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Pore-water electrical conductivity (ECw) is the ideal indicator of soil salinity in agriculture, as it directly
represents the salinity experienced by plant roots. However, its practical application is limited by its
dependence on soil water content and the labour-intensive, destructive, costly, and time-consuming
process of pore-water extraction and analysis, especially for large-scale field applications. Ground-
penetrating radar (GPR) and electromagnetic induction (EMI) provide non-destructive, time-efficient,
and cost-effective alternatives for estimating soil properties and state variables. This study aimed to
develop a method for estimating ECw by integrating GPR and EMI techniques using both stochastic
and deterministic approaches at the field scale. EMI and GPR surveys were conducted before and after
controlled irrigations, and soil samples were collected for laboratory analysis as ground truthing. The
stochastic approach involved developing multiple linear regression (MLR) models, whereas the
deterministic approach involved modifying and evaluating Archie's equation. The MLR models
demonstrated high predictive accuracy, with an R? of 0.75 between measured and predicted ECw
values. Both approaches provided reliable ECw predictions, with low root mean square error (RMSE)
during evaluation (<1.67 mS m~! for MLR and <2.65 mS m~! for Archie's equation). However, the
parameters in Archie's equation deviated from laboratory-estimated values and required modifications.
At the study site, the stochastic approach outperformed the deterministic approach. Future research
should focus on refining these models to improve their applicability across different soil types and
conditions, aiming to improve the accuracy and reliability of soil salinity assessments in various
agricultural landscapes.

Soil salinity has become a major issue in agriculture globally, impacting crop productivity and sustainability. Assessment of pore-water electrical
conductivity (ECw)—a direct indicator of root-zone salinity—is crucial in precision agriculture and challenging to estimate in the agricultural landscape
with traditional methods. Efficient, non-invasive salinity monitoring is key for managing soil health, optimizing irrigation, crop productivity, and ensuring
long-term agricultural sustainability. This study demonstrates the potential and challenges of a novel, non-invasive approach for estimating ECw at the
field-scale by integrating ground-penetrating radar (GPR) and electromagnetic induction (EMI) techniques with both stochastic and deterministic
methods. These findings support the development of field-scale tools for salinity monitoring, offering a pathway toward improved soil and water
management in precision agriculture.

1 Introduction

causing plant mortality, posing a significant threat to global food
security. The excessive salt concentrations lower the osmotic soil

Soil salinity, the concentration of soluble salts in the soil, plays
a critical role in seed germination, plant growth and overall
agricultural productivity.! Excessive salinity disrupts plant devel-
opment by damaging roots, reducing yields, and, in severe cases,
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potential, making water uptake difficult for plants, even in well-
irrigated conditions. This results in physiological drought, ion
toxicity, altered soil permeability, and nutrient imbalances.*
Salinity build-up in agricultural soils is primarily driven by the
combined effect of insufficient drainage due to limited precipi-
tation or irrigation, as well as evapotranspiration, which removes
water while leaving salts behind, thereby increasing ion concen-
trations. Furthermore, fertilizers, soil amendments, and irriga-
tion (saline water) introduce extra ions into the soil.**

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Soil salinity results from the presence of inorganic dissolved
substances in the soil's aqueous phase, including various di-
ssolved and readily dissolvable ions (such as Na*, K*, Mg>",
Ca**, Cl", HCO;, NO;~, S0,>7), as well as ion complexes. Since
these substances conduct electricity, salinity is often expressed
in terms of electrical conductivity (EC), which measures the
ability of soil to conduct an electrical current.*** The more ions
are present in the pore water, the higher its EC; consequently,
the higher the bulk electrical conductivity of the soil.

Several methods have been developed and tested for deter-
mining soil salinity at field scales, including visual crop obser-
vation, soil solution EC (pore-water electrical conductivity -
ECw), time domain reflectometry (TDR), electrical resistivity,
and electromagnetic induction (EMI).*** Visual crop observa-
tions, though quick and cost-effective, are subjective and only
detect salinity after visible crop damage. Advances in remote
sensing offer the potential for early detection of plant stress
before it becomes evident. Soil salinity estimation traditionally
involves soil sampling followed by laboratory analysis, such as
extracting soil water/solution and measuring its EC. While
accurate, these methods are labour-intensive, time-consuming,
destructive, and provide limited spatial coverage for large-scale
field applications.*®

TDR measures EC at a point scale but has limited field-scale
applicability. However, its ability to simultaneously measure
soil moisture through dielectric permittivity makes it vulnerable
to integrated salinity assessments.' Electrical resistivity and
EMI provide in situ alternatives for salinity measurement.
Electrical resistivity allows for flexible depth adjustments
depending on electrode spacing, but it is destructive, time-
consuming, and less effective in dry or rocky soils. Off-ground
EMI offers rapid, non-invasive assessments over large areas
and allows flexible depth adjustments depending on coil
orientation and spacing. For both electrical resistivity and EMI,
the measured values correspond to depth-weighted apparent
electrical conductivity (ECa). However, depth-dependent
conductivity profiles can be reconstructed using tomographic
inversion. In all cases, these methods need calibration for
accurate salinity estimation, as ECa is influenced by multiple
factors, including soil texture (e.g., clay content), mineralogy,
soil water content (SWC), porosity or bulk density, soil struc-
ture, and temperature.>*>71°

