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In this study, through a novel network-based data-driven method, we reveal a likely unintended, nighttime-

specific impact of construction activities on elevated coarse particulate matter (PMc) concentrations in

a metropolitan area. We analyzed the spatial and temporal patterns of coarse particulate matter (PMc)

levels in the urban part of a 165-node PM FEM monitoring network in Xi'an, China. We employed a novel

technique called network analysis, which relies on data-driven, peer-to-peer comparisons within the

monitoring network to identify regional events and local hotspots. Results revealed that the highest PMc

concentrations in the urban section of Xi'an occurred during late night and early morning. Aided by

satellite-based aerial imagery and data mining of internet resources, we confirmed those peaks' strong

association with construction-related sources. This observation is further supported by Land Use

Regression (LUR) models, which demonstrate significant improvement in nighttime PMc prediction

accuracy when they include a ‘construction site’ variable, an effect not observed during daytime. This

finding underscores the significant impact of frequent nighttime construction activities and associated

heavy-duty truck traffic (“dump trucks” responsible for transporting construction materials and wastes),

which are likely unintentionally incentivized by both local policies and construction practices in many

Chinese cities. Our work demonstrated the potential of utilizing air quality monitoring networks for

construction-related environmental monitoring and enforcement. We also recommend that

policymakers re-assess construction-related environmental and transportation policies by considering

the trade-offs between air quality—the focus of our analysis—and other environmental and non-

environmental considerations such as construction efficiency, traffic safety, noise, and waste management.
Environmental signicance

Evaluating the impact of construction-related emissions on air quality is very challenging, mainly due to (1) no centralized, publicly available reporting
mechanisms to record the locations and construction progress and (2) construction-related emissions are highly localized. We report a novel approach called
network analysis to capture the air quality impact of construction-related activities utilizing existing distributed air quality networks. We discovered a signicant
impact of frequent nighttime construction activities, unintentionally incentivized by local policies and construction practices in many Chinese cities. Our work
demonstrated the potential of utilizing air monitoring networks for construction-related environmental monitoring and enforcement. We also recommend that
policymakers re-assess construction-related environmental and transportation policies by considering the trade-offs among construction efficiency, air quality,
noise, and waste management.
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Introduction

Construction activities are a major source of particulate matter
(PM) emissions, especially in urban areas.1–7 For example, they
are estimated to contribute 30% of PM10 emissions in London,
UK, 17% of PM10 emissions in Germany, 42% of urban dust,
a primary source for PM, in the Guanzhong Basin, China, and
26.4% of PM2.5 emissions attributed to combined soil and
construction dust in Tianjin city, China.1–4 However, a compre-
hensive understanding of the impact of construction-related
emissions on air quality is still very challenging due to several
Environ. Sci.: Adv., 2025, 4, 753–762 | 753
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Fig. 1 The air quality monitoring network in Xi'an city. Monitoring
stations located in the main urban area are defined as urban moni-
toring stations and are selected as targets (orange ones).
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factors. First, it is difficult to locate individual construction sites
and track the status of each site. While the emissions from
construction activities vary signicantly depending on time
duration, stage of construction, the machinery involved, road
conditions, wind interactions, etc.,2,5,6,8–11 there are no central-
ized, publicly available reporting mechanisms to record the
locations and construction progress. As a result, construction
sources are poorly represented in the emission inventories. For
example, the National Emission Inventory (NEI) in the U.S.
heavily relies on surrogate data and approximations to estimate
fugitive PM emissions from construction sites at the county
level.12 The common method that the Chinese NEI guidebook
adopts to estimate the dust emissions for individual construc-
tion sites also relies on a rough empirical formula.13 Second,
construction-related emissions are highly localized, with
elevated concentrations conned within a few hundred
meters.10 It is worth noting that many construction-related
activities, such as cutting, mixing, drilling, lling, loading/
unloading, transporting, material stacking, and the carryout
of mud and dirt, involve mechanical processes that generate
coarse particles (PMc).6,8,11 As PMc has a relatively short resi-
dence time, its spatial and temporal variations are expected to
show great heterogeneity. Therefore, routine, sparsely sited air
quality monitoring stations14 are usually inadequate for directly
capturing the impact of construction-related emissions.

Due to the challenges mentioned above, the research
community and air quality regulators have mainly resorted to
two types of approaches to understand the air quality impact of
construction-related emissions. The rst approach targets
specic construction sites by setting up monitoring stations
around those sites.5,11,15–18 A study in London, UK, reported PM
monitoring at 17 locations over 12 years near three construction
sites in London. The study inferred the impact of construction
activities by comparing data from upwind and downwind
stations and analyzing working versus non-working hours.10 The
second approach relies on detailed chemical analysis of PM
samples from a limited number of monitoring stations.19–25

Researchers collected 244 diurnal PM samples over four months
at a single location in Xi'an, China, for chemical analysis and
inferred connections to construction dust based on the chem-
ical composition and diurnal variations.25 Both approaches
have generated valuable knowledge to advance our under-
standing of construction-related emissions. However, neither
approach is scalable to be widely implemented across a large
region due to the high costs of dedicating air quality instru-
ments to specic sites and conducting chemical analysis,
respectively.

In this paper, we report a novel approach to capture the air
quality impact of construction-related activities by taking
advantage of existing distributed air quality networks. Deployed
worldwide, distributed air quality monitoring networks, usually
consisting of a large number of monitoring nodes across a large
region, are designed to bridge the spatiotemporal gap of
a sparse network for regulatory purposes. We introduce an
innovative analytical method called network analysis, which
serves as a screening tool to effectively process data from
distributed air quality monitoring networks and generate
754 | Environ. Sci.: Adv., 2025, 4, 753–762
insights about related emission sources. Specically, the
network analysis integrates two complementary techniques, i.e.,
intra-/inter-ranking and time series clustering. Intra- and inter-
ranking take advantage of peer-to-peer comparisons within the
network to differentiate inuences exerted by the regional
events and local sources and identify the stations heavily
inuenced by local sources for further analysis. Instead of using
mean diurnal patterns to analyze the diurnal properties of
target pollutants, time series clustering captures day-to-day
temporal-spatial differences, revealing representative diurnal
patterns for further analysis.

Through our analysis, we captured the signicant impact of
nighttime construction activities, which has profound policy
implications. The distributed air quality monitoring network we
utilized to demonstrate our approach was deployed in Xi'an,
China. Though many studies have focused on PM2.5 and PM10

issues in Xi'an due to its severe pollution problems and large
population, investigations on local construction sources in this
city are rare.26–40 Our analysis focuses on PMc, as construction-
related activities are a major source of PMc compared to other
sources, such as communing traffic and power generation.
However, the general approach applies to other pollutants, e.g.,
PM2.5 and NO2, which are commonly measured in distributed
air quality networks.41

Materials and methods
Study domain and dataset

As a major metropolitan area in Northwest China, the munici-
pality of Xi'an has a population of ∼13 million, among which
the urban population accounts for around 9 million.42,43 Our
study utilized data from a PM monitoring network in Xi'an,
shown in Fig. 1, consisting of 165 Beta attenuation monitoring
(BAM)-based monitoring stations.44 BAM employs the absorp-
tion of beta radiation by solid particles extracted from air ow to
detect PM10 and PM2.5 and is a Federal Equivalent Method
(FEM) approved by the U.S. Environmental Protection Agency
(EPA).45 Each station was designed with an ID (e.g., 1201C) using
© 2025 The Author(s). Published by the Royal Society of Chemistry
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a 4-digit number followed by the letter “C”, which stands for
“Community monitoring”. Hourly data were collected in April
and May 2020, and PMc concentrations were then derived from
PM10 and PM2.5. Xi'an's densely populated urban areas were
targeted for our research due to its high population density,
high density of monitoring stations (56 monitoring stations
marked in the orange color in Fig. 1), and relatively higher PMc

concentrations than other regions. For information on the
statistical analysis of the data and data preprocessing, see Table
S1 in the ESI.†
Network analysis

The main goal of our network analysis is to provide insights on
both areas and emission sources of interest within the moni-
toring network using peer-to-peer comparison. The three main
techniques, i.e., intra- and inter-ranking, time series clustering,
and data mining, are described as follows.

