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Introduction

Achieving high-accuracy multi-feature
temperature sensing in chromium(in)-doped
nanophosphors using machine learning

xabc

Yijie Wen,+°°¢ Xiang Feng,“ Chao Lin,?*® Qianfan Zhang, {2 ¢ Maohui Yuan

and Kai Han () xabc

Cr**-doped near-infrared luminescence thermometers, recognized for their tunable emission spectra
and high temperature sensitivity, are extensively researched. Nonetheless, investigations into their tem-
perature measurement capabilities have predominantly concentrated on ranges either below or above
ambient temperature, with limited examination of broad-range measurements. Moreover, temperature
assessments based on single spectral features are subject to uncertainties, whereas the integration of
multiple features can enhance the temperature sensing accuracy. In this work, K,NaGaFe:Cr*
nanophosphors were synthesized via a hydrothermal method and their near-infrared luminescence was
significantly enhanced through high-temperature annealing. Emission spectra were evaluated across a
temperature span of 83 K to 573 K, and multiple spectral features were extracted for temperature
sensing. Employing the auto-sklearn machine learning (ML) techniques, three spectral features—full
width at half maximum (FWHM), peak intensity ratio, and integral area—were combined for temperature
prediction. The optimized three-feature model achieved a temperature measurement root mean
squared error (RMSE) of 0.52 K within the 223-323 K range, surpassing the performance of single- and
two-feature models. Furthermore, the model also maintained an accuracy of RMSE < 1 K over a wider
measured temperature range. Our work demonstrates the superior high-accuracy temperature sensing
based on the multiple features, and it can be used to measure the temperature in micro(nano)-scale
applications.

As a non-contact temperature sensing approach, luminescent
temperature detection provides the advantage of operating in

Temperature is one of the seven fundamental physical quan-
tities, and its effective measurement is critically important.
Traditional contact-based temperature measurement techni-
ques are often inadequate for challenging environments, such
as those involving irregularly shaped surfaces, corrosive or
radioactive conditions, enclosed transparent spaces, and areas
with strong electric or magnetic fields. Non-contact optical
temperature measurement technology, utilizing luminescence
temperature-sensing materials can circumvent these limitations.
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micro-scale environments and maintaining efficiency under
complex conditions." Consequently, there has been growing
interest within the scientific community in recent years regard-
ing the research of non-contact optical temperature measure-
ment methods and their applications across various technical
domains.> ™

Different micro-nano materials have been used for tempera-
ture measurement, with rare earth ions (RE*") and transition
metal ions being commonly employed for doping. RE** primar-
ily rely on 4f-4f electron transitions, which are shielded by
outer orbitals, making the excitation and emission of RE**
doped fluorescent materials largely unaffected by the matrix
structure and crystal field.'> As a result, these materials exhibit
sharp spectral peaks but poor tuning performance. In contrast,
phosphors doped with a transition metal ion, such as Cr**, are
highly sensitive to their position in the crystal field due to their
unique 3d’ electronic structure. This allows its emission prop-
erties to be significantly adjusted by the crystal field, resulting
in excellent tunability. When Cr*" is doped into the low phonon
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energy fluoride hosts," it can reduce thermal quenching and
enable a broad-range temperature measurement. Additionally,
Cr’" can be excited by the cost-effective blue LEDs and emit
light in the near-infrared band.'*'® This large Stokes shift
minimizes interference between the fluorescence signal and
the excitation light.

In recent years, Cr’" doped near-infrared phosphors have
gained attention for optical temperature measurements, due to
their high sensitivity, especially below 400 K.'*™'° However,
their sensitivity diminishes above 400 K.>*** Moreover, pre-
vious research studies predominantly target temperature
ranges either below or above room temperature, with limited
studies addressing a comprehensive range that includes both
extremes.”*?* Typically, temperature analysis relies on a single
feature, such as FWHM, fluorescence intensity, lifetime,
etc.,***” which would lead to the uncertainties for tempera-
ture sensing. Utilizing multiple features for temperature pre-
diction can reduce uncertainties and enhance accuracy, yet few
studies have pursued this approach.?® Therefore, developing
fluorescent temperature probes that operate across a broad
temperature range and leverage multi-feature analysis could
significantly improve measurement accuracy and expand appli-
cation possibilities. Currently, ML has been the primary focus
of attention and applied in various sensing applications,
including gas and liquid concentration detection,**"*! pressure
sensing,?” spectral material classification,®® food analysis,** ™’
biology sensing,*®?° flexible sensing,’®*' temperature sens-
ing®™*> and other fields. Nevertheless, few attempts have been
made to apply ML for temperature measurement based on
fluorescence spectroscopy. Especially, the multiple features of
the luminescence spectrum, such as intensity, FWHM, and
peak intensity ratio, are well suited for predicting the tempera-
ture using the ML to improve the accuracy of temperature
sensitivity.

