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Accelerating the discovery of high-performance
nonlinear optical materials using active learning
and high-throughput screening†

Victor Trinquet, *a Matthew L. Evans ab and Gian-Marco Rignanese *acd

Due to their abundant use in all-solid-state lasers, nonlinear optical (NLO) crystals are needed for many

applications across diverse fields such as medicine and communication. However, because of conflicting

requirements, the design of suitable inorganic crystals with strong second-harmonic generation (SHG)

has proven to be challenging for both experimentalists and computational scientists. In this work, we

leverage a data-driven approach to accelerate the search for high-performance NLO materials. We

construct an extensive pool of candidates using databases within the OPTIMADE federation and employ

an active learning strategy to gather optimal data while iteratively improving a machine learning model.

The result is a publicly accessible dataset of B2200 computed SHG tensors using density-functional

perturbation theory. We further assess the performance of machine learning models on SHG prediction

and introduce a multi-fidelity correction-learning scheme to refine data accuracy. This study represents

a significant step towards data-driven materials discovery in the NLO field and demonstrates how new

materials can be screened in an automated fashion.

1 Introduction

Thanks to their frequency-conversion properties, nonlinear
optical (NLO) materials play a significant role in modern opto-
electronics.1 Their ability to produce coherent light by up- or
down-converting incident electromagnetic waves has found
applications in a variety of fields, from laser technologies and
optical communication to biomedical imaging and quantum
information processing.2–5 As is often the case with functional
materials, a good NLO compound needs to meet several
requirements such that it turns out to be a multi-objective
optimisation. This ends up limiting the number of efficient
materials, especially in the deep ultraviolet (DUV), the mid-,
and the far-infrared (IR) ranges.6,7 It is thus of interest to acce-
lerate the discovery of novel NLO materials, for both academic
and industrial purposes.

As things stand, experimental studies lack the speed and
cost-efficiency to freely consider the whole compositional and

structural space. For this reason, computational methods
are increasingly being used to navigate the almost endless
possibilities.8 In practice, the search for NLO materials is
translated into a search for appropriate compounds displaying
strong second-harmonic generation (SHG), which enables a
doubling of the incident frequency. Using density-functional
theory (DFT), the SHG tensor can be calculated and investigated
with respect to the chemistry and structure of a given com-
pound. Many studies have thus focused on the efficient design
of novel NLO crystals.9–11 Another approach relies on high-
throughput screenings of existing databases to identify promis-
ing materials.12–15 The latter can then be used to suggest other
candidates and to investigate unexplored families of com-
pounds. However, large open-access databases do not readily
provide the SHG tensors.16,17 Other basic properties are usually
used to restrict the DFT computations of SHG tensors to stable
non-centrosymmetric (NCS) crystals with an electronic band
gap in the range of interest. Although this procedure has led to
the emergence of a few datasets with SHG information, the
domain is definitely lacking significant NLO datasets that could
be used for efficient screening or materials informatics.12,18,19

To address this issue, Xie et al.20 computed 1500 SHG tensors of
stable NCS semiconductors from the Materials Project (MP)16

in 2023. Combined with 900 materials generated via an evolu-
tionary algorithm, this dataset is a first step towards big data in
the NLO field. In 2024, Wang et al.14 also performed a screening
of the MP involving the computation of B2400 SHG tensors.
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Recent years have seen a significant increase in the amount
of available data related to materials properties. Existing experi-
mental and computational databases are continuously growing
while new actors and initiatives appear.16,17,21–23 This trend
has been accelerating with the emergence of data-driven and
machine learning approaches that are able to generate hypothe-
tical compounds, many of which are predicted to be stable, to
some definition.24–26 Although this growth in data presents
new opportunities for materials discovery, it also provides new
challenges that require rational screening methods to help
efficiently allocate experimental resources within this growing
design space. This is where data standardisation and federation
can play an important role. The OPTIMADE consortium27,28

consists of several leading crystal structure database providers
and datasets that have agreed upon a common data format and
query language, enabling seamless access to over 60 million
structures across 30 decentralised databases. Several of these
databases are targeted towards assessing materials stability,
typically using DFT, providing a fruitful and growing pool for
screening compounds with potentially exemplary properties in
order to prioritise costly synthesis attempts.

In this work, we aim at propelling the NLO field into the era
of big(ger) data while addressing the above challenge when
generating and navigating the candidates design space. The
end goal is the discovery of NLO bulk inorganic crystals with
strong second-harmonic conversion. In practice, the search is
translated into a multi-objective optimisation involving con-
flicting physical quantities, namely the SHG tensor and the
band gap. For a given strength of SHG, maximising the band
gap ensures a broad transparency window while promoting
higher laser damage thresholds, an important practical con-
sideration. By leveraging the common application program-
ming interface (API) designed by the OPTIMADE federation,
we easily build a large pool of candidate materials that will
continue to grow as more structures and databases come
online. This design space is then searched for good NLO
materials using a cheap machine learning (ML) model trained
on an existing dataset of SHG tensors. Since DFT computa-
tions of SHG tensors are resource intensive and the size of the
initial dataset is limited, we adopt an active learning (AL)
procedure for the ‘‘training–predicting–selecting–computing’’
steps in the data acquisition process. This allows us to
efficiently target promising materials in this large search pool,
whether they are interesting for the combined SHG-band gap
optimisation, or for improving the accuracy of the machine
learning model.

This paper first describes the computational workflow for
computing the static SHG tensors, the details of the active
learning procedure and the candidate pool generation. The end
result is a dataset of B2200 static SHG tensors, which is made
publicly available on the Materials Cloud Archive, itself acces-
sible via an OPTIMADE API.29,30 Thanks to this new dataset,
we explore the performance of various ML algorithms on the
present SHG task and we investigate a multi-fidelity correction-
learning scheme to alleviate the inherent limitation of our data.
Finally, we list the most promising materials uncovered in our

dataset and look onward to the continued screening of large
databases of hypothetical materials.