Theoretically, ECw is the most accurate measure of soil
salinity for agriculture, as it directly represents the salinity
experienced by plant roots, which is crucial for understanding
the impact on crop health and productivity." Despite its
importance and direct salinity measurement, ECw is not widely
used in practice due to several challenges, such as fluctuations
during irrigation with SWC changes, making it difficult to
obtain consistent measurements." Additionally, traditional
methods for collecting soil solution/pore-water are labour-
intensive, costly and destructive, especially at typical field
water contents, which makes large-scale field applications
impractical.>"

Near-surface geophysical techniques such as EMI and
ground-penetrating radar (GPR) have emerged as promising
techniques to estimate soil properties and state variables such

© 2025 The Author(s). Published by the Royal Society of Chemistry
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as SWC,”™ soil salinity,”**® organic matter/carbon,’*?>® and
compaction/bulk density.**** These techniques offer non-
destructive, efficient, and cost-effective estimations of soil
properties and state variables in agricultural landscapes
compared to the traditional methods.*

Several studies have demonstrated the potential of GPR and
EMI methods for estimating soil salinity and related parame-
ters using both empirical and modeling approaches. In GPR,
early-time amplitude analysis under uniform hydraulic
conductivity and saltwater conditions revealed a strong corre-
lation between GPR reflected wave amplitude and salinity
levels.*® Another study employed reflection coefficient methods
and waveform comparison under varying conductivity condi-
tions to detect salinity variations.*” In the case of EMI, several
investigations have successfully developed simple linear and
multiple regression models linking EMI-measured ECa to
measured ECe. For example, high correlations (R* > 0.90) were
reported using EM38 and GEM300 instruments.*® Similarly,
models estimating soil salinity and sodium adsorption ratio
(SAR) achieved strong correlations (R* = 0.89-0.93) at different
field sites.** Recent advances have further highlighted EMI's
value for salinity monitoring by applying time-lapse inversion
of EMI data integrated with HYDRUS-2D modeling to assess
temporal salinity dynamics under saltwater irrigation. The
study reported a strong correlation (correlation coefficient (r) =
0.88) between ECa and ECe.* Another study utilized HYDRUS-
2D simulations to optimize EMI sensor placement in drip-
irrigated soils, identifying irrigation water salinity as the
primary factor influencing ECa and ECe distributions.** Time-
lapse EMI inversion was employed with site-specific calibration
to map salinity changes over time, achieving high mapping
accuracy (coefficient of determination (R*) = 0.81).*2 A recent
study developed a deep learning-based model to invert EMI
data and integrate it with HYDRUS-1D simulations, efficiently
modeling water-salt transport dynamics in arid zones.*
However, to the best of our knowledge, there remains a gap in
research that integrates GPR and EMI methods for soil salinity
assessment. Specifically, no existing studies have focused on
the field-scale estimation of ECw using GPR, EMI or an inte-
grated GPR-EMI approach.

EMI is particularly effective in estimating ECa, although its
accuracy in predicting ECw is limited due to the strong influ-
ence of SWC, clay content, and soil structure." Conversely, GPR
has been well-established for estimating SWC over the past
three decades."%* By integrating GPR and EM], it is promising
to improve field-scale salinity estimation, as GPR detects SWC
variations while EMI captures ECa fluctuations related to
salinity.**

Various approaches, including stochastic and deterministic
methods, have been applied in the literature to estimate soil
salinity (as EC of the saturated paste extract - ECe) from ECa.
The stochastic approach involves statistical modeling, while the
deterministic approach relies on theoretical or empirical
models. While relationships between ECa and ECw are well
established in Archie's equation and Rhoade's equation, this
study presents a novel integration of GPR and EMI for esti-
mating ECw at the field scale. Possible deterministic
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approaches for estimating ECw using integrated EMI-GPR data
include Archie's equation,*® which relates ECa to porosity, soil
water saturation (Sw) and ECw, and Rhoades's model,****
which incorporates SWC, ECw and solid phase conductivity
(ECs).

This study aims to develop and evaluate methods for non-
destructive ECw estimation at the field scale using integrated
GPR and EMI. The research intends to support precision agri-
culture by providing accurate and spatially detailed soil salinity
assessments for optimizing irrigation and soil management
practices (water and solute transport). The study hypothesizes
that integrating GPR and EMI with deterministic or stochastic
approaches will provide a reliable method for non-destructive
ECw estimation at the field scale. This hypothesis was tested
through a field experiment, which adapted theoretical
approaches previously validated in laboratory settings and
developed multiple linear regression (MLR) models.

The specific objectives of this study were: (1) to develop and
evaluate MLR models for estimating ECw using integrated GPR-
EMI data (stochastic approach); (2) to apply and assess petro-
physical models, specifically Archie's and Rhoades' equations,
for ECw estimation based on GPR-EMI data (deterministic
approach); and (3) to compare the effectiveness of the stochastic
and deterministic approaches for ECw estimation at the study
site.

