Energy Advances

CORRECTION

View Article Online

Cite this: Energy Adv., 2025, 4, 1401

DOI: 10.1039/d5ya90033f

rsc.li/energy-advances

Correction: Water-in-salt hydrogel electrolyte for dendrite-free Zn deposition

Varsha Joseph, ab Nara Kim, ac Sae Young Lee, Reverant Crispin, abc Tae Hyun Park*d and Ziyauddin Khan*ab

Correction for 'Water-in-salt hydrogel electrolyte for dendrite-free Zn deposition' by Varsha Joseph et al., Energy Adv., 2025, 4, 1167-1178, https://doi.org/10.1039/D5YA00169B.

The authors regret that the overpotential value stated in the first paragraph of section 2.2 on page 1169 for the 4 m Zn(OTf)₂-based WiSH electrolyte was quoted incorrectly in the original manuscript. The value should be ± 210 mV, and not ± 21 mV.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

a Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden. E-mail: ziyauddin.khan@liu.se

^b Wallenberg Wood Science Center, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden

^c Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden

^d Department of Organic Materials Engineering, Chungnam National University, Daejeon 34134, Republic of Korea. E-mail: taehyun.park@cnu.ac.kr