Since fluorides exhibit low phonon energy, reduced thermal
quenching, and a broad operating temperature range,
K,NaGaFg:Cr’* nanophosphors were synthesized using a green
and environmentally friendly hydrothermal method (Part 1 in
the SI)." It exhibits high stability at high temperatures, which
provides a favorable stable condition to conduct accurate
temperature measurements over a wide temperature range.

View Article Online
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Notably, under the excitation of a 450 nm laser, the lumines-
cence characteristics and thermometric performance of these
nanophosphors can be enhanced through the high-temperature
annealing process. We analysed the morphology, structure, and
luminescence of the nanophosphors before and after annealing,
examining their emission spectra from 83 K to 573 K. Using ML,
we combined three features—FWHM, peak intensity ratio, and
integral area of the luminescence spectra to predict temperature.
The auto-sklearn®® technique was used for model training and
hyperparameter tuning. The resulting multi-feature model
exhibited a low RMSE of only 0.52 K over the temperature
range of 223-323 K. Moreover, despite the limited data avail-
able, the RMSE maintained less than 1 K at lower temperature
(118-128 K) and higher temperature (418-428 K) ranges.
A comparative analysis between multi-feature and single-
feature models revealed that model accuracy improved with
the increase of feature numbers. In summary, by utilizing the
multi-feature ML methodology based on K,NaGaF:Cr** phos-
phor materials, we successfully achieved robust temperature
measurements across a wide temperature range, underscoring
the efficacy of the multi-feature combined ML model for
temperature prediction based on sample fluorescence spectra.

Results and discussion

Fig. 1a shows the emission spectra of K,NaGaFs doped with
different Cr** concentrations under the excitation of 450 nm.
There is an obvious broad peak centered at 740 nm, which is
originated from the transition of “T, — “A, of Cr**. The
luminescence intensity initially increases and subsequently
decreases with rising the doping concentration, with the opti-
mal concentration identified at approximately 7 mol% (Fig. 1b).
Notably, the peak position of the spectrum remains unchanged
with increasing doping concentration (Fig. 1c). This phenom-
enon can be attributed to the similarity in ionic radii between
Ccr’* (R = 0.615 A, CN = 6) and Ga®* (R = 0.620 A, CN = 6),
allowing Cr’" to be effectively incorporated into the octahedral
lattice sites, with minimal impact on the crystal volume.
Notably, the luminescence intensity of these fabricated
nanophosphors can be significantly enhanced after annealing
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Fig. 1 (a) PL spectra, (b) peak intensity, and (c) normalized emission spectra of K,NaGaFs nanophosphors doped with different Cr** concentrations.
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(a) PL spectrum, (b) normalized PL spectrum, and (c) maximum peak intensity, FWHM, maximum peak position, and integral area of the

K,NaGaFe:6 mol% Cr** nanophosphors pre- and post-annealing at 873 K temperature.

at 873 K, as shown in Fig. 2a. The luminescence intensity for
the K,NaGaF4:6 mol% Cr*" was enhanced approximately 6 times
compared to the as prepared nanophosphors. Furthermore, the
luminescence spectrum’s profile underwent alterations post-
annealing, as depicted in Fig. 2b. Specifically, the emission
peak exhibited a blue shift, and two additional distinct smaller
peaks emerged on the left side of the primary peak. In this
context, K,NaGaFg:6 mol% Cr** was utilized as a representative
example, although similar phenomena were observed across
other concentrations, which displayed variations in peak shape
and fluorescence enhancement ratio pre- and post-annealing.
Detailed procedural steps are provided in Part 2 of the SI.

Fig. 3 SEM images of Kx-NaGaFe:Cr*™ nanophosphors doped with (a) 0 mol% (b) 3 mol% (c) 6 mol% Cr**
K>NaGaFs:Cr** nanophosphors doped with (d) 0 mol% (e) 3 mol% (f) 6 mol% Cr** after annealing. XRD patterns of K,NaGaFg:Cr’*

After post-annealing, the photoluminescence (PL) spectral
intensity was notably enhanced, the FWHM was marginally
reduced, and the position of the maximum peak experienced a
blue shift, as illustrated in Fig. 2c. These findings suggest that
the annealing process significantly alters the fluorescence
characteristics of the nanophosphors.