2 Theoretical background

2.1. Rhoades's equation

Rhoades's equation assessed the soil bulk ECa, considering two
parallel pathways for current flow: one through the soil solution
and the other through the electrical double layer.”” The soil
water EC and the bulk surface electrical conductivity, which are
primarily affected by exchangeable cations adsorbed onto clay
minerals, are key components in this model. Rhoades's equa-
tion incorporates the influence of the soil matrix, making it
particularly useful in heterogeneous soils where the matrix has
a significant impact on overall conductivity,>***” shown in

eqn (1).
ECa =ECw x 6 x T+ ECs (1)

Where ECa is the apparent electrical conductivity, ECw is the
pore-water electrical conductivity,  is the volumetric soil water
content, T is the transmission coefficient, and ECs is the solid
phase electrical conductivity.

T accounts for the impedance of current flow through soil
water in void spaces and the reduced mobility of ions near the
solid-liquid interface. T, which is always less than or equal to
1, corresponds to the ratio of the straight-line length (/) to the
path length of the electrical current ([.), effectively the recip-
rocal of the electrical conductivity tortuosity factor (l/1).****
The model can also be expressed through parameters a and b,
which vary between soils and are determined by fitting
the model to observed data as shown in eqn (2). Other
researchers also have documented linear relationships
between T and 6.*%*°
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T=ax0+b (2)

2.2. Archie's equation

Two empirical relationships through laboratory experiments
were developed to relate apparent electrical conductivity (ECa),
soil water saturation (Sw), pore water electrical conductivity
(ECw), and porosity (¢) in porous rocks, particularly in petro-
leum engineering.* The first equation was designed for fully
saturated porous rocks, while the second was intended for
partly saturated conditions. These relationships introduce the
saturation exponent (n) and the cementation exponent (m) as
key parameters. Over time, Archie's equation has been adapted
for use in soils.>*** The general form of Archie's equation for
soils is shown in eqn (3).

ECa = ¢""'SW'ECw (3)

In soil science, Archie's equation is valuable for modeling the
relationship between the soil's electrical properties, SWC, and
salinity. However, the equation’s parameters must be calibrated
for different soil types, as factors like soil texture and compac-
tion, porosity and Sw can significantly influence the conduc-
tivity. In this study, we intentionally chose to use the original
Rhoades and Archie equations to maintain consistency with
foundational approaches and to evaluate their applicability
under the specific field conditions.

3 Methodology

3.1. Study area

The field experiment was conducted at the Western Agriculture
Center and Research Station in Pynn's Brook (49° 04'20"N, 57°
33/35"W), Pasadena, Newfoundland and Labrador, Canada. The
site is managed by the Department of Fisheries, Forestry, and
Agriculture of the Government of Newfoundland and Labrador.
The average composition (number of samples = 30) of key soil
properties at a depth of 0-60 cm in the study site included gravel
at 30.5% (+4.97%), sand at 86.8% (+4.98%), silt at 10.7%
(£4.24%), clay at 2.5% (+0.91%), and soil organic matter at
3.8% (£2.05%).**

3.2. Field data collection

A 12 m x 9 m area was selected, comprising two experimental
blocks (Fig. 1a). Each block contained three 2 m x 3 m sub-plots
designated for saltwater (SW) irrigation. Within each sub-plot,
three soil sampling locations were identified as replicates,
totalling 18 sampling locations across blocks 1 and 2 (Fig. 1a). A
total of 60 L of SW was prepared by dissolving 240 g of table salt
(NaCl) in freshwater (EC = 1 mS m ™). SW irrigation was applied
to increase the EC in the soil solution, and table salt was
selected since it is a commonly available salt (Na" and CI7) in
the soil and agricultural inputs. The SW was manually applied,
as uniformly as possible, using a watering can to each sub-plot
during two irrigation events (irrigation 1 and 2), with the second
irrigation applied three hours after the first. EMI and GPR

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1
ground-penetrating radar (GPR).

surveys, along with soil sampling, were conducted in three
stages: (1) before irrigation as background (BKG), (2) after the
end of irrigation 1 (EOI-1), and (3) after the end of irrigation 2
(EOI-2).

EMI surveys were conducted in the continuous mode using
a multi-coil EMI sensor (CMD-MINIEXPLORER, GF instru-
ments, Czech Republic) with an operating frequency of 30 kHz
(Fig. 1b). Prior to each survey, the instrument was warmed up
for a minimum of 30 min. Surveys were carried out separately
for vertical coplanar (VCP) and horizontal coplanar (HCP) coil
orientations. Instrumental drift in ECa measurements was not
anticipated due to the high stability of the instrument con-
cerning temperature variations (Guide for Electromagnetic
Conductivity Mapping and Tomography - GF instruments). To
maintain consistency, the instrument was operated using
a handle at an average height of 0.20 m above the ground by the
same person throughout the experiment to maintain a relatively
constant height and speed. Coils 2 and 3, which measure depths
beyond the study's sampling range of ~0-0.30 m, were excluded
from further analysis. VCP and HCP are hereafter used to refer
to ECa measurements from vertical coplanar coil one,
respectively.