Intra-ranking and inter-ranking: identify the areas and
periods of interest. First, an intra-ranking system was created to
identify the potential network-wide phenomena. The daily
averaged PMc concentrations recorded at the same monitoring
station (“intra”) were ranked to identify periods when a pollu-
tion episode happened across the urban network regardless of
specic locations. Since our main interests are local emission
sources, we excluded the identied regional event days for
further steps. Next, an inter-ranking system was created to
identify urban stations potentially inuenced by recurring local
emission sources and related events. We ranked the daily
averaged PMc concentrations among all the urban monitoring
stations (“inter”) aer excluding identied periods with
regional events from the intra-ranking system. Those stations
consistently ranked among the highest were called hotspots
and were used for further analysis.

Time series clustering: extract diurnal patterns associated
with hotspot sites. Aer identifying the stations of interest
(hotspots) and periods of interest (days less inuenced by
regional events), we applied the time series clustering method
to all individual diurnal curves. Diurnal curves with incomplete
data were excluded, and 2041 diurnal curves were conserved.
The main objective for the time series clustering is to compare
the diurnal patterns between the hotspot sites and the rest of
the urban sites. We took several steps to achieve this objective.
The elbow method46 was utilized to nd the appropriate
number (i.e., 30, shown in Fig. S1†) of clusters, and the K-means
algorithm47–49 was adopted for time series clustering. The
diurnal patterns shared by a large number of non-hotspot sites
and by hotspot sites, respectively, were selected and analyzed to
pinpoint any unique patterns for the hotspot sites. More
information on the algorithm and data processing is shown in
Section S2.†

Data mining: generate emission-related features. Under-
standing the drivers of the unique diurnal patterns associated
with hotspot sites is valuable in informing effective mitigation
strategies. We collected information from various data sources
to generate features related to potential emission sources. Our
efforts focused on construction-related activities and traffic as
© 2025 The Author(s). Published by the Royal Society of Chemistry
they are the main contributors to local PMc emissions (see
Section S3†).50–53 The data sources for our investigation included
emission inventories, GIS-based data layers from Open Street
Map (OSM) and governmental agencies, satellite imagery from
Google and Baidu, online discussion forums, governmental and
real estate developer websites, etc. In addition, hourly traffic
counts were sampled from the selected period on weekdays and
weekends for 77 149 road sections in Xi'an with detailed infor-
mation shown in Table S3 and Fig. S2.†

Gathering accurate construction site information has been
a challenge for air quality studies. To ensure the quality of our
analysis, we screened all the monitoring sites and veried the
presence of construction-related activities during the sampling
period through multiple independent sources. We used Site
1201C to explain the verication process, described as follows.

The initial screening process using Google Satellite imagery
identied tower cranes and scaffoldings near Site 1201C, as
shown in Fig. 2(a). Similar construction activities were shown in
another online service, Baidu Satellite Fig. 2(b). Aer acquiring
the Chinese name of this potential construction site from Baidu
Satellite, we conducted extensive online searches based on the
name, revealing additional information to conrm the
construction activities during the sampling period. As pre-
sented in Fig. 2(c), residents led complaints about the night-
time noise disturbance through online forums administrated
by the local government in September 2020. They received an
official reply stating that the main body of the building was
being constructed and that the local environmental protection
agency approved the nighttime construction. The local envi-
ronmental protection department replied in December 2021
that construction materials had to be transported at night due
to the traffic restriction, stating the permitted construction
period was between June 2019 and January 2022. Thus, we were
able to conrm an active construction site under the main body
construction stage with overnight construction activities exist-
ing around station 1201C during the target period.

Following a similar process, nineteen urban stations were
identied with active construction sites nearby, and the terms
“Construction Station” and “Non-Construction Station” were
used to refer to the monitoring station with/without an active
construction site nearby.