2 Methods
2.1 First-principles calculations

The quantity of interest in this work is the third-rank tensor
responsible for second-harmonic generation.1,31,32 This non-
linear optical phenomenon naturally appears in the framework
of perturbation theory when the macroscopic polarisation, P, is
expressed as a power series of the incident electric field, E,
such that

Pi ¼ e0
X
j

wð1Þij Ej þ e0
X
jk

wð2Þijk EjEk þ higher order terms; (1)

with e0, the vacuum permittivity, and w(1), the linear suscepti-
bility. The nonlinear susceptibility, w(2), is responsible for SHG
in the case of two incident fields at the same frequency.
By convention, this tensor is halved and is commonly referred
to as the SHG tensor, d. By symmetry, the Voigt form can be
adopted, thereby reducing it to a 3 � 6 second-rank tensor. It is
important to note that only NCS compounds can display non-
zero components of the SHG tensor. To facilitate visualisation
and comparison across different materials, an effective scalar
coefficient, dKP, can be derived following the Kurtz–Perry (KP)
powder method.33

In the present work, the open-source first-principles soft-
ware ABINIT is used to compute the static limit of the SHG
tensor in the framework of density-functional perturbation
theory (DFPT).34–38 The exchange–correlation energy is mod-
elled using the local-density approximation (LDA) by using
the optimised norm-conserving pseudopotentials from
the PseudoDojo (scalar relativistic v0.4.1), which also provides
cutoff values (‘‘standard’’ accuracy with hint ‘‘normal’’).39,40

From the latter, the plane-wave energy cutoff is set based on the
hardest element for each compound. The total energy is con-
verged within 1 � 10�22 Ha during the self-consistent field
cycles while the convergence tolerance on the wavefunction and
the potential residual are respectively set to 1 � 10�22 Ha2

and 1 � 10�22 Ha in the response function calculations. The
Brillouin zone is sampled with a density of 3000 points per
reciprocal atom (kppa) as it constitutes a reasonable balance
between computational convergence and efficiency (see Section
A1, ESI†). This sampling respects the symmetry of the system.

These high-throughput calculations are performed using
the ShgFlowMaker class implemented in the atomate2 Python
package41 as jobflow workflows.42 Since it defaults to the
aforementioned k-point grid, only the type of pseudopotentials
must be explicitly set to reproduce our results. This workflow is
similar to the one presented in Trinquet et al.43 apart from the
pseudopotentials version and a revised algorithm to generate
the k-points. Combined with the FireWorks workflow manager
and the MongoDB database engine, this tool handles calcula-
tion submission and retrieval of the results.44 Sometimes, the
SHG tensor requires a rotation in order for its components to
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match the conventional form set by the IEEE.45,46 Both raw and
post-processed tensors are made available.

The materials exhibiting a good balance between the KP
coefficient and the band gap are selected for additional calcula-
tions to further refine their SHG tensors. Higher accuracy can
indeed be achieved by including a rigid shift of the conduction
bands. Up to this point, the band gaps were directly taken
from the source databases at the Perdew–Burke–Ernzerhof
generalised-gradient approximation (GGA-PBE) level.47,48

In order to obtain the values of the scissor shifts, the band
gaps of the crystals of interest are computed at two different
levels. First, the LDA band gaps are computed thanks to the
ABINIT BandStructureMaker class of atomate2 using the same
set of pseudopotentials as the SHG calculations. The number of
divisions to sample the smallest segment of the high-symmetry
path is set to 15. The band gap is then taken as the lowest gap
value across both the self-consistent field (SCF) and the non-
SCF calculations. Second, the higher accuracy band gap is
computed using the Heyd–Scuseria–Ernzerhof (HSE) hybrid
functional49,50 as implemented in VASP with projector augmen-
ted wave pseudopotentials51–53 (PBE_64). A first SCF step is
performed with PBE beforehand to facilitate the convergence.
This process is automated by linking the HSEBSMaker class to
the VASP StaticMaker class of atomate2. The electronic self-
consistent loops are considered converged when a difference in
energy lower than 1 � 10�6 eV is reached. The self-interaction
energy is corrected using element-specific Hubbard U values54

recommended by the MP.55 In both the initial PBE and the LDA
SCF steps, the Brillouin zone is sampled using a uniform grid
with a density of 1500 points per reciprocal atom. The differ-
ence between the HSE and LDA gaps provides a scissor shift
to refine the SHG tensors. These band gap corrections can
be given to the ShgFlowMaker class to correct the DFPT
computation.

It was decided not to perform any structural optimisation of
the crystals, since the source databases already performed such
relaxations at the GGA-PBE level using compatible settings.
Despite this choice, and despite the adoption of the LDA, the
most basic representation of the exchange–correlation energy
in DFT, this approach to computing SHG coefficients has
previously shown good results in ranking the SHG strength of
materials with respect to their experimental values.43 Moreover,
the perturbative DFPT method used here incorporates local-
field effects, which tend to slightly diminish the SHG strength
as shown by time-dependent density-functional theory calcula-
tions;56,57 these effects are excluded in typical sum-over-states
calculations in the independent-particle approximation. Good
experimental agreement has been shown when excitonic con-
tributions can be included,56,57 however, their inclusion is
currently intractable for high-throughput studies.

2.2 Active learning

Similarly to our previous work, an active learning loop is
adopted to optimally guide the acquisition of new data.58 In
practice, cheap machine learning predictions of the KP coeffi-
cient are used to select materials whose SHG tensor will be

computed using the more expensive DFPT method, thus
extending the available SHG dataset for training. While the
end-goal is the discovery of new materials boasting high SHG
coefficients for a given band gap, it is still of interest to spend
computing resources on suboptimal compounds, provided that
their addition in the training set significantly improves the
performance of the surrogate model. In this work, the predic-
tions and their corresponding uncertainties come from the
average and standard deviation of predictions from a MODNet
ensemble, i.e., an ensemble of neural-networks59–61 (see Section
A2, ESI†). Since the methodology and choice of ML model are
similar to Trinquet et al.,58 only the differences are described
hereafter. Fig. 1 illustrates the global methodology. In contrast
to the case of the refractive index, we are not aware of any
effective quantity whose maximisation could replace the opti-
misation of the (Eg, dKP) Pareto front; instead, here we sample
explicitly from the Pareto front of our candidates.