GPR data were acquired using a 500 MHz center-frequency
transducer (PulseEKKOPro, Sensors and Software, Canada)
(Fig. 1c). A fixed-offset survey method was employed, with an
antenna separation of 0.23 m, a step size of 0.05 m, a time
window of 50 ns, and 32 stacks. EMI surveys were conducted at
0.5 m intervals along the X direction, resulting in 19 survey lines
per data collection stage (Fig. 1a). GPR survey lines were spaced
at 1 m intervals, offset by 0.5 m along the X direction, totalling
nine survey lines (Fig. 1a).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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(a) Field diagram showing the data collection system and plots, and geophysical surveys (b) electromagnetic induction (EMI), and (c)

Both undisturbed and disturbed soil samples were collected
to facilitate various laboratory analyses. Undisturbed samples
were collected down to a depth of 0.30 m at the BKG to estimate
bulk density, which was subsequently used to calculate soil
porosity. This measurement (BKG) was assumed to remain stable
throughout the experiment. Disturbed soil samples were also
collected down to a depth of 0.30 m to determine ECw in the
laboratory at BKG, EOI-1 and EOI-2 stages from sampling loca-
tions shown in Fig. 1a. This approach allowed for the assessment
of temporal changes in ECw corresponding to SW irrigation.

3.3. Data processing

Since soil temperature influences subsurface electrical proper-
ties, including ECa measured via EMI, data were corrected to
a reference temperature of 25 °C to eliminate temperature-
induced variability across different stages (measured soil
temperature: BKG —19.03 °C, EOI-1 —26.47 °C, and EOI-2
—30.27 °C) using eqn (4) and (5).%°

EC25 :f, X EC[ (4)

£, = 0.4470 + 140345515 (5)

where EC,; is the EC at 25 °C; f; is the temperature conversion
factor; ¢ is the measured temperature in Celsius; EC, is the EC
measured at the temperature ¢.

The GPR data were time-zero corrected and processed by
applying filters. Direct ground wave travel times were picked
using the assisted pick processing tool in PulseEKKO Project
V5R3 software and converted to direct ground wave velocities.
Then, volumetric SWCs were calculated by using eqn (6) and (7).>
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e \2
K, =
(7o)

SWC =-53x102+292x 102Kr — 5.5 x 107*Kr®> + 4.3
x 107 Kr? 7)

(6)

Ordinary (point) kriging was used to create interpolated
maps from temperature-corrected ECa and GPR-estimated
SWCs. Data points were digitized to match the soil sampling
shown in Fig. 1a to obtain ECa and SWC data for analysis. Soil
porosity was calculated using measured bulk density values,
and Sw at each location and stage was determined by using the
GPR-estimated SWCs and calculated porosity.

3.4. Data analysis

Descriptive statistics were used to evaluate data distribution
and variability. A one-way analysis of variance (one-way ANOVA)
was performed to assess the effect of irrigation on EMI

Field Data

Obijective 1 Obijective 2

Stochastic Approach Deterministic Approach

Block 1 data \L
Graphical representation of
field data

Develop MLR models - to
predict EC,,

I

Block 2 data \l/

Evaluate MLR models (1:1 line
and RMSE)

l Rhoades’s Eq. ‘ l Archie’s Eq. |

Block 1 data Block 2 data

|

Apply literature Apply modified
values -m, n values - m, n

l |

Modify m, n Measured vs
predicted EC,,
Solver function ) l

Measured vs
calculated EC

Evaluate (1:1
line, RMSE)

Obijective 3 l

Compare stochastic and deterministic approach predictions —F statistics
and Bland-Altman plots

H\

Fig. 2 Flow chart of the field data analysis using stochastic approach
and deterministic approach.

Table 1 Descriptive statistics of studied variables in Block 1 and Block 2
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measurements (VCP and HCP), GPR-estimated SWC and
calculated Sw. The null hypothesis assumed that the group
means of BKG, EOI-1, and EOI-2 were equal at a 0.05 signifi-
cance level.

Field data analysis was structured around two approaches:
stochastic and deterministic. For objective 1, the stochastic
approach involved developing MLR models to predict ECw using
data from Block 1 (Fig. 2). Separate MLR models were developed
for VCP and HCP data. Model evaluation was performed using
data from Block 2 by comparing the predicted and measured
ECw values through a 1:1 line analysis and calculating the root
mean square error (RMSE) (Fig. 2).

For objective 2, the deterministic approach involved visual-
izing the field data and applying Rhoades's and Archie's equa-
tions to data from both Block 1 and Block 2 (Fig. 2). Two models
were considered for each petrophysical relationship using VCP
and HCP data. Further analysis was conducted under the
deterministic approach based on graphical trends. Archie's
equation was specifically applied to data from Block 1 using
calculated porosity, Sw, and measured ECw to estimate ECa.
Initially, literature-based exponent values (m and n) were used,
but these parameters were later optimized using the solver
function in Microsoft Excel to minimize the error between the
ECa measured by EMI and the ECa calculated using Archie's
equation. The optimized parameters were then applied to
predict ECw using the data from Block 2 (Fig. 2). The accuracy
was evaluated using a 1:1 line comparison and RMSE.

To compare the stochastic (MLR) and deterministic (Archie's
equation) approaches for estimating ECw in field applications,
F-statistics were calculated, and Bland-Altman plots were
generated between measured and predicted values (from both
MLR and Archie's equation) (Fig. 2).

