Energy Advances

CORRECTION

View Article Online

Cite this: Energy Adv., 2025, 4, 460

Correction: Evaluation of redox pairs for low-grade heat energy harvesting with a thermally regenerative cycle

José Tomás Bórquez Maldifassi, a Joseph B. Russell, b Jungmyung Kim, b Edward Brightman, c Xiangjie Chenb and Dowon Bae*ab

DOI: 10.1039/d5ya90008e

rsc.li/energy-advances

Correction for 'Evaluation of redox pairs for low-grade heat energy harvesting with a thermally regenerative cycle' by José Tomás Bórquez Maldifassi et al., Energy Adv., 2024, 3, 2877-2886, https:// doi.org/10.1039/D4YA00368C

The authors regret an error in the α/mV values of $Fe^{2+/3+}\|Cu^{0/2+}$ and $Fe^{2+/3+}\|CuHCF$ in Table 2. Additionally, the solubility for the $Fe^{2+/3+}$ || CuHCF pairs was incorrectly stated to be 1.4M and 1.5M on page 2882 and 2883; the correct value is 1.3M. A corrected version of Table 2 is provided below:

Table 2 Specifications of the selected redox couple combinations and theoretical performance metrics. Note that the calculation is based on 99% of the depth of discharging (DoD). The calculation method, assumptions for the calculations, and values for other DoDs are discussed in the ESI

Combination	α/mV	$E^0_{25~^{\circ}\mathrm{C}}$	Net work/W h L ⁻¹	$Q_{\rm h}/{\rm W~h~L}^{-1}$	$\eta_{0.5\mathrm{HR}}/\%$	$\eta_{0.7\mathrm{HR}}/\%$	$\eta_{0.9\mathrm{HR}}/\%$	$\eta_{0.99\mathrm{HR}}/\%$	$\eta_{\mathrm{Carnot} @ 0.99 \mathrm{HR}} / \%$
$[Fe(CN)_6]^{3-/4-} I_3^-/3I^- $ $Fe^{2^+/3^+} Cu^{0/2^+} $	2.46	0.19	1.41	9.22	0.05	0.08	0.24	2.07	13.28
	2.06	0.395	3.89	25.09	0.13	0.22	0.63	4.63	29.80
$Fe^{2+/3+}$ CuHCF	-2.12	0.47	3.94	25.82	0.13	0.22	0.64	4.66	29.90
$[Zn(NH_3)_4]^{2+}/Zn NiHCF $	-2.27	1.8	21.72	141.66	0.70	1.14	2.98	10.83	69.55

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

a Institute of Mechanical, Process and Energy Engineering (IMPEE), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

b Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK. E-mail: d.bae@lboro.ac.uk

^c Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XL, UK