At each iteration, a MODNet ensemble is trained on Ti, the
training set at the ith iteration of the AL process. This ML
model yields a prediction of the KP coefficient, pi(dKP|x) B
N(mdKP,i,sdKP,i) for a material x with mean ensemble model
prediction mdKP,i(x) and uncertainty sdKP,i(x). This allows us to
define an upper bound for the target for each material as
follows:

dU,i(x) = mdKP,i(x) + l�sdKP,i(x), (2)

where the balance between exploration and exploitation is
determined by the dimensionless parameter, l. In order to
diversify the selected compounds, the following regimes can be
adopted:

0 - highest mean (uncertainty-agnostic exploitation)

�1 - highest mean with lowest uncertainty

1 - highest mean with highest uncertainty

lcal. - highest mean with high calibrated uncertainty

N - highest uncertainty (exploration)

The calibration factor, lcal., is obtained by minimising the
miscalibration area on a hold-out set and is then averaged over
a 5-fold splits. It was found to lie consistently between 1.2 and
1.5 across all AL cycles.

The compounds are selected based on the following acquisi-
tion function:

aiðxÞ ¼
1 if x 2FU;i

0 else

(
(3)

where FU,i is the Pareto front of the (Eg, dU,i) distribution built
from the entire candidate pool of materials, P. This front is
determined purely geometrically working from high to low
band gap, after removing candidates with more than 50 atoms
in the primitive unit cell. Since dU,i can be defined according to
several regimes, the Pareto front for each l regime, FU,i(l), is
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found and they are all merged to form the selected subset, F8,i.
If the latter is not large enough, it is removed from the
distribution and extended by the front of this new distribution.
This acquisition function effectively classifies P at each AL
cycle. This combination of exploration and exploitation along
with the selection balancing the band gap and the KP coeffi-
cient ensures that the data acquisition remains as free as
possible from any unwanted bias introduced by the inaccuracy
of the ML model. On the contrary, the latter should be affected
positively by the new data. After running the DFPT calculations
on F8,i, a compound is flagged as an outlier if its dKP is greater
than 170 pm V�1 or if its static refractive index is greater than
20. The cleaned DFPT results (without outliers) are then added
to the training set for the next iteration:

Ti+1 = Ti,FDFPT,i with FDFPT,i A F8,i. (4)

A new MODNet model is then trained from scratch on Ti+1, thus
initiating a new iteration. This process can be stopped based on
arbitrary criteria involving the model accuracy, the size of the

training set, the coverage of the materials, their performance,
or the available computing resources.

2.3 Training and candidate data

The dataset from Trinquet et al.43 serves as the initial training
set, T0. It comprises 579 SHG tensors of inorganic semiconduc-
tors computed with ABINIT using the DFPT procedure outlined
in Section 2.1. It should be noted that these calculations used
an older set of pseudopotentials than presented here.

The MODNet model, feature selection algorithm, hyperpara-
meters optimisation and training procedure follow those
described in Trinquet et al.58 (see Section A2, ESI†). A first set
of B200 physical and chemical descriptors was generated using
the matminer Python package via the Matminer2024FastFea-
turizer preset implemented in MODNet v0.4.3.62 A second set of
B1000 features, referred hereafter as pGNN, is derived using
the rogeriog/pGNN Python package63 and appended to the
first B200 features (see Section A2, ESI†). Moreover, the final
MODNet model of Trinquet et al.58 predicts refractive indices
and their uncertainties, which are appended to the set of

Fig. 1 Schematic of the active learning process. The initial training dataset, T0, is featurised into physical and chemical descriptors using the matminer
(mmf) and pGNN Python packages. The band gap of the source databases and the predicted refractive index with its uncertainty are also considered as
additional custom features (cstm). The most relevant features are then ranked and, starting from the top of this ranking, the number of selected features is
optimised during the hyperparameters optimisation. Once the MODNet ensemble has been trained, it predicts the KP coefficient along with a given
uncertainty for the whole pool of candidate materials that was queried with the OPTIMADE API. From these predictions and uncertainties, the different
exploitation and exploration regimes of the selection algorithm determine the Pareto front in the (Eg, mdKP

+ lsdKP
) space (in green). The static SHG tensors

of those promising entries are then computed within DFPT and added to the new (and initially empty) SHG-25 dataset. The latter is then combined with
T0 and a new AL cycle can begin.
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features, along with the band gap found in the source data-
bases (computed with PBE). These additional descriptors were
considered due to the known relationship they share with the
SHG strength.64 It is important to note that the actual set of
features used in the AL loop was not fixed from the start as
these iterations were refined over several months. Additional
descriptors were tested during this process and added to the
feature set, if they were deemed useful, as illustrated in Fig. A4
(ESI†). Since the resulting dataset of Trinquet et al.58 was built
to target the refractive index – band gap Pareto front, the SHG
coefficient of each of its constituent NCS materials was com-
puted, independently of the AL selection scheme.

Two source databases are considered to form the initial
search pool, P. The first one is the Materials Project (MP) with
B160k materials (v2023.11.1),16 resulting from DFT relaxations
of primarily experimentally determined crystal structures from
the inorganic crystal structure database (ICSD).22 Using a
combination of the MP API and their corresponding OPTI-
MADE API, the MP was filtered for NCS inorganic crystal
structures possessing a PBE-computed band gap greater than
0.05 eV and a distance from the MP convex hull (by the latest
mixed GGA+U/mGGA workflow) lower than 50 meV per atom.
The resulting set of compounds is further reduced by excluding
any lanthanide- or actinide-containing compounds, effec-
tively reducing the MP to a subset of B13.5k relevant crystal
structures relaxed with GGA-PBE. The second database is
Alexandria17,65 with its B4.5 M PBE-relaxed structures
(v2023.12.29). Thanks to the OPTIMADE API, this vast number
of entries is filtered for the same criteria as the MP. This query
added B30.6k relevant structures to the pool of trial materials
available for the AL process.