4 Results and discussion

4.1. Descriptive statistics

The descriptive statistics for data from Blocks 1 and 2 indicate
that the mean values, standard deviations, and ranges are
relatively similar across both blocks (Table 1). Furthermore, the
datasets follow a normal distribution, as evidenced by the
skewness and kurtosis values being close to zero (Table 1).
The ANOVA results (Table 2) revealed significant differences
(p < 0.001, @ = 0.05) among the BKG and the two irrigation
events (EOI-1 and EOI-2) across all measured variables in Blocks
1 and 2. The mean SWC was significantly different between BKG

Block 1 Block 2
Variables n Mean St. Dev  Min Max Kurtosis Skewness Mean St.Dev  Min Max Kurtosis  Skewness
SWC (Cm mfl] 27 22.1 8.4 9.4 34.6 —1.4 —0.5 23.22 7.33 8.30 30.63 —1.2 —0.6
VCP (mS m_l) 27 3.52 1.91 0.99 7.10 —1.1 0.0 2.06 1.03 0.51 4.12 —1.1 0.3
HCP (mS mfl) 27 4.11 1.55 2.35 6.41 —1.5 0.2 2.94 1.26 1.48 5.18 —1.3 0.5
ECw (mS mfl) 27 5.13 3.44 0.67 10.75 —1.3 0.0 4.14 2.66 0.55 10.08 —-0.9 0.3
Sw (%) 27 45.4 16.8 20.0 66.6 —1.5 —0.6 42.18 13.57 17.05 64.02 —1.2 0.1
Porosity (%) 9 47.9 0.94 44.0 53.5 0.7 0.7 49.0 0.81 46.3 54.3 0.5 0.8
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Table 2 Results of one-way analysis of variance (ANOVA) and Tukey
tests for background (BKG) after first irrigation (EOI-1) and after second
irrigation (EOI-2)*

Variables BKG EOI-1 EOI-2 F-value  p-value
SWCepg (ctm m™")  12.29° 26.84"  28.81°  240.34  0.000
VCP (mSm ™) 1.042° 3.08" 4.19° 34.66  0.000
HCP (mSm ™) 2.06° 3.25° 5.24% 82 0.000
ECw (mS m™ 1) 1. 05¢ 5.07° 7.77*°  113.81  0.000
Sw (%) 25.14¢ 48.09°  58.12°  131.93  0.000

“ Null hypothesis: all means are equal; « = 0.05; DF = 53; letters a, b,
and c indicate significant differences within each stage of BKG, EOI-1
and EOI-2 based on Tukey's tests.

and the post-irrigation stages (EOI-1 and EOI-2), although no
significant difference was observed between EOI-1 and EOI-2.
For the other variables (VCP, HCP, ECw, and Sw), the lowest
mean values were found at BKG, with progressive increases in
EOI-1 and EOI-2, showing significant differences across all three
stages. Overall, these ANOVA results confirm that all variables
responded to the applied irrigation. Spatial variability of GPR
estimated Kr and EMI measured ECa shown in the Appendix
(Fig. 9 and 10).

4.2. Stochastic approach

The MLR models for predicting ECw identified ECa and Sw as
the most significant predictors. Although porosity was initially
considered a potential predictor during model development, it
was eventually excluded from the final models due to its limited
contribution to prediction accuracy. Instead, the final models
incorporated both VCP and HCP, which were found to be more
relevant for accurate predictions. The variance inflation factor
(VIF) for the VCP-based MLR model was less than 5 for both VCP
and Sw, indicating no multicollinearity among the dependent
variables (Table 3). However, the HCP-based MLR model
exhibited moderate multicollinearity, with VIF values under 10
for HCP and Sw (Table 3). While this level of multicollinearity
does not compromise the validity of the model, it may reduce
the stability and interpretability of the individual regression
coefficients, making it challenging to isolate the effect of each
predictor on ECw. We acknowledge this limitation when inter-
preting the role of closely correlated predictors. Future research
may benefit from applying multicollinearity-mitigating tech-
niques, such as ridge regression, to improve model robustness
and enhance interpretability. The developed MLR models

View Article Online

Environmental Science: Advances

€124 .

? RMSE,,, = 1.33 mS/m e

= 10| RMSE, =167 ms/m /

‘g 7

o . /7

e s )

5 8- @ &7 s T

=2 i /

© /2. 90

o add

5 6. o %

Q@ o0 ’

o 7

§ /

© 4~ /7

3 /

g /

2 5 7 © © EC,-HCPands

R 2 ) V. w w

g EC,-VCPands,

5 7 — - 1:1Line

a 0 T T T T T 1
0 2 4 6 8 10 12

Measured pore-water electrical conductivity (mS/m)

Fig. 3 Scatter plots of measured versus regression models (MLR)
predicted pore-water electrical conductivity (ECw). The dash line
corresponds to the 1: 1 line.

demonstrate high R* values and low RMSE, as detailed in Table
3. The inclusion of both ECa and Sw in the MLR models high-
lights their importance in predicting the ECw.

