

CORRECTION

[View Article Online](#)
[View Journal](#) | [View Issue](#)

Cite this: *Energy Adv.*, 2025, 4, 460

DOI: 10.1039/d5ya90008e

rsc.li/energy-advances

Correction: Evaluation of redox pairs for low-grade heat energy harvesting with a thermally regenerative cycle

José Tomás Bórquez Maldifassi,^a Joseph B. Russell,^b Jungmyung Kim,^b Edward Brightman,^c Xiangjie Chen^b and Dowon Bae^{*ab}

Correction for 'Evaluation of redox pairs for low-grade heat energy harvesting with a thermally regenerative cycle' by José Tomás Bórquez Maldifassi et al., *Energy Adv.*, 2024, **3**, 2877–2886, <https://doi.org/10.1039/D4YA00368C>.

The authors regret an error in the α /mV values of $\text{Fe}^{2+/3+} \parallel \text{Cu}^{0/2+}$ and $\text{Fe}^{2+/3+} \parallel \text{CuHCF}$ in Table 2. Additionally, the solubility for the $\text{Fe}^{2+/3+} \parallel \text{CuHCF}$ pairs was incorrectly stated to be 1.4M and 1.5M on page 2882 and 2883; the correct value is 1.3M. A corrected version of Table 2 is provided below:

Table 2 Specifications of the selected redox couple combinations and theoretical performance metrics. Note that the calculation is based on 99% of the depth of discharging (DoD). The calculation method, assumptions for the calculations, and values for other DoDs are discussed in the ESI

Combination	α /mV	$E_{25^\circ\text{C}}^0$	Net work/W h L ⁻¹	$Q_h/\text{W h L}^{-1}$	$\eta_{0.5\text{HR}}/\%$	$\eta_{0.7\text{HR}}/\%$	$\eta_{0.9\text{HR}}/\%$	$\eta_{0.99\text{HR}}/\%$	$\eta_{\text{Carnot}@0.99\text{HR}}/\%$
$[\text{Fe}(\text{CN})_6]^{3-/4-} \parallel \text{I}_3^-/3\text{I}^-$	2.46	0.19	1.41	9.22	0.05	0.08	0.24	2.07	13.28
$\text{Fe}^{2+/3+} \parallel \text{Cu}^{0/2+}$	2.06	0.395	3.89	25.09	0.13	0.22	0.63	4.63	29.80
$\text{Fe}^{2+/3+} \parallel \text{CuHCF}$	-2.12	0.47	3.94	25.82	0.13	0.22	0.64	4.66	29.90
$[\text{Zn}(\text{NH}_3)_4]^{2+} \parallel \text{Zn} \parallel \text{NiHCF}$	-2.27	1.8	21.72	141.66	0.70	1.14	2.98	10.83	69.55

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

^a Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

^b Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK. E-mail: d.bae@lboro.ac.uk

^c Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XL, UK