Duplicates across these two databases were removed by
combining entries that share the same composition and
space group, in which case the MP entry was preferred. The
final candidate pool, P, spans B33.5k NCS stable semi-
conductors.

It should be noted at this stage that both MP and Alexandria
now contain additional entries matching our criteria which
were not present at the initiation of our AL procedure. Addi-
tionally, new databases have been made available through
OPTIMADE, such as the GNoME dataset,24 which contains
several hundred thousand hypothetically stable compounds.
This study could thus be viewed as an intermediate step of a
broader screening which will continue as new hypothetical
compounds are suggested, and can act to prioritise experi-
mental resources towards verifying the computed structures.

2.4 Benchmarking ML models for SHG

The second part of this work investigates the performance of
various ML models on the prediction of the computed dKP

coefficient. Both T0 and the newly acquired SHG tensors are
considered. The dataset is cleaned by removing any outliers or
duplicates found by the default StructureMatcher of the pymatgen
Python package.66 After removing the materials that fall abnor-
mally far away from the data distribution (indicating, e.g., a
convergence issue), B2600 instances remain.

The different models were benchmarked on a holdout set of
250 compounds sampled such that the distribution of the
target dKP values matched that of the full dataset. Three other
holdout sets were benchmarked (one different size and two
random sets), with additional results reported in the comple-
mentary GitHub repository. In the presentation of these bench-
marks, we will focus on the former dataset, as shown in Fig. A2
(ESI†), as we believe it to be the most representative. Given the
large range of target values and the clear bias of the dataset
towards low values, this procedure allows for a more robust
comparison than a single test set while being less computa-
tionally intensive than full cross-validation.

When needed for hyperparameter optimisation, a validation
set was sampled from the training set using the same algorithm
that was used to generate the test set. The resulting set of
hyperparameters was then adopted for training the model on
the whole training set before assessing it on the holdout sets.
For descriptor-based models, both the Matminer2024FastFea-
turizer preset and the pGNN features63 were considered. Three
sets of features are derived: mmf with only the former, pgnn
with only the latter, and mmf_pgnn merging both of them.

Several classes of ML models were investigated, from simple
feed-forward neural networks like MODNet,59,60 to tree-based
methods (extra trees and LGBM),67–69 graph neural networks
(co(N)GN,70 MEGNet,71 TensorNet72 for scalar predictions and
Matten73 for full tensor predictions) as well as several commer-
cial (GPT-4o, Claude Sonnet 3.7) and open (DARWIN 1.574)
large language models (LLMs). A description of each model and
any specifics of the training procedure or hyperparameter
optimisation for each model are provided in Section A2 (ESI†).

Model performance was assessed using standard metrics:
MAE, RMSE, R2, and most relevant for screening studies,
Spearman’s rank correlation coefficient. In addition to these
simple metrics, enrichment factors and discovery curves were
computed for each model and holdout set. An enrichment
factor (EF) defined at a given percentage, say EF (10%), corre-
sponds to the reduction in the number of oracle evaluations
(in this case DFT calculations) required to find the top 10% of
materials. For example, for a set of 100 candidate materials,
if following the model’s predicted ranking would allow the top
10% to be found after 20 evaluations, the EF (10%) would be 5,
out of at theoretical maximum of 10, or to compare across
different thresholds, this can be normalised to 0.5. This metric
is particularly important given the skewed nature of our data-
set; a model could achieve reasonable performance in the low-
SHG regime without being an effective discriminator of exemp-
lary materials and vice versa. Discovery curves provide a general-
isation of the enrichment factor, by spanning the entire
range of percentiles; they are conceptually similar to receiver-
operating characteristic (ROC) curves, extended to a global
ranking rather than binary classification at different probability
thresholds.

2.5 Multi-fidelity correction-learning

Few computational SHG datasets exist in the literature, and
even fewer are publicly available.12,18–20 However, a common
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trait that most of them share is the adoption of scissor correc-
tion, which is a rigid shift of the conduction bands to match
high accuracy band gaps obtained with hybrid functionals.
By artificially opening the band gap, one can alleviate the
overestimation of the SHG components caused by the usual
underestimation of the band gap by local and semi-local
functionals of the exchange–correlation energy. Contrary to
those datasets, our SHG DFPT calculations in the AL scheme
do not include scissor shifts. One could argue that this choice
limits the impact of our new dataset, which would be true if the
relative ranking of the materials were very different when
considering a scissor shift, as any high-throughput screening
involving our data would then be meaningless.

To address this concern, we correct a subset of the com-
pounds of the final AL dataset (including the initial training
set) and show that this is not the case, i.e., that the uncorrected
SHG coefficients are sufficient for screening. Since the compu-
tational cost of the more accurate HSE band gaps is non-
negligible, it is sensible that only the optimal materials in the
(Eg, dKP) space benefit from this correction.

The compounds to be scissor-corrected were selected by
recursively determining the (Eg, dKP) Pareto front and choosing
the constituent compounds without replacement. In accor-
dance with the available computational resources, this process
was repeated until B1000 compounds were obtained. As
described in Section 2.1, both their ABINIT LDA and their VASP
HSE gaps are computed to derive scissor shifts, which are used
in subsequent DFPT SHG computations. Compounds with an
HSE gap lower than 1 eV are discarded. In addition, the selected
entries from T0 are also computed at the LDA level to ensure
that their KP coefficient is consistent with the ones of SHG-25.