Evaluation of the developed MRL models revealed acceptable
prediction accuracy, with most data points aligning closely or
scattering around the 1:1 line (Fig. 3). Under the BKG condi-
tions, the predicted ECw values closely matched the observed
values, indicating strong agreement. However, following irri-
gation, predictions become more dispersed, exhibiting
increased variability and reduced consistency in matching
observed ECw values. This suggests that irrigation introduces
variability likely due to the sudden influx of ions from SW and
non-uniform wetting patterns, impacting model performance
compared to the stable baseline conditions (Fig. 3). Despite this,
the VCP and HCP-based MLR models effectively predicted ECw.
The HCP-based MLR model achieved a lower RMSE value of
1.33 mS m~ " compared to 1.67 mS m~ " for the VCP-based
model (Fig. 3).

4.3. Deterministic approach

Three-dimensional surface plots illustrate ECw (X-axis) and
SWC (Y-axis), with ECa values measured by EMI shown on the Z-
axis (Fig. 4). Subplots are provided for both coil orientations: (a)

Table 3 Summary of the developed multiple linear regression models, including their predictive capabilities

Regression equation R RMSE (mS m™ ") p-value VIF

ECw = —2.06 + 1.02 VCP + 9.52 Sw 0.75 1.35 0.000 VCP —4.35
Sw —4.28

ECw = —2.28 + 0.84 HCP + 9.34 Sw 0.74 1.41 0.000 HCP —-7.06
Sw —6.98

© 2025 The Author(s). Published by the Royal Society of Chemistry
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VCP and (b) HCP. The ECa values exhibit a clear dependence on
both ECw and SWC (Fig. 4). At low SWC, ECa increases more
linearly with ECw, whereas at high ECw, ECa shows a more
linear increase with SWC. This behaviour reflects the combined
influence of ionic concentration and SWC on the soil's bulk EC,
as both factors enhance the continuity and conductivity of the
pore water phase. Interestingly, the HCP configuration yields
higher ECa values than the VCP configuration. Overall, the
shape of the measured surface closely aligns with the trends
predicted by Rhoades's petrophysical model, supporting its
physical relevance under field conditions.

A previous laboratory experiment by Rhoades et al.*® found
that in loam soils, ECa-ECw curves diverged with increasing
SWC once ECw exceeded ~50 mS m™", with the curve slope
increasing at higher SWCs. However, in this study, no such
divergence was observed across different irrigation stages, likely
because field-measured ECa and ECw remained below 50 mS
m~' throughout the study (Appendix (Fig. 11)). This limited
data range constrains a more detailed exploration of these
relationships and is removed from further analysis in this
paper.

The relationship between field-measured ECa from EMI and
Sw is illustrated in Fig. 5. Both measured and calculated ECa
data follow a distinct power-law relationship, consistent with
Archie's model (eqn (3)). EMI-measured ECa values (repre-
sented by dots for VCP and HCP) and those calculated using
Archie's model exhibit a non-linear positive response to
increasing Sw levels. This trend highlights the sensitivity of ECa
to variations in Sw and ECw, as higher water saturation and the
introduction of salts lead to elevated ECa values. The strong
agreement between the measured and calculated ECa further
validates Archie's model in describing the field-measured ECa
values.
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Using the literature-suggested exponents (m = 1.5, n = 2) for
sandy soils in Archie's equation resulted in a noticeable
underestimation of ECa compared to the EMI-measured ECa
from both VCP and HCP modes. To improve the accuracy,
a solver function minimized the RMSE between measured ECa
and Archie's model predictions, yielding optimized exponents
of m = 0.67 and n = 0.11. These adjustments reduced RMSE to
0.99 mS m ! for VCP and 0.98 mS m ™ * for HCP mode, as shown
in Fig. 6. Although these optimized exponents deviate signifi-
cantly from typical values for sandy soils in laboratory settings,
they improved the model's predictive accuracy. The optimized
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Fig. 4 3D surface plot for measured pore-water electrical conductivity (ECw) and soil water content (SWC), apparent electrical conductivity
(ECa) measured from electromagnetic induction (EMI); (a) VCP and (b) HCP.

1520 | Environ. Sci.: Adv,, 2025, 4, 1514-1527

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5va00121h

Open Access Article. Published on 30 July 2025. Downloaded on 1/23/2026 2:30:05 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper
€77 ,
> RMSE,,, = 0.99 m$/m /
S RMSE, .= 0.98 mS/m 7
> 64 ® , s/
2 ’
351 /
= /
S e _0°®
g4 4
5 4 @
© >y © g
Q “@0° o ‘@
o 3 @ 4
€ ® ,
2 ®
82 s
3 Y%
© S © O Hep
+ 1 - 4 =
= ‘& & o
o ya DS — = 1:1Lline
© -~
o0 T T T T T T 1

0 1 2 3 4 5 6 7
EMI measured apparent electrical conductivty (mS/m)

Fig. 6 Scatter plots of electromagnetic induction (EMI) measured
versus calculated apparent electrical conductivity (ECa) of block 1 data
while adjusting the exponents (m and n) of Archie's petrophysical. The
dashed lines correspond to the 1:1 line.

