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Sustainable reservoir computing with liquid
egg albumen

Raphael Fortulan, *ac Noushin Raeisi Kheirabadi, a Davin Browner, a

Alessandro Chiolerio ab and Andrew Adamatzky a

While physical reservoir computing offers a promising approach for efficient information processing,

identifying suitable substrates remains challenging. Here, we demonstrated that colloidal albumen

proteins could function as an effective physical reservoir for classifying multivariate datasets and

electrocardiogram (ECG) signals. We exploited the nonlinear dynamics of protein macromolecules and

ions in the albumen to perform high-dimensional mappings of input data. Our albumen-based reservoir

achieved classification accuracy comparable to conventional machine learning methods on benchmark

datasets while consuming over 5000 times less energy during training. Notably, the reservoir exhibited

short-term plasticity analogous to biological synapses, with conductance spikes and fading memory.

This bio-inspired computing paradigm not only offered a sustainable alternative to traditional

architectures but also provided insights into the information-processing capabilities of biological

systems. Our findings opened new avenues for low-power, environmentally friendly computing

solutions with potential applications in real-time health monitoring and edge computing.

Introduction

Edible electronics represent a promising innovation in the
biomedical, pharmaceutical, and food industries. These inges-
tible devices, made from biocompatible and eco-friendly mate-
rials, offer real-time, non-invasive monitoring, particularly
useful for gastrointestinal diagnostics. Their ability to degrade
naturally makes them both cost-effective and sustainable, with
potential applications extending to food quality monitoring
and anti-counterfeiting.1–4

This shift towards biologically based technology parallels
advancements in unconventional computing, which explores
alternatives to traditional silicon-based computers. By lever-
aging biological, chemical, and physical processes, unconven-
tional computing enables novel computational approaches,
such as chemical and slime mold computing.5 These systems
exhibit adaptability, parallelism, and energy efficiency, addres-
sing the limitations of classical computing and opening new
possibilities in AI, optimization, and sustainable technologies.6

A key application of unconventional computing is reservoir
computing (RC), a machine learning (ML) framework designed

to process temporal and sequential data. By using highly non-
linear systems such as spintronic oscillators, photonic systems,
and soft robotics, RC systems perform high-dimensional
mappings and complex transformations, making them ideal
for tasks requiring real-time, adaptive computation.7–12

Among the unconventional substrates explored for RC,
liquid cybernetic systems have shown remarkable promise.
Colloidal suspensions, such as zinc oxide (ZnO)13 and magne-
tite (Fe3O4) ferrofluid,14 demonstrate unique information pro-
cessing capabilities through their dynamic and self-organizing
properties. These systems can encode and process information
via complex electrohydrodynamic and magnetohydrodynamic
interactions, respectively. Experimental studies have illustrated
their potential as neuromorphic processors, capable of synaptic
plasticity-like learning and pattern recognition tasks, thus
broadening the scope of physical reservoirs in unconventional
computing.15,16

This paper explores the use of a biological physical reservoir
based on colloidal albumen proteins derived from eggs for
classification tasks. Egg albumen, or egg white, has drawn
considerable attention in recent years due to its low cost, high
transparency, and ease of extraction. Its electrical properties
have been studied since the early 1900s,17 with later research
confirming its excellent dielectric properties.18–20 Studies have
shown that thermally treated albumen can serve as an effective
dielectric layer in organic field-effect transistors,21 and modi-
fied albumen has been used to create reliable and efficient
memory cells.22 Heat-denatured albumen has demonstrated
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stable switching endurance, high resistance ratios, and long
retention times, making it suitable for memory storage
applications.23,24

In contrast, this work utilizes egg albumen in its colloidal
form. The choice to use colloidal albumen derives from its
unique ability to exploit colloidal particles under external
fields. Colloids interact naturally through van der Waals forces
and electrostatic repulsion, but under an external field, they
can follow alternative thermodynamic pathways, forming meta-
stable suprastructures.25–27 This property is critical for RC as
it allows the system to leverage nonlinear behavior, global
connectivity, and memory effects for efficient information
processing.28,29 The nonlinear interactions within the colloidal
suspension, influenced by ion drift and local electric fields,
enhance the system’s capacity to map complex time-varying
signals.