Since SHG tensors at both the LDA and the ‘‘HSE’’ level are
now available, machine learning algorithms can be used to
leverage this kind of multi-fidelity data,75 with the aim of
directly accessing the expensive data at high accuracy by lever-
aging cheap counterparts at low accuracy. In the present work,
a correction learning (CL) scheme is investigated. This method
consists in learning the difference between the low- (LDA) and
the high-fidelity (HSE) data. Although conceptually simple, this
multi-fidelity technique was shown to outperform others when
modelling the band gap with MODNet.61 Since the band gap
task has already been addressed in the literature, a MODNet
ensemble is chosen to explore the SHG correction in a super-
vised learning scheme targeting dcorr, which is defined as:

dcorr = dLDA � dHSE, (5)

where dLDA is the usual LDA KP coefficient from the main AL
dataset and dHSE is the scissor-corrected KP coefficient as
introduced above. The feature set is mmf_pgnn, although the
inclusion of the following quantities as descriptors is also
considered: the LDA gap (ELDA

g ), the HSE gap (EHSE
g ), the scissor

shift (DEg) and dLDA. The feature selection algorithm is the
same as that used for the AL and the benchmark of MODNet
against the other models (see Section A2, ESI†). The perfor-
mance of the model is determined via a nested 5-fold cross-
validation scheme, in which the inner loop implements a

hyperparameter optimisation with the native genetic algorithm
implemented in the MODNet package.61

3 Results
3.1 Conclusion of the active learning procedure

Following the methodology of Section 2.3, almost 20 AL itera-
tions were carried out, two of which consisted of adding
materials from Trinquet et al.58 The maximal and minimal
numbers of oracle evaluations per iteration were B280 and
B50, respectively. The performance of the ML model is moni-
tored at each cycle and plots showing the raw metrics are
provided in the Section A3 (ESI†). While Fig. A4–A6 (ESI†)
correspond to an estimation of the performance from a nested
5-folds cross-validation scheme, the parity plots in Fig. A7–A9
(ESI†) are a better reflection of the reality as they correspond to
the selected set of materials at each cycle. Although the curves
are not monotonically decreasing, both illustrations show the
improvement of the model with the increasing dataset size for
all considered metrics. Fig. A10 (ESI†) illustrates the quality of
the ML predictions by showing the selected subset of the last
fully completed AL iteration in panel (a) and (b). These materi-
als were deemed promising by the selection algorithm based on
their mdKP

, sdKP
, and band gap, which prompted their computa-

tion using DFPT. From panel (a), it is clear that the ML
predictions are not quantitatively accurate as they sometimes
display large discrepancies with the calculated values. However,
this level of prediction is still qualitatively good with a high
Spearman coefficient (0.89) and is sufficient when performing
screening based on relative rankings as emphasised by panel
(b). This alternative visualisation compares the predicted and
true ranks of each entry and provides a finer insight than the
global Spearman coefficient. The correct trend is observed,
although it is not perfect. The last panel (c) displays these
newly annotated entries in the (Eg, dKP) space on top of the
whole dataset at the time. It shows that most of the selected
materials are located in the targeted region of the space, despite
the exploration regimes of the selection algorithm.

However, one shortcoming of these raw performance checks
is the modification of the test sets throughout the AL scheme.
To alleviate this issue, a post-processing approach was used to
rationalise model performance. The starting training set, T0, is
first divided into 5 folds, t0,j. Each of them is then extended by a
part of the new DFPT data of each AL iteration:

ti+1,j = ti,j,fi,j, (6)

where fi,j results from a 5-fold splitting of FDFPT,i. Finally, a nested
cross-validation scheme is applied on all Ti using the ti,j splitting,
which yielded fitted MODNet models, mi,j. Each of these sets of
models can then be used to perform a cross-validation (without
training) of the other Ti. The set of features was restricted to the
mmf descriptors. After compiling the results, Fig. 2 and Fig. A11,
A12 (ESI†) are obtained. The horizontal axis refers to the index of
the models over the AL iterations and the vertical axis indicates
the metric. As indicated by the colour, each curve corresponds to
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a training set Ti. This testing procedure ensures fixed test sets
across the AL iterations while avoiding any data leakage. The
figures show that all metrics experience an improvement when
increasing the training data seen by the models (x-axis). Except
for the coefficient of determination, the other metrics present a
significant jump when going from the T6 to the T7 curves. Both
the MAE and RMSE worsen while the Spearman correlation
coefficient improves. In the 7th iteration, 239 materials from
Trinquet et al.58 were added in the training set, which amounted
to 27% of T6. Moreover, it contained a relatively greater number of
high dKP values than the previous additions, which explains the
noticeable worsening of performance evidenced by the MAE and
RMSE, despite the positive effect on the Spearman coefficient.

The main contribution of the present work to the quest for
new NLO inorganic crystals is a new dataset of B2200 static
SHG tensors computed within DFPT, which will be named SHG-
25 hereafter. Fig. 3 represents it in the (Eg, dKP) space along with
the starting dataset, T0. From this plot, it is difficult to assess
whether SHG-25 properly targets the ‘‘Pareto materials’’ in this
space, as intended by the AL procedure.

To appraise this, the Pareto front of T0 is found and used to
fit a function of the form:

fKP(Eg) = a�exp(b�Eg). (7)

For each entry x of both T0 and SHG-25, a normalised
distance to this fitted front is then derived as:

Dd xð Þ ¼
fKP Eg xð Þ
� �

� dKP xð Þ
fKP Eg xð Þ
� � : (8)

If it is close to 1, this distance implies that the material is far
below the Pareto front, while if it is close to or below 0, the
material is in the targeted range of screening. Fig. 4 illustrates
the distribution of this proxy target for the two datasets.
It shows that SHG-25 contains relatively more compounds close
to or above fKP than T0. The difference is, however, not as
striking as it was in Trinquet et al.,58 which can be explained by
the low accuracy of the SHG ML model, especially at the start of
the data acquisition process. The sampling pool, P, is also
more restricted and might not be large enough to effectively
push or sample the Pareto front. In addition to this histogram,
it is possible to consider the individual data contribution of
each AL iteration separately from T0. To do so, we introduce k,
the fraction of instances with Dd lower than an arbitrary
threshold. The latter is set to 0.5 in order to focus on the data
closer to the T0 Pareto fit than to a zero SHG response. In the
case of T0 and SHG-25, k is equal to 9% and 14%, respectively.
When averaged over the first five data contributions of the AL, k
is also 9%, confirming that the first few iterations are almost
equivalent to a random selection, as in T0. However, the last five
iterations yield an average k of 19%, despite materials with
high uncertainties being also selected. This demonstrates the
performance of our ML model and validates the need to
iteratively improve the ML model as the amount of the available
training data increases. It is interesting to note that the addi-
tions of materials from Trinquet et al.58 display a k of around
16%, thus confirming the usefulness of targeting compounds
with a high refractive index when possible.