Archie parameters obtained in our study (m = 0.67, n = 0.11) are
notably lower than typical laboratory-derived values. This
discrepancy likely reflects the differences between laboratory
and field conditions. In the field, site-specific factors like
heterogeneous soil structure, variable pore connectivity, surface
conduction, and environmental factors can influence electrical
properties differently than in controlled laboratory settings re-
ported in the literature. A lower m suggests a relatively well-
connected pore network, while the unusually low n may indi-
cate that electrical conductivity is less sensitive to water content
variations in this context, possibly due to ionic conduction
along grain surfaces. These atypical exponent values emphasize
the need for caution when generalizing our model beyond the
calibration site. While a generalized value for sandy soil texture
was considered, no direct laboratory analysis was conducted to
determine site-specific exponents based on actual texture (sand,
silt and clay percentage). Additionally, the model relied on proxy
data from GPR and EMI rather than direct standard laboratory
measurements, which may introduce some uncertainty. These
factors collectively may contribute to the unusually low
parameter values obtained in the field. Therefore, we are also
investigating modifications to the model structure and
considering complementary measurements to improve the
robustness and generalizability of our approach. The consis-
tency of these solver-adjusted exponent values for both VCP and
HCP datasets further supports their robustness for the soil
tested at the study site.

Applying the adjusted exponents to the Block 2 dataset for
estimating ECw from EMI-measured ECa resulted in varying
levels of accuracy. The RMSE for the VCP data was 1.97 mSm ™",
while the HCP data had a slightly higher RMSE of 2.65 mS m™".
These values indicate a reasonable fit with the measured ECw,

© 2025 The Author(s). Published by the Royal Society of Chemistry
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particularly given the variability inherent in field conditions
compared to more controlled laboratory settings (Fig. 7). In
lower ECw ranges (BKG data), the calculated values tended to
overestimate measured ECw, an effect more pronounced in the
HCP data (Fig. 7). As ECw values increased, data points became
more scattered around the 1:1 line, continuing the trend of
overestimation (Fig. 7). This discrepancy highlights the chal-
lenge of accurately predicting conductivity values in field
conditions, even with optimized parameters.

4.4. Comparison of the stochastic approach and the
deterministic approach

The Bland-Altman plot compares the differences between the
measured and predicted ECw values (y-axis) against their aver-
ages (x-axis) for both stochastic and deterministic approaches.
This analysis provides insights into how well the predictions
align with actual measurements. For the stochastic approach,
the mean difference (bias) is nearly zero in both the HCP (—0.7
mS m ') and VCP (—0.3 mS m™ ') configurations, indicating
minimal bias with a slight tendency to overestimate ECw
compared to measured values (Fig. 8). The limits of agreement
(LOA), representing the range where most differences between
predicted and measured values fall, extend from approximately
—3.7mSm 'to2.3 mS m™ " for HCPand —2.9 mSm ™" to 2.3 mS
m " for VCP. This suggests that most predictions made by the
stochastic approach are within these ranges, indicating strong
overall performance within the 95% confidence level. The slight
average difference and relatively narrow LOA demonstrate the
high predictive accuracy of the stochastic approach (Fig. 8).

In contrast, the deterministic approach exhibits a larger
bias of —2.0 mS m™~' for the VCP configuration, indicating
a systematic overestimation of ECw. The HCP configuration
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Fig. 8 Bland—Altman plot of pore-water electrical conductivity (ECw)
(a) horizontal coplanar (HCP) developed stochastic and deterministic
models, and (b) vertical coplanar (VCP) developed stochastic and
deterministic models. S.A. — stochastic approach and D.A. — deter-
ministic approach. Solid lines represent the bias, and dash lines
represent the limit of agreement 95%.

shows a smaller bias of —0.9 mS m™* (Fig. 8). The LOA for the
HCP-based model range from —4.4 mS m™ ' to 2.5 mS m ™},
whereas those for the VCP-based model range from —5.5 mS
m " to 1.4 mS m '. These wider LOA suggest greater vari-
ability in predictions, indicating less consistency compared to
the stochastic approach. Overall, the Bland-Altman plots
reveal that both approaches generally provide reasonable
predictions of ECw, but the stochastic approach achieves
better agreement with measured values due to lower bias and
a narrower LOA.

The observed negative bias in the Bland-Altman plot
(ranging from 0 to —2 dS m™ ") suggests that the deterministic
method tends to systematically overestimate ECw. This bias can
be largely attributed to the inherent differences between the
data sources used for model calibration and testing. Specifi-
cally, the measured ECw values were obtained through point-
based laboratory analysis of soil samples, whereas the calcu-
lated values were derived from geophysical proxies (EMI and
GPR), which integrate signals over a larger soil volume. Addi-
tionally, this mismatch in measurement scale can lead to
inconsistencies, particularly when local heterogeneity is
present. Moreover, the deterministic model relies on indirect
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proxy variables rather than direct salinity measurements,
making it more susceptible to uncertainties introduced by
variations in soil properties, such as moisture content or
texture, which can influence sensor response but are not
explicitly accounted for in the model. These factors collectively
contribute to the systematic bias observed.