Results and discussion
Intra-ranking and inter-ranking system analysis

Fig. 3(a) and S3† illustrate network-wide (i.e., regardless of
locations) episodes from the intra-ranking of daily average PMc

concentrations. Notably, elevated PMc concentrations across
the network during May 17th–18th, later conrmed as a dust
storm event, were due to natural dust transport outside the city
under strong wind conditions. Regional events like rain could
lead to a low PMc concentration across the network, evident in
the case of April 18th–19th. Aer a rain, all the urban stations
dropped to a relatively low PMc concentration level compared
with themselves in the selected two months, which form a deep
blue (ranking < 20%) area in Fig. 3(a). Aer excluding een
days inuenced by regional events identied by the intra-
Environ. Sci.: Adv., 2025, 4, 753–762 | 755
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Fig. 2 Verification of construction site: an example for monitoring station 1201C. Process: (a) locate a potential construction site around 1201C
using Google Satellite. (b) Access the construction's name using Baidu Satellite. (c) Conduct datamining on the internet. In this case, construction
was active during the target period with overnight construction activities, leading to many complaints from nearby residents.
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ranking system analysis and other datasets (with more
description in Fig. S3†), we performed the inter-ranking to
select the monitoring stations that consistently ranked high in
concentrations in the network. Stations sorted by high-ranking
(i.e., top 10) days fraction (dened as the number of high-
ranking days/the number of total days with records) are
shown in Fig. 3(b). Thirteen stations with signicantly more
Fig. 3 Intra-ranking and inter-ranking system analysis results: (a) Heatm
could be observed, indicating the existence of regional events such as
records are excluded for further analysis. (b) The color of one block in the
the inter-ranking system within a single day (x-axis). Thirteen monitorin
hotspots for further analysis.

756 | Environ. Sci.: Adv., 2025, 4, 753–762
high-ranking days (13th is 15 days while 14th is 12 days) were
designated as hotspots in this study.

Time series clustering

The clustering results for all thirty clusters are visualized in
Fig. S4,† and their temporal-spatial distributions and sizes are
shown in Fig. S5 and S6,† respectively. Nine representative
clusters, with their mean diurnal proles shown in Fig. 4, were
ap of intra-ranking system results. Episodes, regardless of locations,
rain and dust storms shown in two cases.69 Days with regional event
heatmap represents whether a monitoring station (y-axis) was top 10 in
g stations with consistently high PMc concentrations are identified as

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) The general patterns identified by the largest clusters (1, 13, and 25) showed two peaks at night and morning. (b) Compared to the
general patterns, all unique clusters for the hotspots (called key clusters) showed much elevated concentrations during the night or early
morning, andmost of them did not show a prominent morning peak, indicating the potential existence of a strong local driver. The lightly shaded
lines in (b) are the same as the solid lines in (a) for comparison purposes.

Fig. 5 The contribution of individual hotspots to diurnal curves in
hotspots clustered into key clusters. Construction hotspots are the
main contributor (∼81%) to these clusters, indicating construction
activities may lead to the abnormally high concentration in the night
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selected for the subsequent discussions. Three clusters of the
largest size (1, 13, 25), shown in Fig. 4(a), depicted the general
patterns for most of the monitoring stations: two peaks (around
midnight, 23:00–0:00, and in the morning, 8:00–10:00) and two
valleys (around early morning, 4:00–5:00 and early evening
around 18:00). This type of diurnal patterns with both morning
and nighttime peaks was also found in other clusters with
relatively larger sizes (more analysis presented in Section S3,
Fig. S7–S11, and Table S5†). This general diurnal pattern is
likely governed by mixing height and traffic. The traffic gener-
ates non-exhaust particle emissions (mainly about PMc) from
the wearing down of brakes, clutches, tires, and road surfaces,
as well as by the suspension of road dust,54 and the mixing
height inuences the PMc concentration level by affecting its
dispersion rate.55–57 As Fig. S7† shows, the data matches the
explanation well: The morning peak is dominated by high
traffic counts; the early evening valley is caused by a large
mixing height; the midnight peak is a result of a low mixing
height; and the early morning valley is inuenced by low traffic
counts.