The new dataset, SHG-25, is made publicly available on the
Materials Cloud Archive29,30 and on the MPContribs76 when
possible, in the hope that it fosters high-throughput screenings

Fig. 2 Evolution of the average RMSE (pm V�1) (a) and Spearman’s rank coefficient (b) over the AL process. The index of the model refers to its training
set as the AL goes on. Each curve with index i corresponds to the test sets of a 5-folds splitting of the dataset at the ith iteration of the AL procedure such
that the same test sets are kept for the whole curve.

Fig. 3 Representation of the new dataset, SHG-25, and the starting one,
T0, in the (Eg, dKP) space. The red dashed line illustrates the fit of the Pareto
front of T0 while the red stars highlight materials, that are suggested as
promising based on several criteria (see text). The band gaps are taken
from the source databases (GGA-PBE).

Fig. 4 Percentage of the data binned over the normalised distance from
the fitted Pareto front of T0 as defined in the text.
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as well as the development of reliable ML models. Combined
with T0, this new dataset amounts to 2700 entries and is enough to
achieve qualitative predictions of the KP coefficient as shown from
the above analyses. While high-throughput screenings might
already benefit from such accuracy, it is desirable to further
improve the performance of cheap ML predictions. Increasing
the amount of SHG data is thus of paramount importance.

3.2 Machine-learning the SHG coefficient

In addition to the amount and diversity of training data,
the choice of the ML model is another critical factor in the
reliability of the dKP predictions. This section presents the
results of the ML benchmarks following the methodology
introduced in Section 2.4. Table 1 presents the top-level metrics
on the largest and most diverse holdout set, sorted by decreas-
ing Spearman’s rank correlation coefficient. This performance
metric is emphasised as we consider the relative ranking of the
predictions to be the most important criterion for screening
purposes.

Based on Spearman’s rank correlation alone, we find MOD-
Net to be the most performant model (rs = 0.87), also possessing
the lowest MAE of 5.76 pm V�1 and highest R2 of 0.70. However,
we also find that several models perform competitively with
MODNet at this dataset size, both those with increased com-
plexity, namely the co(N)GN series of the graph neural networks
(GNNs), and simpler tree-based methods that use the same
descriptors as MODNet, namely extra trees and light gradient
boosting machines, in agreement with An et al.77 Given both
the skewed distribution of dKP values in SHG-25, and the multi-
objective nature of our materials design problem (i.e., finding
materials on the (Eg, dKP) Pareto front), we also compute
enrichment factors (EF) and discovery curves for each model.
Using the procedure outlined in Section 3.1, a figure of merit
(FOM) for discovery was computed as the distance of a given
candidate material from the fitted T0 Pareto front, Dd.

Fig. 5 shows the discovery curves for the top 15% of
materials according to the computed FOM, highlighting the
performance of the best models. Once again, MODNet, the tree-
based methods and the co(N)GN series outcompete all the rest
on this metric, achieving normalised EF (15%) values between
0.61 and 0.67, i.e., after evaluating 15% of the dataset following
these model’s rankings, between 61% and 67% of the top
15% of materials can be recovered. This metric is better suited
for capturing model performance specifically when used as a
discriminator for potential SHG materials. The clustering
around this value perhaps indicates a reasonable maximum
enrichment for this holdout set, given the small sample size
involved (250 candidates in the holdout set, 37 in the top
15% and thus 12 ‘‘missing’’ from the predictions). MODNet is
marginally more efficient at spanning the entire top 15%,
requiring around 40% of all materials to be evaluated. Inter-
estingly, even models that perform reasonably well when

Table 1 Performance metrics for the benchmarked models on the SHG-25 dataset for the holdout set, sorted by Spearman’s rank correlation
coefficient, rs. In cases where multiple hyperparameter sets or architectures were benchmarked for the same model type, the table presents the model
with the best performance. The normalised enrichment factor for the top 15% of materials, EF (15%) is a relevant metric for the application of these
models for materials discovery (e.g., continuing the active learning procedure in this study). Standard metrics, mean absolute errors (MAE), root-mean-
square errors (RMSE), coefficient of determination (R2) are also provided for completeness

Fig. 5 Discovery curves for the benchmarked models on the top 15% of
compounds in the holdout set.
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looking at simple metrics like MAE and rs appear much less
effective at this task, with significantly reduced enrichment
factors at this threshold.

The threshold of benchmarking against the top 15% of
materials is somewhat arbitrary and dataset-dependent.
Fig. A2 (ESI†) shows the materials that were selected as the
top 15% of this holdout set using the computed FOM. Given the
small holdout set size, the choice of threshold is affected by
aliasing, however the best-performing models came out on top
for all tested thresholds, providing a post hoc rationalisation of
our choice to use MODNet during the AL procedure.

3.3 Correcting the band gap

Following the selection and computations described in Section
2.5, B700 pairs of LDA and HSE band gaps as well as the
corresponding scissor-corrected SHG tensors are obtained from
the B1000 initially selected compounds and made publicly
available along with SHG-25. This new dataset is represented in
Fig. 6. As expected, the band gap correction induces a blue-shift
of the band gap and decreases the KP coefficient. It can already
be seen from this plot that the distribution of dHSE is similar to
the non-corrected one. These observations are confirmed by the
parity plots in Fig. 7 and Fig. A13 (ESI†). As indicated by the
high Spearman’s rank correlation coefficients, both figures
show that the relative rankings stay the same for both the low
and high-fidelity coefficients. This implies that any screening
performed at the LDA level is equivalent to screening
HSE results. Moreover, the HSE band gaps and the scissor-
corrected dKP can both be modelled with a linear regression of
their LDA counterpart as a first approximation. Fig. 7 and
Fig. A13 (ESI†) illustrate this simple fit by the green dotted
line, whose parameters are given in the green box. Given a
material with its LDA band gap and its KP coefficient, it is thus
possible to approximate its HSE gap and its corresponding KP
coefficient at a very low cost.