Furthermore, the F-statistics analysis compares the variance
of the developed models under both stochastic and determin-
istic approaches against the measured ECw (Table 4). The
observed F-values for all models are compared with the critical
F-value of 2.19 at a 0.05 significance level (DF = 53). Since all p-
values exceed 0.05, there is no statistically significant difference
in the variances between the developed models (both
approaches) and the measured data (Table 4). This consistency
reinforces the reliability of both approaches in replicating real-
world conditions.

Despite acceptable accuracy in predicting ECw under field
conditions, several limitations should be acknowledged for
stochastic and deterministic approaches. The performance of
the stochastic approach depends on the quality and repre-
sentativeness of input data in the MLR model. Its effectiveness
may decrease under different environmental conditions or
when soil properties change. Additionally, this method relies
on sensor-derived proxies rather than direct measurements of
the state variables. For example, SWC was estimated using the
GPR direct ground wave method instead of standard gravi-
metric sampling, which introduces an average error of 2-5%,
depending on site conditions. Although a formal sensitivity or
uncertainty analysis was not conducted, this level of error may
influence the accuracy of ECw predictions, particularly in
conditions where slight variations in SWC significantly affect
salinity estimates. Since GPR measurements reflect bulk soil
conditions and require empirical calibration, any error in
SWC estimation can propagate through the predictive model.
While our focus was on assessing the broader applicability of
EMI and GPR as non-invasive tools, we recognize that incor-
porating methods such as Monte Carlo simulations or
uncertainty propagation techniques in future studies would
help to better quantify and manage prediction error linked to
input data variability.

Further refining the exponents used in Archie's equation to
better reflect field conditions could improve the precision of

Table 4 The F-statistics table summarizes the variance comparison
between the developed models®

Approach Fopserved p-value
Stochastic approach

VCP model 0.96 0.915
HCP model 1.57 0.259
Deterministic approach

VCP model 1.09 0.815
HCP model 1.96 0.092

@ DF = 53; a = 0.05; Feritical 2.19.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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predicted ECa or ECw values, particularly in capturing the
variability observed in the field data. Similarly, EMI measure-
ments, while useful for site-specific predictions, may introduce
variability due to their sensitivity to site conditions. EMI
provides a depth weighted estimate of electrical conductivity
over a broad footprint, which may not correspond closely with
point-scale ECw measurements. Another challenge with the
stochastic approach is the risk of overfitting, where the model
performs well on the current dataset but may fail to generalize
to other locations or conditions, given the high variability of
ECw.

On the other hand, although well-established and exten-
sively validated through laboratory experiments under highly
controlled conditions, the deterministic approach faces
challenges when applied in the field. Laboratory-estimated
model parameters, such as exponents, may not provide the
same level of accuracy in the field due to differences in sample
volume between laboratory and field conditions, as well as
inherent variability present in field settings. This study
emphasizes the need for field calibration of laboratory-
derived fitting parameters to account for field uncertainties,
including soil structure, texture, and the presence of roots
and stones. The significant deviation of adjusted fitting
parameters from literature values further underscores the
challenges of directly applying lab-based models to field
conditions.

Looking ahead, the stochastic approach should be tested
across diverse field conditions, including varying soil textures,
SWC levels, and ECw and ECa conditions. For the deterministic
approach, establishing site-specific fitting parameters tailored
to specific fields or soils will be crucial before field applications.
These fitting parameters can then be refined using mathemat-
ical optimization techniques, such as the solver function, to
enhance predictive accuracy and reliability in practical
applications.

5 Conclusions

This study explored two predictive approaches—stochastic and
deterministic—to estimate pore-water electrical conductivity
(ECw) based on electromagnetic induction (EMI) and ground-
penetrating radar (GPR) measurements, and evaluated their
effectiveness. The results revealed that the stochastic approach
generally produced predictions that were more closely aligned
with actual ECw measurements compared to the deterministic
approach. Furthermore, variance analysis confirmed that the
variability in predictions from both methods did not signifi-
cantly differ from that of the measured data, demonstrating
consistent model performance.

Utilizing proxies from GPR and EMI to estimate ECw at the
field scale presents a novel and practical solution to the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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challenges of measuring ECw, which is both temporally
dynamic and difficult to quantify. The stochastic and deter-
ministic approaches applied in this study show strong
potential for field applications, offering promising insights
into their utility. However, further refinement is needed to
enhance their reliability and robustness. Future research
should focus on optimizing model parameters such as
Archie's equation exponents, calibration coefficients, and soil-
specific inputs through site-specific field and lab validation.
Incorporating additional data layers such as soil texture, soil
water dynamics, and salinity inputs can further enhance
model performance. Developing hybrid integrated approaches
that combine both deterministic and stochastic methods may
offer the most promising path forward, enabling accurate and
consistent ECw estimation under varying environmental and
management conditions. These advancements will support
more effective use of GPR and EMI techniques in applications
such as precision irrigation, salinity management, and digital
soil mapping.

This study introduces a new hypothesis for future research:
integrating GPR and EMI techniques with stochastic and
deterministic modeling approaches could provide a reliable
and innovative framework for estimating ECw in large-scale
fields.
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pore-water electrical conductivity (ECw) and soil water content (SWC), based on the Rhoades's petrophysical model.
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