The other six clusters, shown in Fig. 4(b), represented the
unique patterns for hotspots with a higher than 50% relative
count (dened as the number of diurnal curves from hotspots
divided by the total number of diurnal curves in a cluster; for
example, cluster 7's relative count is 45%). These six clusters
were referred to as key clusters, where 72% of the total diurnal
curves inside are from hotspots. Compared to the general
diurnal pattern, the key clusters not only generally had much
higher PMc concentrations than the other clusters but also
showed signicantly elevated PMc peaks during early morning
or nighttime and the absence of the morning peak around
10:00. The patterns of key clusters cannot be explained by either
© 2025 The Author(s). Published by the Royal Society of Chemistry
the typical traffic or mixing height trends and require further
investigations.
PMc hotspots are linked to nighttime construction-related
activities

Further analysis linked the unique patterns associated with
hotspots (i.e., the patterns of key clusters shown in Fig. 4(b)) to
the nighttime construction site activities. First, more
construction stations (8 out of 19) were identied as hotspots
and early morning of these clusters.

Environ. Sci.: Adv., 2025, 4, 753–762 | 757
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compared to non-construction stations (5 out of 37). Second, as
shown in Fig. 5, when looking at the diurnal curves in hotspots
clustered into key clusters, ∼81% of them are contributed by
construction hotspots. Both of them indicated the potential
linkage.

The relationship between nighttime construction site activi-
ties and unique patterns was further veried and evaluated by
examining all the urban stations, including both hotspots and
non-hotspots. The PMc hourly records (N = 55 180) were divided
into two categories based on the time of day – daytime (7:00 to
19:00) and nighttime (20:00 to 6:00). Following this, the
Complementary Cumulative Distribution Function (CCDF) for
these records from both construction and non-construction
stations were individually graphed for each time period, as
illustrated in Fig. 6(a) and (b). Construction stations displayed
markedly higher PMc concentrations and more extreme values
(i.e., above 100 and 150 mg m−3) than non-construction stations,
with no such trend observed during the daytime. Specically, at
nighttime, construction stations had a 26.1% higher average PMc

concentration (66.5 mg m−3 vs. 52.7 mg m−3). Furthermore,
construction stations were almost twice more likely to register
readings above 100 mg m−3 (18.0% vs. 8.1%) and three times
more likely for 150 mg m−3 (4.5% vs. 1.4%) than the non-
construction stations. Additionally, as shown in the embedded
plots in Fig. 6(a) and (b), construction stations had higher
station-individual mean values during nighttime (raw data and
additional analysis on other individual statistics are in Fig. S16,
Tables S7, S8, and Section S7,† N = 55), with statistically signif-
icant differences (CI = 99%) by the Mann–Whitney U test.58 In
contrast, during the daytime, there was no signicant difference
between the two groups (p = 0.13), verifying that construction
stations differ from non-construction stations in PMc concen-
tration mainly during nighttime rather than daytime.
Fig. 6 (Main) The complementary cumulative distribution function (
construction stations during (a) nighttime (20:00 to 6:00) and (b) day
construction stations and non-construction stations during (a) nighttime
construction and non-construction stations were mainly found at night
a temporal attribute of night.

758 | Environ. Sci.: Adv., 2025, 4, 753–762
Impact of construction sites on nighttime PMc levels in LUR
models

Though differences in PMc nighttime levels between non-
construction stations and construction were observed, we
aimed to conrm that these differences were primarily due to
active construction sites rather than other factors. A potential
way here is to designate “Construction Site” as a binary variable
and assess its impact by integrating it with other spatial
predictor variables related to pollution levels into statistical
models. We selected nearly 300 spatial variables, covering land
use area, road length, and Points of Interest (POIs), such as bus
stops, traffic volume, and population density, across different
buffer radii (if applicable), as detailed in Table S8.†

We utilized Land Use Regression (LUR) models to predict
average PMc levels at stations during both daytime and night-
time. The modeling was also performed with and without the
“Construction Site” variable in the nal model, resulting in four
distinct models (Table 1). For each model, pre-selection was
conducted to avoid multicollinearity, followed by an exhaustive
search subset selection with maximum adjusted R2 in Ordinary
Least Squares (OLS) regression, adhering to a rule-of-thumb of
a maximum of one predictor per ten samples, capped at ve.59,60

Additionally, all predictors must demonstrate statistical signif-
icance with p-values less than 0.1.59 Model performance was
evaluated using R2, and root mean squared error (RMSE)
metrics, derived from Leave-One-Out Cross-Validation (LOOCV)
and 100-time 5-fold Cross-Validation (CV).

Table 1 reveals that the inclusion of the “Construction Site”
variable enhances nighttime models; its absence resulted in an
LOOCV R2 of 0.46 and an RMSE of 10.25 mg m−3, while its
inclusion (with an OLS coefficient of 8.88) increased the LOOCV
R2 to 0.54 and reduced the RMSE to 9.45 mg m−3. This
improvement is also mirrored in the 100-times 5-fold CV
results, showing signicantly improved R2 (0.33 to 0.43, N =
CCDF) for hourly PMc readings of construction stations and non-
time (7:00 to 19:00). (Inset) The station-individual mean values for
and (b) daytime (**: p-value # 0.01). Significant differences between
time, indicating that the impact of construction activities on PMc has

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Performance metrics of four Land Use Regression (LUR) models for estimating station-mean PMc concentration levels (mg m−3) during
daytime and nighttime across 55 instances, considering the inclusion and exclusion of the ‘Construction Site’ feature in final model. 304 other
spatial features were considered. Notably, the inclusion of ‘Construction Site’ boosts model performance during nighttime, an effect not
mirrored in daytime

“Construction
Site” in nal model Adj. R2 LOOCV R2

LOOCV RMSE
(mg m−3)

100-time 5-fold
CV R2 RMSE (mg m−3)

Mean Std Mean Std

Nighttime With 0.61 0.54 9.45 0.43 0.40 9.63 2.40
Without 0.56 0.46 10.25 0.33 0.53 10.35 2.40

Daytime With 0.42 0.33 6.59 0.26 0.40 6.54 1.45
Without 0.57 0.52 5.60 0.43 0.30 5.70 1.03
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500) and RMSE values (10.35 mg m−3 to 9.63 mg m−3, N = 500)
with lower or similar variation. In contrast, during daytime, the
addition of this variable (coefficient: 3.21 in the OLS model) not
only failed to improve, but also worsened performance,
underscoring its limited impact on daytime PMc levels. These
ndings indicate that active construction sites primarily have
a strong impact on PMc levels at night rather than during the
day, and other common spatial pollution indicators do not
mirror this relationship. For details on our variable selection,
LUR model settings, and results, see Section S8 and Table S9.†

Although the performance of our PMc models is not as high
as seen in some PM2.5 and PM10 LUR modeling studies,61 it is
still considered acceptable for variable verication in PMc

modeling. This is because PMc models generally exhibit a much
worse performance than PM2.5 and PM10 models, with LOOCV
R2 values differing by 0.1 to 0.3 and sometimes as low as 0.22 in
those rare studies that contain PMc LUR modeling.62–64 An
improvement of 0.1 on 100-time 5-fold CV R2 is considered
signicant due to the smaller baseline (0.33), more stable
performance, and the fact that our “without nighttime” model
already encompasses the most common LUR features.

Although common factors were considered in the LUR model
to conrm that nighttime PMc heterogeneity persists between
construction and non-construction stations aer accounting for
these variables, some station-specic factors were not included in
this study due to data availability and methodological
constraints. Factors such as urban canyons and their interactions
with microclimatic variables 65,66 are important for a deeper
understanding of PMc concentration patterns and should be
considered in future analyses if condition permits.
Nighttime PMc hotspots as an unintended consequence of
environmental policies

Our network analysis and further verication by LUR models
attribute the nighttime peaks in PMc concentrations to
construction-related activities. A further review of the literature
on construction-related emissions and environmental policies
suggested the critical role of heavy-duty trucks responsible for
transporting construction materials such as soil, sand, and
waste, also known as “dump trucks”. According to an interview-
based study in China, the transportation of soil is recognized as
the largest contributor to construction dust.67 PM emissions
(mainly PMc) from construction activities, mainly from
© 2025 The Author(s). Published by the Royal Society of Chemistry
earthmoving, truck loading/unloading, the transportation of
mud and dirt, and the resuspension of dust from unpaved
roads,6 are all directly related to dump truck traffic.68