Unfortunately, these linear regressions present an obvious
limitation. For example, any two different materials with two
different gap corrections would have the same corrected KP
coefficient if their dLDA values are equal. It is thus necessary to
go one step further. As described in Section 2.5, a multi-fidelity

correction-learning scheme is adopted such that the material-
dependent corrections to dLDA are predicted by a MODNet
ensemble. Following a nested 5-fold cross-validation, the per-
formance of this approach is investigated by varying the different
features sets considered by the ML model. The results are sum-
marised in Table 2 and are fully presented in Table A1 (ESI†). The
linear regression introduced above is indicated as a baseline. The
scores are derived from dLDA � dcorr instead of just the correction.
This simplifies the interpretation and allows to consider the
fraction of predicted corrections with a wrong sign (Z) or inducing
a negative ‘‘HSE’’ KP coefficient (z). These two quantities act as a
safeguard against non-physical predictions.

As expected from Fig. 7, the LDA KP coefficient is a necessary
feature for the ML model to perform as well as the linear
regression, while the band gaps and the scissor are not suffi-
cient. This is not an issue in itself, since dLDA is a prerequisite
for using the correction. To further improve MODNet, the band
gaps and scissor are separately added as features. As intuition
suggests, the scissor results in a significant improvement in the
model performance. Further combining all of our custom
features only slightly reduces the errors. Unfortunately, the
predictions of MODNet are not constrained, as reflected in its
Z and z values of 1% and 3–6%, respectively. In contrast, the
linear regression reaches 0% by definition. For this reason, the
low values of dHSE are better represented by the linear regres-
sion than by MODNet while the higher values benefit from the
flexibility of the ML model as illustrated in Fig. A14–A17 (ESI†),
although this can be remedied by a simple output rescaling.
The significant reduction of the RMSE also supports this
interpretation. Thanks to the close relationship between dLDA,
dHSE and the custom features, only less than 700 data entries
are sufficient to reasonably correct the LDA KP coefficient.
This limited dataset size suggests that increasing the data will
significantly improve the correction.

Fig. 6 The B700 materials subset selected for scissor correction in the
(Eg, dKP) space. The inset shows a logarithmic scale for a clearer visualisa-
tion. Both the LDA and the scissor-corrected values for the KP coefficients
and band gaps are displayed for comparison. The colour bar indicates the
scissor of each compound to go from the LDA to the HSE gap.

Fig. 7 Parity plot showing the effect of the scissor shift on the KP
coefficients. The colour bar indicates the scissor of each compound to
go from the LDA to the HSE gap. A linear regression is fitted on those
points as shown by the green dotted line and the formula in the box. The
Spearman’s rank correlation coefficient, rs, is included as well.
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3.4 Screening promising compounds for SHG

As many studies have shown before, the HSE band gaps and the
scissor-corrected SHG tensors can successfully be used to
screen promising NLO materials with balanced properties.13,14

Here, this approach is illustrated on our high-fidelity subset of
SHG tensors, which contains optimal materials in the (Eg, dKP)
space with a gap greater than 1 eV. The screening is based on the
following criteria:
� good theoretical stability (Ehull r 10 meV atom�1 with

respect to the DFT-predicted convex hull of known materials),
� a scissor-corrected KP coefficient (dHSE) greater than

0.33 pm V�1,
� a birefringence (DnHSE) larger than 0.03,
� non-toxic and sustainable elements.
The KP coefficient threshold corresponds to the effective

coefficient of the experimental SHG tensor component for the
widely used material KH2PO4 (KDP), which sets a lower bound
for DUV crystals.78 The birefringence is also restricted by the
minimal value for practical application.79 This condition is
challenging to assess since our DFPT calculations only compute
the static limit of the electronic contribution to the dielectric
tensor. One could argue that the dispersion of the refractive
indices is weak below the band gap, thus limiting the difference
between the birefringence in the static limit and at a finite
frequency. Although Wang et al.14 showed that static birefrin-
gence underestimates its counterpart at finite frequencies, the
relationship between the two quantities warrants further inves-
tigation. To further reduce the selection, compositions with
toxic elements (Pb, As, Be, Hg, Cd) or hydrogen were discarded.
Moreover, only sustainable elements were retained as charac-
terised by Herfindahl–Hirschman indices (HHIs) lower than
6000 for both production and reserves.‡ 80–82

After applying these criteria, 59 compounds remain, listed in
Table A2 (ESI†). As initially desired, the materials selected by
these criteria span a broad band gap range, from 1.3 to 9.2 eV,
allowing the potentially exemplary materials to be suggested for
specific portions of the spectrum relevant to a given applica-
tion. Our approach is validated by the presence of two well-
known nonlinear optical crystals in the list, Ba(BO2)2 (mp-5730)
and LiB3O5 (mp-3660). According to the Materials Project,16 22
out of the 30 MP entries in the list have already been experi-
mentally observed (i.e., these structures have corresponding

entries in the ICSD22) and some have already been highlighted
as potential NLO materials at the HSE level by Chu et al.13 and
Wang et al.,14 as indicated in the table. This highlights the
importance of diversifying the original sources of the com-
pounds as well as the ability to periodically reassess the screen-
ing with machine-actionable queries of updated databases
(via OPTIMADE or otherwise). We end this section by briefly
highlighting some of the most promising compounds in
different areas of the spectrum from Table A2 (ESI†).

In the near-infrared, metastable InP-P63mc (wurtzite) is
predicted to exhibit a strong NLO response with high birefrin-
gence given its small band gap of 1.26 eV; wurtzite InP nano-
crystals and nanowires, which can be grown via cation exchange,
have already attracted interest for optoelectronic applications.83,84

Chalcopyrite-like ZnSnP2-P%4m2 also falls in this near-IR range,
though may struggle to find application given its propensity for
disorder.85

Several monoclinic and tetragonal phases of metal chalco-
genide Mg({In, Ga, Al}{Se, Te}2)2 arise as candidates from this
screening, spanning a wide band gap range between 1.46 and
3 eV. These phases have persistent motifs of Mg2+–{Te, Se}2�

tetrahedra, corner-sharing with {In, Ga, Al}3+–{Te, Se}2� tetra-
hedra. These phases all have very high predicted dKP values
given their band gaps, with birefringences exceeding 0.03.
Several of the compositions listed here (and their Mn-based
counterparts) have been reported in the literature,86–88 suggest-
ing that the purely hypothetical compositions (primarily from
Alexandria) have a good chance of being synthesised. In this
composition space, only Mg(GaTe2)2 appears in the optical
materials literature;89 interestingly this compound was only
recently proposed and isolated and does not yet appear in the
ICSD or MP.