Our system leverages the nonlinear dynamics of protein
macromolecules and ions in liquid albumen to create high-
dimensional nonlinear mappings of input data, converting the
results into conductance values that can be used as inputs for
linear classifiers to perform classification tasks. We demon-
strate that this bio-inspired reservoir can classify multivariate
datasets, and, following previous studies,30,31 we also used it to
classify electrocardiogram (ECG) signals with accuracy com-
parable to conventional ML models. Lastly, we discuss the
potential of this technology for low-power, sustainable comput-
ing solutions with applications in real-time health monitoring
and edge computing.

Results and discussion

Fig. 1(a) illustrates the current–voltage (I–V) characteristics
of the albumen colloid under cyclic DC voltage sweeps from
0 V - 5 V - 0 V -�5 V at a scan rate of 1 V s�1. The measured
I–V curves exhibit a hysteresis loop, which is indicative of a
circuit containing a memory element.16,32,33 The changes in the
hysteresis loops shown in Fig. 1(b) at scan rates of 1 V s�1,
2 V s�1, and 4 V s�1 for 100 cycles demonstrate a dependence
between frequency and the current/voltage characteristics of

the albumen-based reservoir, similar to what is seen in
memristive-like materials.34–36

According to the USDA (United States Department of Agri-
culture), raw egg whites are primarily composed of water
(87.57%) and proteins (10.9%), with the remainder consisting
of carbohydrates (0.73%), lipids (0.17%), and minerals.37 The
principal protein molecules present in egg white are ovalbumin
(54%), ovotransferrin (12%), ovomucoid (11%), lysozyme
(3.5%), and ovomucin (3.5%).38 Without denaturation, these
protein macromolecules are folded and linked to mineral ions
such as iron (Fe), potassium (K), and sodium (Na),39,40 as
illustrated in Fig. 2(a). The presence of a high concentration
of ions bound to folded proteins creates a liquid ionic con-
ductor, which enables the memory and resistivity switching
behavior of the reservoir.

When a negative voltage sweep is applied to the reservoir,
electrons are released from the redox sites, as oxidized Fe ions
are preferentially reduced due to their similar work functions
to the Cu electrode.23 This process creates conductive paths
that decrease resistivity. Conversely, when a sufficiently strong
positive bias is applied, electrons are injected into the redox
sites, causing ion movement that breaks these conductive paths
and increases resistivity.

At the positively charged anode, copper metal undergoes
oxidation, losing electrons to form copper ions (Cu2+). These
copper ions then migrate into the liquid, where they encounter
hydroxide ions (OH�) drawn towards the anode. The copper
and hydroxide ions react, forming copper(II) hydroxide
(Cu(OH)2). Conversely, at the negatively charged cathode, cop-
per ions in the electrolyte gain electrons and are reduced back
to copper metal.

The presence of memory in the system is likely attributable
to the metallization of the electrodes, which results in dimin-
ishing conductance increases as voltage sweeps or pulses are
applied, as illustrated in Fig. 2(b). Additionally, ion-binding
proteins,42 in particular the copper ion binding ovalbumin
protein,43 create traps for charges and ions (see Fig. 2(a)),
further contributing to the memory effect.

These electrical characteristics of the reservoir bear a nota-
ble resemblance to the properties of synapses and synaptic

Fig. 1 Current–voltage characteristics of the reservoir for (a) 100 sweeps at a scan rate of 1 V s�1 and (b) averaged 100 sweeps at scan rates of 1 V s�1,
2 V s�1, and 4 V s�1.
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plasticity observed in neurons. Specifically, the occurrence of
conductance (G) spikes in the materials is analogous to the
spikes associated with short-term plasticity in neurons.44,45

This similarity suggests potential parallels between the behav-
ior of our albumen-based system and neuronal information
processing mechanisms.

An important property exhibited by the biological reservoir
is the capacity of forgetting, which plays a key role in the brain’s
biological system for managing memories.46–48 This charac-
teristic is also essential for RC, with fading memory being a
crucial component.49 In the case of our albumen-based reservoir,
we have verified that the device demonstrates this property, as it
can recover its conductance state after some time has elapsed, as
shown in Fig. 2(c).

Due to the memfractor-like nature of colloidal reservoirs,50

both the frequency/period and voltage magnitude are possible
factors that can influence the response of the reservoir and

change important variables such as the memory and conduc-
tance modulation of the reservoir. To investigate this, a design
of experiments (DoE) statistical approach was used to investi-
gate the effects of these factors on the response of the system.
Here, we employed a face-centered central composite design as
illustrated in Fig. 3(a). We applied a set of five pulses to the
material. The high and low levels for the voltage magnitude and
pulse period were set to �5 V and �1 V, and 1 s and 250 ms,
respectively. A total of five center points were included, with
the total number of repetitions set to five, resulting in 65
experiments.51 The output variables were defined as the per-
centage change in conductance and the relaxation time of the
conductance after all pulses had been applied to the reservoir.

The two-way ANOVA analysis for the conductance modula-
tion is shown in Table 1 and indicates that both main factors,
voltage (F(1,64) = 13.47, p o 0.001) and period (F(1,64) = 13.42,
p o 0.001), had statistically significant effects on the percentage

Fig. 2 (a) Idealization of the biological reservoir. The presence of a high concentration of ions bound to folded proteins in raw egg white creates an ionic
fluid ideal for memory and resistivity switching behavior. (b) Neuromorphic behavior of the reservoir exhibits short term plasticity due to �5 V, 10 ms
pulses. Illustration of the biological synapse was adapted from ref. 41. (c) Illustration of the fading memory of the reservoir.
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conductance modulation at a = 0.05. The interaction effect
between voltage and period was not statistically significant
(F(1, 64) = 3.96, p = 0.051).

On the other hand, the two-way ANOVA analysis for the
relaxation time, presented in Table 2, revealed that the period
(F(1,64) = 32.43, p o 0.001) had a statistically significant effect
on the system’s memory time constant at a = 0.05. Neither the
voltage (F(1,64) = 2.44, p = 0.124) nor the voltage-period inter-
action (F(1,64) = 1.53, p = 0.220) showed statistically significant
effects.

These results show that it is possible to control the system’s
memory by adjusting the frequency of the applied pulses.
Additionally, the change in the conductance of the material
can be modulated by varying either the frequency or the applied
voltage. The voltage-period interaction can never be exploited to
program the device output, and this reveals to us that the
independent variable magnetic flux (1 Wb = 1 V � 1 s) does not
play any role, as it usually happens in memristors.

The repeatability of the system was tested by applying a
train of five 5 V pulses 100 times and measuring the percen-
tage change in the system’s current. The 100 repetitions are
shown in Fig. 3(b), where it can be seen that the system’s
response maintains a very similar behavior. The inset in
Fig. 3(b) shows the raincloud plot of the measured percentage
change in current. As observed, most of the measured values

fall within 10% of the average value, indicating a repeatable
response.

Reservoir performance – Iris

We tested the capabilities of the proposed architecture to classify
multivariate datasets using the traditional Iris dataset.52 The
dataset consists of physical measurements of Iris flowers
(see the Methods section for more details).

In Fig. 4(a), the architecture used for the classification is
presented. Each feature is individually scaled to a range of �1
and then mapped to a voltage pulse. Specifically, a feature value
of +1 corresponds to a 5 V, 50 ms pulse, while a value of �1
corresponds to a �5 V, 50 ms pulse, with intermediate values
mapped linearly within this range. All four features for each
example are sequentially applied, and the final conductance
value is then measured using a 0.5 V, 50 ms pulse. The
conductance of the liquid albumen is then reset by waiting
1 s and the system is ready for the next example. The final
classification is then performed using a Naı̈ve Bayes classifier.

As discussed previously, the device exhibits synaptic-like
behavior. When we apply short-interval voltage pulses into the
liquid albumen, the conductance increases, mimicking mem-
ory retention, and the conductance change is correlated with
the voltage pulse magnitude. However, if no voltage is applied,
the conductance gradually resets, effectively ‘‘forgetting’’ the
previous input. By encoding each example in the dataset as a
conductance value in the material, we can classify multivariate
datasets using a single-port device.

The applied voltage applied to the reservoir and the measured
current during the training phase are shown in Fig. 4(b) and (c).
The insets in both figures display a two-second snapshot of
measurements, illustrating the highly nonlinear behavior of the
reservoir. The confusion matrix shown in Fig. 4(d) demonstrates
the effectiveness of the classifier, with an overall accuracy of
approximately 98% and a nearly diagonal matrix with only one
misclassified example. The advantage of using this simple dataset
is to provide a quick benchmark for the classification capabilities
of the reservoir, and the performance observed here is similar to
that of other physically based reservoirs.53

Fig. 3 (a) Illustration of the face-centered central composite design for two factors. In a factorial design, factorial points are arranged at the corners of a
k-dimensional hypercube, where k is the number of factors. The star and center points represent repeated experiments conducted at the center of each
face and at the center of the hypercube, respectively. (b) Evolution of the reservoir’s response to a train of five 5 V pulses applied 100 times. The inset
shows the raincloud plot of the measured percentage change in the reservoir’s current.

Table 1 ANOVA – percentage conductance modulation

Source DF F-value p-value

Voltage 1 13.47 0.001
Period 1 13.42 0.001
2-way interaction: voltage � period 1 3.96 0.051

Table 2 ANOVA–relaxation time

Source DF F-value p-value

Voltage 1 2.44 0.124
Period 1 62.43 0.000
2-way interaction: voltage � period 1 1.53 0.220
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Reservoir performance – physionet

The proposed albumen-based reservoir is also capable of encod-
ing and processing time series data. For this, the input signal u(t),
which represents the heart’s electrical activity, was first encoded
using Mel-frequency cepstral coefficients (MFCCs).54,55 MFCCs are
widely employed as a preprocessing layer in RC architectures56,57

since they can extract useful features from time series and
improve classification accuracy.58 The resulting Mel-frequency
cepstrum’s four coefficients for each signal were binarized using
a threshold algorithm, creating a binary map which could then be
applied to the reservoir following a similar methodology pre-
viously validated with the MNIST dataset.59,60

As illustrated in Fig. 5, the 4-bit binary map was applied
sequentially row-wise, with a logical ‘‘1’’ translated to a 5 V,
250 ms pulse and a logical ‘‘0’’ translated to no voltage being
applied. After the pulse train was applied, the conductance, Gi,
was measured using a 0.5 V, 250 ms pulse. The reservoir was
then left to rest for 1 ms so the conductance was reset and a
new set of cepstral coefficients could be applied.

After the full binary map was applied, a conductance vector
G was obtained for each example and classified using a support
vector machine (SVM) layer.

Given the inherent characteristics of the ECG dataset, which
exhibits a highly skewed distribution favoring normal cardiac
rhythms—an expected outcome due to the predominance of
healthy individuals—utilizing accuracy as the sole metric for
classifier evaluation is inadequate. Instead, we employed the
F1-score, interpreted as the harmonic mean of precision and
recall. Precision quantifies the proportion of true positive
results (instances where the model correctly identifies a class)
among all instances predicted as positive by the model.
In contrast, recall measures the proportion of true positive
results among all actual positive instances in the dataset. The
F1-score is defined as

F1 � score ¼

P

i¼fN;A;Og
F1 � scorei

3
; (1)

Fig. 4 (a) Schematic illustration of the reservoir computing framework for the Iris dataset. The input features are scaled to�1 and converted to voltage pulses (�5 V,
50 ms), with intermediate values mapped linearly. After sequential application of all four features, the conductance is measured using a 0.5 V, 50 ms read pulse,
followed by a 1 s reset period. The resulting conductance values serve as input to a Naı̈ve Bayes classifier. (b) Applied voltage and (c) measured current of the reservoir
during the training phase. Insets in (b) and (c) show a 2-second magnification of the respective data. (d) Confusion matrix of the classification results.

Fig. 5 Schematic illustration of the reservoir computing framework for the Physionet dataset. A 4-bit binary map derived from MFCC coefficients is
applied row-wise to the liquid albumen, where logical ‘‘1’’ corresponds to a 5 V, 250 ms pulse and logical ‘‘0’’ to no voltage application. After each row, the
conductance (Gi) is measured using a 0.5 V, 250 ms read pulse, forming a conductance vector G that serves as input to the SVM classifier.
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F1 � scorei ¼
TPðclass ¼ iÞ

TPðclass ¼ iÞ þ 1

2
ðFPðclass ¼ iÞ þ FNðclass ¼ iÞÞ

;

(2)

where TP(class = i), FP(class = i), FN(class = i) are the number of
true positives, false positives, and true negatives for class i,
respectively.

The PhysioNet ECG dataset presents significantly greater
classification challenges compared to the comparatively sim-
pler Iris dataset.61 To ensure a fair comparison, we trained a
convolutional neural network (CNN) on the same dataset,
applying identical preprocessing steps. The CNN architecture
comprised three convolutional layers with batch normalization
and ReLU activations, followed by max-pooling, global average
pooling, and dense layers with dropout, culminating in a
softmax-based classification layer.

Fig. 6(a) compares the performance metrics of our albumen-
based reservoir with the CNN. As shown, the reservoir outper-
forms the CNN in both accuracy and F1-score on the test
dataset, achieving 65% accuracy and an F1-score of 0.48,
compared to the CNN’s 61% accuracy and 0.32 F1-score.
Although the performance is reasonable, it is still below that
of more sophisticated approaches such as those using XGBoost
(F1-score of 0.83).62 However, the most significant advantage of
the biological reservoir lies in its energy consumption and
environmental impact.

Fig. 6(b) shows that the albumen-based reservoir is over
5000 times more energy-efficient during the training phase
compared to the CNN. However, this efficiency is partially offset
by the energy consumption of the SVM layer, which uses
35 times more energy than the reservoir. From a practical
standpoint, this increased computational efficiency reduces
the system’s contribution to global warming. Fig. 6(c) shows
the equivalent CO2 emissions, calculated using the UK 2023
energy conversion factors,63 for the training phase of both
architectures. These results reveal that bio-based reservoirs
have a much smaller environmental footprint, making them
a promising green alternative to conventional computing
systems.64

These results are promising, as historically, cardiac condi-
tions were diagnosed solely based on physicians’ interpretation
of ECG features. Although modern techniques now enable the
use of raw ECG data in conjunction with machine learning and
deep learning,62,65 detecting these conditions remains challen-
ging due to their episodic and non-regular nature.

From a healthcare perspective, detecting atrial fibrillation
(AF) is particularly important, as it affects approximately 2% of
the general population.66 AF is associated with significant
mortality and morbidity, increasing the risk of death, stroke,
hospitalization, heart failure, and coronary artery disease.
Its incidence rate rises gradually from 0.9 per 1000 person-
years at ages 40–49 to 17.7 per 1000 person-years in individuals
aged 70 and older.67

A simple, low-cost, and effective system for AF detection is
therefore of great interest. The results presented here demon-
strate that our bio-based system can perform this classification
with a fraction of the energy cost, offering a sustainable and
environmentally friendly solution. Interestingly, it also high-
lights the potential of using biological substrates to process
biological signals.