To further investigate the impact of the annealing process
on the morphology and crystalline structure of the samples, we
conducted scanning electron microscope (SEM) and X-ray
diffraction (XRD) analyses on samples with varying doping
concentrations, both pre- and post-annealing. A comparison
of the SEM and XRD patterns before and after annealing (Fig. 3)
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reveals that annealing significantly influences the morphology
of the samples. It is hypothesized that high temperatures
eliminate impurities, such as residual organic molecules on
the sample surfaces, thereby mitigating their impact on fluores-
cence emission. Additionally, post-annealing XRD peaks exhibit
reduced width and fewer extraneous peaks, aligning more
closely with standard reference patterns. Furthermore, there
is a slight shift of the high-angle peak towards a larger angle
compared to pre-annealing observations. These findings
further substantiate that high-temperature annealing enhances
the crystalline density of the sample and improves its quantum
efficiency. We conducted measurements of the photolumines-
cence excitation (PLE) and PL spectra of the sample both before
and after annealing, as depicted in Fig. S4. It was observed that
the peak wavelength of the PL spectrum exhibited a shift
towards shorter wavelength after post-annealing. Similarly,
the A, — *T,(F) peak position in the PLE spectrum also
demonstrated a shift towards shorter wavelengths to a certain
extent. Calculations performed using eqn (S1)—(S3) suggest that
the crystal field strength increases following high temperature
annealing.”” This enhancement in the crystal field is likely
attributed to a reduction in the crystal plane distance and a
decrease in unit cell volume inducted by annealing, as detailed
in Part 3 of the SI. Furthermore, the observed trend in the
temperature-dependent behavior of annealed nanophosphors
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(Fig. S5) aligns with the findings of Jia et al.*® The broadband
emission peak ranging from 675 nm to 850 nm is attributed to
the *T, — A, transition, with a calculated Huang-Rhys para-
meter of approximately 3.3, as elaborated in Part 4 of the SI.
The electron-phonon coupling (EPC) effect contributes to the
broadband emission and significant Stokes shift of the
“T,(F) — “A, transition, as well as an increased FWHM at
elevated temperatures, with the FWHM expanding from 79 nm
at 83 K to 124 nm at 573 K. In Fig. S5, the PL spectra at varying
temperatures exhibit irregularities, characterized by numerous
minor peak fluctuations adjacent to the zero-phonon line (ZPL),
which we attribute to phonon sidebands. As the temperature
increases, the phonon sidebands on the lower energy side of
the ZPL progressively diminish, whereas those on the higher energy
side intensify, accompanied by a blue shift phenomenon.*®

The nanophosphor, which demonstrates enhanced lumines-
cence performance post-annealing, was utilized in a variable
temperature experiment. At a temperature of 723 K, the fluores-
cence intensity is nearly extinguished. Consequently, to main-
tain a high signal-to-noise ratio, we selected a temperature
range of 83 K to 573 K for optical temperature measurements.
Within this range, notable changes in the intensity and shape
of the PL spectrum are observed (c). Fig. 4d further displays the
normalized spectra at different temperatures. It can be seen
that the shape of the fluorescence spectrum changes obviously
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Fig. 4 (a) PL spectra and (b) PL mapping of K,NaGaFs:Cr®* nanophosphors as a function of temperature range of 83-723 K. (c) Original and
(d) normalized PL spectra of K,NaGaFg:6 mol% Cr** nanophosphors under the different temperatures.

18652 | J Mater. Chem. C, 2025, 13, 18649-18656

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5tc02094h

Open Access Article. Published on 04 August 2025. Downloaded on 11/12/2025 3:48:03 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Journal of Materials Chemistry C

a 14
o
%9 —@— Relative Intensity
1.2+ N
—~ [* ]
s o
L“; \0‘0\0
= 1.0+ 00,
£ )
@ “o.
s \
2 0.8+ LN
ic 9
© N
S 9
= 0.6 o
K S
(9] 0\
o Q
0.4 \
o
0.2 T T T T T
100 200 300 400 500 600

Temperature (K)

View Article Online

Paper
_9-9-0-0-0
740 _9-0-9-9
poCil
€
£730
[ =
=
= 9
s 720 o
©
o)
o
710 —@—Peak position
°°—°~O
100 200 300 400 500 600

Temperature (K)
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with the increase of temperature, which is mainly manifested
as the change of the relative intensity of the three peaks
(708, 722 and 740 nm). The left 708 nm peak is largest at low
temperature, the middle 722 nm peak is the highest at about
248 K, and the right 740 nm peak is the highest at high
temperature (Fig. 5b). When the temperature exceeds 298 K,
both the three peaks decrease as the temperature gradually
increases.

