A quasiplanar TADF emitter employing a dual-locking strategy enables efficient solution-processed deep blue OLEDs

Abstract

Quasiplanar thermally activated delayed fluorescence (TADF) emitters are promising for high-efficiency deep blue organic light-emitting diodes (OLEDs), but they can seldom be used for wet processes. In this work, a novel solution-processed molecule, BOAC-OH, was developed by grafting a B-OH group onto the prototype molecule BOAC. Driven by synergistic O–H⋯O intramolecular hydrogen bonding and B–C σ bonds, BOAC-OH undergoes a conformational change from a highly twisted form of BOAC to a quasiplanar form. As a result, it achieves remarkably blue-shifted emission below 440 nm and promotes the improvement of the radiative transition rate compared to BOAC. The solution-processed OLED device based on BOAC-OH affords a maximum external quantum efficiency of 10.3% with deep blue emission peaking at 444 nm, corresponding to CIE coordinates of (0.15, 0.08), matching well with the National television system committee blue standard. This work showcases the great potential of this dual-locked strategy in developing deep blue TADF emitters for solution-processed OLEDs

Graphical abstract: A quasiplanar TADF emitter employing a dual-locking strategy enables efficient solution-processed deep blue OLEDs

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
03 Jul 2025
Accepted
03 Sep 2025
First published
05 Sep 2025

J. Mater. Chem. C, 2025, Advance Article

A quasiplanar TADF emitter employing a dual-locking strategy enables efficient solution-processed deep blue OLEDs

H. Zhu, H. Wang, X. Fan, X. Xiong, Z. Cheng, J. Yu, K. Wang and X. Zhang, J. Mater. Chem. C, 2025, Advance Article , DOI: 10.1039/D5TC02547H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements