COS can complement existing che-
mometric approaches for analysing time-resolved single-cell
Raman datasets. The ability of 2D-COS to reveal coherent tem-
poral patterns offers a framework that can be extended to a
wide range of applications, including drug-response profiling,
metabolic stress testing, stem-cell differentiation, and biopro-
cess optimisation. These capabilities suggest that 2D-COS
could enhance future single-cell studies and contribute to
translational applications, including cancer research and treat-
ment development.

To avoid misinterpretation, several points and limitations
should be acknowledged. The simulated kinetics provide only
an idealised representation of metabolic behaviour for asses-
sing the performance of 2D-COS, as they were generated using
simplified ODE-based models that do not capture nonlinear
feedback, regulation, compartmentalisation, or enzyme satur-
ation effects present in real cellular systems. Likewise, the use
of fixed rate constants represents an approximation, given that
reaction rates in living cells are variable and context-depen-
dent. Furthermore, the experimental analysis was performed
on a single cell line under two defined nutritional conditions,
and only synchronous 2D-COS was explored. These factors con-
strain the generalisability of the findings, and future studies
employing different cell lines, larger cell populations, and
additional perturbations will be essential for further validating
the findings and extending the analytical potential of 2D-COS.
Moreover, direct measurement of glucose and glutamine
uptake or depletion in the spent media, and correlating these
changes with intracellular Raman dynamics, would provide a
stronger metabolic context and represents a valuable direction
for future work.
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