Fig. 5a illustrates the correlation between the relative inten-
sity of the spectra and temperature using the relative intensity
at 298 K as a reference point (set to 1). Analysing the maximum
peak position in Fig. 5b in relation to temperature variations
reveals that the attenuation rate of peaks at shorter wavelengths
is more pronounced. We hypothesize that the strong coupling
between the shorter wavelength position and the ZPL results in
a more significant EPC effect, thereby making the intensity at
this position highly sensitive to temperature changes. Fig. 5b
depicts the maximum peak position of the spectrum across
different temperatures. As temperature rises, the position of the
maximum peak continuously shifts upward. This phenomenon
can be attributed to the thermal expansion of the crystal lattice,
which reduces the crystal field strength, consequently altering
the energy level positions and causing a red shift in the peak
(Part 5 of the SI). Additionally, the peak intensity ratio at 740 nm
and 708 nm, FWHM and integrated area values of the normalized
spectrum at various temperatures were extracted and plotted

against temperature, as shown in Fig. 6. Using the polynomial
fitting operation, the wellfitted results obtained indicate the
monotonous trend of the three spectral features with respect to
temperature. Especially, the FWHM and the integral integrated
area have a clear physical meaning, and obey the Boltzmann
distribution law (see Part 7 of the SI). In addition, we further
verified the stability of the spectra under the high temperatures
(see Part 8 of the SI), and the spectral data demonstrate high
stability and repeatability at high temperatures. These results
further prove that it is suited for temperature detection and
prediction.

Temperatures were selected ranging from 223 K to 323 K
with intervals of 0.5 K, resulting in a total of 201 temperature
points. At each temperature, we conducted 10 measurements,
yielding a total of 2010 spectra signals. Each spectrum
was processed to extract three features: FWHM, the ratio of
I740 nm/T708 nm (ratio), and the integral area (area). As shown in
Fig. 6, all three features vary monotonically with temperature
and exhibit high sensitivity to temperature changes, making
them well-suited for temperature prediction. In summary,
our ML dataset includes 2010 samples, each consisted of
three features and a temperature label. The dataset was split
into a training set and a test set in a 3:1 ratio. To enhance
data utilization, no additional validation set was created.
Instead, five-fold cross-validation was employed, allowing
the training set to simultaneously support model training and
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Fig. 6 (a) Peak intensity ratio, (b) FWHM, and (c) integral area of K;NaGaFs:Cr®* nanophosphors as functions of the temperature.
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Table 1 Comparison of single-feature and three-feature model data of
MAE, RMSE, MaxAE and R?

Model MAE (K) RMSE (K) MaxAE (K) R?

FWHM + ratio + area  0.4072 0.5208 2.3520 0.99968
FWHM + ratio 0.4219 0.5392 2.3530 0.99967
FWHM + area 0.4748 0.6094 2.1547 0.99956
Ratio + area 0.5731 0.7271 2.7237 0.99938
FWHM 0.4780 0.6096 2.0868 0.99956
Ratio 0.6512 0.8362 3.3809 0.99917
Area 1.2012 1.5455 6.4850 0.99718

hyperparameter tuning. The test set was used exclusively once to
evaluate the performance of the optimized model, ensuring no
data leakage and providing an accurate assessment of our model’s
true performance. The auto-sklearn method was introduced for
the ML process. This method integrates three state-of-the-art ML
techniques: meta-learning, Bayesian optimization and ensemble
construction, enabling the automatic identification of the best-
performing model from 12 algorithms [adaboost, ARD regression,
decision tree, extra trees, Gaussian process, gradient boosting, K-
nearest neighbors, support vector regression (LibLinear), support
vector regression (LibSVM), multi-layer perceptron, random for-
est, and stochastic gradient descent]. Meta-learning leverages
prior experience to provide reasonable initial model guesses based
on the characteristics of the dataset. Starting from these initial
guesses, the Bayesian optimization algorithm efficiently searches
for the hyperparameter space to identify the best-performing
model. Finally, auto-sklearn uses a greedy algorithm to construct

’ a Nanophosphors \

Temperature
Control

)

View Article Online
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an ensemble from the top 50 ranked models, combining their
strengths to further enhance the robustness. To demonstrate the
superiority of our multi-feature approach, we trained seven
models using different combinations of features: FWHM + ratio
+ area, FWHM + ratio, FWHM + area, ratio + area, only FWHM,
only ratio, and only area. Each model was trained using the auto-
sklearn technique on a 20-core server for 1800 seconds. The
performance of each model was evaluated using four metrics:
mean absolute error (MAE), root mean squared error (RMSE),
maximum absolute error (MaxAE), and the coefficient of determi-
nation (R*) (Fig. S7 and Table 1).