It is important to point out that the regulations on dump
trucks are oen developed separately from those imposed on
other heavy-duty trucks (such as freight vehicles) in China. Many
Chinese cities, including Xi'an, have adopted a daytime ban or
designated nighttime as the primary operating window for dump
trucks, originally developed for traffic safety and environmental
considerations (see Section S9.1 and Table S10†). Between 2011
and 2019, Xi'an permitted dump truck operations only from 22:00
to 6:30. Since 2019, an additional operating window from 10:00–
16:00 has been introduced to address the growing construction
waste problem. However, several factors unintentionally incen-
tivized construction contractors to conduct a majority of the most
emission–intensive activities (such as excavation and subsequent
dump truck operations) during nighttime. For example, even
though stringent dust control regulations exist for dump trucks
(such as load limits, dust covers, and body wash), enforcing these
environmental measures is oen lax during nighttime. In addi-
tion, the few traffic congestions and the lack of enforcement of
traffic regulations are also favorable factors for nighttime dump
truck operations. Essentially, the nighttime hours have become
a “convenient” time window for dump trucks to be non-compliant
with both air quality and traffic regulations from a purely cost-
reduction perspective. The consequences include elevated air
pollution and noise pollution levels, as well as many reported
nighttime traffic accidents resulting in injuries and fatalities (for
related news coverage, see Section S9.2).

Our study indicates that the observed nighttime peaks in
PMc concentration are one of the unintended consequences of
environmental and traffic policies on dump trucks. The implied
policy interventions include (1) strengthening the enforcement
of related regulations during nighttime and (2) examining the
costs and benets of controlling nighttime dump truck opera-
tions. Transitioning to a policy that limits nighttime dump
truck operations is worthy of debate since daytime meteoro-
logical conditions (such as greater mixing layer heights) are
generally less conducive to high PM concentrations, and
compliance among dump truck operators is likely to be higher.
To the best of our knowledge, the City of Changsha in Hunan
Province is the only municipality in China that has imple-
mented a nighttime restriction on dump truck operations.
Environ. Sci.: Adv., 2025, 4, 753–762 | 759
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Starting from January 2020, dump trucks are not allowed to
operate between midnight and 9:30, and special permits are
required to operate dump trucks from 22:00 to midnight.
Benets, including controlling fugitive dust, reducing night-
time traffic noise, and preventing traffic violations, were cited by
policymakers as the main rationales for the nighttime restric-
tion (see Section S9.3†), which aligns with our ndings. We
advocate for a comprehensive analysis including construction
efficiency, air pollution, noise pollution, waste management,
and road safety to examine the complex trade-offs in different
policy options related to dump trucks.
Conclusions

Our network analysis offers a practical screening tool for regu-
lators to efficiently analyze a large amount of air quality data
collected from distributed sensor networks, identify hotspots,
and link them to potential emission sources. We utilized
construction sites to demonstrate the benets of the network
analysis approach. Our ndings revealed that construction-
related emissions signicantly impact PMc levels during the
nighttime but not during the daytime, and we conrmed this
observation by developing LUR models considering other
spatial variables. Existing dump-truck related environmental
policies could explain this day–night discrepancy. A limitation
of our study is the lack of quantitative analysis of station
heterogeneity regarding some specic spatial and spatio-
temporal factors, such as urban canyons, microclimates, and
background concentrations, which are important for deeper
insights. Future research may involve considering these factors
through further data collection, detailed data compilation from
diverse construction sites at various stages and proximal refer-
encemonitoring stations for comprehensive impact assessment
of construction dump trucks and other activities.
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55 K. Schäfer, S. Emeis, H. Hoffmann and C. Jahn, Meteorol. Z.,
2006, 15, 647–658.

56 P. Wagner and K. Schäfer, Urban Clim., 2017, 22, 64–79.
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