Conclusion

In conclusion, this study demonstrated the potential of a
biological physical reservoir using colloidal albumen proteins
for classification tasks. By harnessing the unique electrical
properties of colloidal particles under external fields, we devel-
oped a system exhibiting key features essential for RC: non-
linearity and memory effect. This bio-based approach,
combined with a simple classifier, achieved competitive
performance on multivariate datasets and in ECG signal
classification.

While the more complex PhysioNet dataset was more chal-
lenging, the biologically inspired reservoir showed significant
advantages in energy efficiency and environmental sustainabil-
ity compared to traditional models such as CNNs. The low
power consumption of this system translated into a reduced
carbon footprint, positioning bio-based computing systems as
promising green alternatives to conventional architectures.

Fig. 6 (a) Accuracy and F1-score for the proposed albumen-based reservoir architecture and CNN on the test dataset. The accuracy of the CNN during
the training phase as a function of epoch number is also presented. (b) Estimated energy consumption for the albumen-based reservoir architecture and
CNN. The energy cost of the reservoir architecture is divided between the physical reservoir and SVM layer. (c) Estimated equivalent CO2 emissions for
the albumen-based reservoir architecture and CNN. The equivalent emissions of the reservoir architecture are divided between the physical reservoir and
the SVM layer.
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Additionally, the reservoir’s ability to perform memory-related
tasks mimicked biological synaptic behavior, offering the
potential for developing neuromorphic systems.

Methods

Two datasets were employed to evaluate the physical reservoir.
The first dataset, the Iris dataset,52 comprises four features
(petal and sepal length and diameter) of three Iris species: Iris
setosa, Iris virginica, and Iris versicolor. This dataset contains
50 examples for each class, with two classes being linearly
separable and one not.

The second dataset, from the PhysioNet 2017 Challenge,61,68

is accessible at https://physionet.org/content/challenge-2017/
1.0.0/. It consists of ECG signals sampled at 300 Hz, classified by
experts into four categories: normal (N), atrial fibrillation (A)†, other
rhythm (O), and noisy recording (B). The dataset contains 8422
measurements of varying durations, averaging 9000 data points.

To ensure consistency, we implemented preprocessing steps
for the PhysioNet dataset: arrays with fewer than 9000 points
were discarded, and longer arrays were truncated. Noisy record-
ings were also excluded. Due to the imbalanced nature of the
dataset, with A, N, and O categories containing 738, 5050, and
2456 examples, respectively, we performed data augmentation for
the underrepresented classes using ADASYN.70 Specifically, the
data for categories A and O were replicated seven and two times,
respectively. This augmentation was crucial to mitigate classifier
bias, as the model without it would likely default to predicting N.

Both datasets were divided into training and testing sets
using a 66%/33% split. We evaluated the results using Python
3.11.5 on an ARM-based CPU running macOS. The output layer
was trained using scikit-learn 1.5.2, while the convolutional
neural network (CNN) was trained using TensorFlow 2.12.0.
Energy consumption during training was measured using the
built-in powermetrics utility on macOS.

For the experiments, signals were applied to the colloid
using a pulse generator (Sanworks, Pulse Pal v2). Voltage and
current measurements were obtained with a PC-based oscillo-
scope (Pico Technology, PicoScope 5442D) coupled with a

shunt and amplifier (LowPowerLab, CurrentRanger). The reser-
voir was constructed using two copper electrodes (Thermo
Scientific Chemicals, copper wire, +0.5 mm, annealed,
99.9% purity), 10 ml of albumen extracted from hen eggs, and
20 ml micropipettes (intraMARK, BLAUBRANDs). The physical
realization of the albumen-based reservoir is shown in Fig. 7(a),
and the overall architecture for RC is depicted in Fig. 7(b). The
energy consumption of the physical reservoir was estimated
from voltage and current measurements.

Data availability

Data sets generated during the current study are available from
the corresponding author on reasonable request.
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