Except for the MaxAE metric, the other three metrics for two-
feature models consistently outperform those of the corres-
ponding single-feature models. Similarly, the three-feature
model outperforms all two-feature and single-feature models,
clearly demonstrating the advantage of our multi-feature
approach. The slight deviation of MaxAE from this trend can
be attributed to the greater focus applied on individual samples
rather than the overall statistics. The details of the auto-sklearn
training process are described and summarized in Tables S1
and S2 in the SIL

Fig. 7(a-c) display the schematic diagram of a Cr’*-doped
nanophosphor thermometer using the multi-feature of the
spectral data based on the auto-sklearn ML process. Fig. 7d
shows the relationship between actual and predicted tempera-
ture values based on our ML model. The results indicate that
the three-feature temperature prediction model shows higher
accuracy than the single-feature or two-feature temperature
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Fig. 7 (a) Schematic diagram of Cr**-doped nanophosphors thermometer. (b) The multi-feature of the spectral data for ML process. (c) The auto-
sklearn ML process. (d) Predicted vs. measured temperature using the ML model.

18654 | J Mater. Chem. C, 2025, 13, 18649-18656

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5tc02094h

Open Access Article. Published on 04 August 2025. Downloaded on 11/12/2025 3:48:03 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Journal of Materials Chemistry C

prediction model. Previous studies have utilized the tempera-
ture sensitivity and uncertainty to evaluate the performance of a
luminescent thermometer.>*%**** Notably, the single spectral
feature for temperature measurement would be easily affected
by the external environment. Here, the combination of multiple
spectral features and multiple ML models can effectively avoid
this problem. The temperature prediction accuracy after com-
bining the three features can reach 0.52 K (RMSE), MAE
~ 0.4 K. Furthermore, we selected the 123 K, 248 K and 423 K
as the three characteristic temperatures, trained and tested the
spectral data. Compared with the spectral data operated at the
range of 223-323 K, the temperature measurement accuracy of
MAE ~0.7 K and RMSE less than 1 K can be achieved when the
acquisition step is reduced by half and the temperature
measurement accuracy is improved (Fig. S8 and Table S3).
The results indicate that these nanophosphor thermometer
based on the ML model can achieve high-precision temperature
prediction in a relatively wide temperature range. This is a quite
significant and competitive prediction deviation for tempera-
ture sensing based on our advanced model (Table S4). Our
attempt proves that combining multiple features can indeed
improve the accuracy of the temperature prediction, showcasing
its potential for high-precision multi-feature temperature
measurement in the micro/nano-scale applications.

Conclusions

In conclusion, we have successfully synthesized K,NaGaF¢:Cr’**
nanophosphors and observed the intensive near-infrared emis-
sion upon excitation at 450 nm. Annealing of the nanopho-
sphors at 873 K significantly enhances the fluorescence
emission intensity and modifies the spectral peak profile. The
emission peak undergoes a blue shift, and two additional
distinct peaks emerge alongside the original single peak.
We hypothesize that high-temperature annealing removes sur-
face impurities, such as organic residues, which adversely affect
luminescence. Furthermore, annealing facilitates a more com-
pact crystal structure, enhancing the crystal field strength
and thereby increasing spectral emission intensity and altering
peak profiles. Additionally, we observed that the relative inten-
sities of these three peaks post-annealing exhibit a strong
temperature dependence, offering a novel temperature-
sensitive parameter for detection applications. We extracted
three spectral features—peak intensity ratio, FWHM, and inte-
gral area—from the normalized spectra at various tempera-
tures. These features were integrated using ML techniques for
temperature detection. The predictive performance of the
model utilizing a three-feature combination surpasses that of
models employing single features. The nanophosphor facili-
tates temperature detection over an extensive range from 83 K
to 573 K. Specifically, within the narrower range of 223 K to
323 K, the model attains a prediction accuracy of RMSE
~0.52 K. Moreover, the model maintains commendable sen-
sing accuracy across a broader temperature spectrum. These
findings underscore the viability of the nanophosphor for

This journal is © The Royal Society of Chemistry 2025
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temperature detection and emphasize the enhanced accuracy
achieved through ML, thereby augmenting its potential for
practical applications.
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