The suggested candidates with larger band gaps beyond the
visible spectrum in the near- and deep-UV are dominated by
borates such as the well-known Ba(BO2)2 and LiB3O5, with more
complex quaternary phases still exceeding the predicted dKP

threshold set by KDP, such as the carbonates Na2Ca2(CO3)3 and
CaMg3(CO3)4

90 and fluorooxoborates Ba3B6O11F2, Sr3B6O11F2

and Li2B6O9F2, the latter of which has been confirmed experi-
mentally as a NLO material with high dKP (90% that of KDP)
and large birefringence (0.07).91

Given these successes in identifying previously studied NLO
compounds, including those not present in experimental data-
bases, we believe that many of the other suggested phases
could provide fruitful directions for further study. More work is

Table 2 Performance of MODNet on the dcorr task when using different set of features under a nested 5-folds cross-validation. The quantities Z (%) and z
(%) correspond to the fraction of dcorr with a wrong sign and of negative (dLDA � dcorr), respectively

‡ Namely Li, B, C, N, O, F, Na, Mg, Al, Si, P, S, Cl, Ca, Zn, Ga, Ge, As, Se, Sr, Cd, In,
Sn, Te, I, Ba, Hg, Pb.
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required to investigate some of the purely hypothetical com-
pounds in this list to assess not only their potential NLO
properties, but also their synthesisability.

4 Conclusions and outlook

Despite a large and active community, the field of nonlinear
optical materials is still looking for appropriate compounds in
specific electromagnetic ranges, such as the deep UV and the
mid- and far-infrared, that could be used in industrial applica-
tions. Today, this search can be driven by computations in
order to accelerate the discovery of promising compounds.8

In order to navigate the rapidly growing design space offered by
curated databases of hypothetical compounds, it is imperative
to use fast screening methods to avoid wasting computational
resources on suboptimal materials. One solution is to train
cheap machine learning models on the target property to effici-
ently guide the allocation of DFT resources. However, this
approach necessitates a large enough pre-existing dataset of
the target property to attain a reasonable predictive power.
Since the field of NLO materials lacks datasets, the present
work adopted an active learning framework to acquire new
static SHG tensors. By leveraging a relatively small existing
dataset, this procedure resulted in B2200 newly computed
SHG tensors, which is made openly available on the materials
could archive30 and is itself accessible via an OPTIMADE API.27

The ML proxy allowed us to bias the data acquisition towards
compounds exhibiting high SHG coefficients given their band
gap. Thanks to this new dataset, we were able to test a variety of
ML models on this SHG task and its relationship with higher-
fidelity data was also investigated. The tools used throughout
this work enable periodic reassessment of the decentralised
design space with minimal modifications to the code. This has
already begun, as shown in Fig. 8, where the GNoME dataset24

(B10 000 relevant entries) and new entries in Alexandria
(B20 000 relevant entries) have been screened using our
latest model.

Although the effective KP coefficient can be qualitatively
predicted with the present ML model, it is of interest to the
community to improve its performance. We believe that the
first step in achieving this is to increase the amount of training
data. Thanks to the OPTIMADE API, we plan on continually
extending our SHG dataset by querying unexplored databases
providing either experimentally verified compounds or hypo-
thetical compounds with the proper thermodynamic informa-
tion. If the source does not provide band gaps, then one of the
many ML models in the literature can be used to approximate
it. In parallel to the screening of existing data, we could try to
generate our own pool of hypothetical compounds. On the one
hand, more targeted searches for hypothetical stable materials
can make use of an evolutionary algorithm before being filtered
on predicted SHG coefficients.77,92 On the other hand, inverse
design via constrained generation might quickly offer sugges-
tions of promising compositions and/or structures.93,94

In addition to the data-driven identification of suitable
compounds, the present dataset could be leveraged to derive
physical insights and better understand the characteristics
behind a good NLO material. Whilst a close investigation of
the promising candidates is not within the scope of this work, we
invite the community to consider these compounds, pending
more detailed calculations of their suitability in future work.

In the search for new or yet-to-be-investigated functional
materials, it is essential to consider the main requirements for
practical applications. In the realm of bulk SHG crystals, critical
considerations include achieving robust SHG conversion, the
capability for angular phase-matching (APM), and a high laser
damage threshold (LDT). Since the present study is based on
first-principles computations, we emphasised the bi-objective
optimisation of the effective powder SHG coefficient (dKP) and
the band gap, in an attempt to maximise the conversion
efficiency and LDT. Given the scale of our results, this approach
constitutes a considerable step in the data-driven search for
NLO materials. With this dataset now established, we hope to
directly incorporate additional proxies for real-world performance,
such as the lattice thermal conductivity and birefringence,13,95–98

Fig. 8 MODNet-predicted dKP values for hypothetical structures added to GNoME (left) and Alexandria (right) since the conclusion of the active learning
study, plotted against the database-reported band gaps computed at the PBE level, alongside the DFT-computed SHG values in SHG-25 (green). The
structures considered were limited to those that: (i) are near the predicted convex hull reported in the database (r0.05 eV per atom), (ii) have PBE band
gaps greater than 0.05 eV, (iii) are non-centrosymmetric, (iv) do not contain lanthanides or actinides, and (v) have compositions that are not present in the
computed SHG set. This left 9657 structures from GNoME and 22 438 from Alexandria.
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in our future work. These factors will reinforce the focus on
materials with high LDT and APM capability, respectively, thereby
refining the data acquisition process, expanding our dataset, and
broadening the applicability of these findings.
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facilities of the Université catholique de Louvain (CISM/UCL)
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