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Advances in metal oxide semiconductor gas
sensor arrays based on machine
learning algorithms
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Metal oxide semiconductor (MOS) gas sensors have garnered significant attention for their excellent

sensitivity and rapid response times. However, distinguishing similar gases in complex environments

remains a major challenge. Integrating sensor arrays with machine learning algorithms significantly

enhances gas recognition and detection accuracy, making it a key approach for intelligent gas

monitoring. This review summarizes recent advances in MOS gas sensor arrays driven by machine

learning algorithms. It further explores the mechanisms of MOS/MOS sensor arrays, conventional

sensing materials and machine learning algorithms suitable for gas sensor arrays. Additionally, this review

reports, summarizes, and evaluates both classical gas sensing algorithms and neural network-based

algorithms for gas identification, considering aspects such as operating principles, advantages and

disadvantages, and practical applications. In conclusion, this study considers the current landscape and

challenges, providing predictions for future research directions. It is hoped that this work will contribute

positively to the progression of machine learning-assisted MOS gas sensor arrays and offer valuable

insights for gas sensing data processing.

1 Introduction

A sense of smell is vital for perceiving and interpreting our
surroundings, aiding in odor detection, scent tracing, and
hazard awareness. However, harmful, corrosive, volatile, or
flammable gases pose significant health risks beyond the
capabilities of natural olfaction. This highlights the critical
need for advanced sensing technologies to monitor and identify
harmful gases or volatile organic compounds (VOCs), ensuring
medical safety, and environmental applications.

Nowadays, gas identification is becoming more and more
important in different fields, including ecosystem protection,1,2

illegal drug detection3,4 and food quality control.5–7 As a result,
many sensing technologies, such as electrochemical,8–10

chemical,11–17 fiber optic18,19 and capacitive,20,21 have been
applied in these fields. In recent decades, metal oxide semi-
conductor (MOS) sensors have garnered significant interest for
their affordability, high sensitivity, rapid response capabilities,
ease of integration, and remarkable stability.22–28

The working mechanism of MOS primarily involves several
aspects, including their electronic structure, redox reactions,
gas adsorption, and ion migration. MOS have a certain band
gap, and their conductivity is influenced by oxygen vacancies,
doping, and the adsorption–desorption processes of oxygen.
Redox reactions can alter their oxidation state, thereby mod-
ulating their conductivity. Additionally, oxygen vacancies and
defects in MOS can trigger electron migration, changing con-
ductivity and charge carrier concentration. However, such-
simple sensing mechanisms often lack gas selectivity, making
it hard to identify specific gases. Additionally, since MOS
sensors typically operate at elevated temperatures, they suffer
from high power consumption and increased sensitivity to
environmental factors. This results in low gas selectivity, mak-
ing it challenging to accurately identify gases using a single
sensor.

To solve this drawback of MOS gas sensors, sensor arrays
have become a hot topic of recent research.29 A MOS gas sensor
array is composed of a group of independent MOS sensors.
Each sensor in sensor arrays is analogous to a receptor that
reacts to different odors to varying degrees. The sensor array
is able to interact with multiple cross-reacting analytes in the
test, eliminating the need to individually extract responses
from each sensor. A range of algorithms has been employed
to optimize the performance of sensor arrays, leveraging
machine learning-based configurations. Recent progress in
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computational capabilities and machine learning methodolo-
gies has notably improved the precision in gas detection under
controlled conditions. The arrays generate variable data sets
from complex mixtures, employing different algorithms for
further analysis and processing of large amounts of data. These
systems decode the convolved signals obtained from gas mix-
tures into useful information to classify and predict individual
gas levels in a mixture, extracting useful and simplified infor-
mation for the end user. These systems process the mixed
signals from a mixture of gases, enabling the classification and
prediction of individual gas concentrations, and providing
users with clear and concise information for decision-making.

The integration of a gas sensor array with a pattern recogni-
tion system is referred to as an electronic nose (E-nose),30 as
shown in Fig. 1. In the E-nose, each sensor responds uniquely
to different gases, converting these signals into a collective
electrical output. These outputs are then analyzed using pattern
recognition techniques, generating distinct signatures for
each gas and enabling the identification and prediction of
unknown gases. Electronic noses have found applications in
several areas, such as environmental monitoring,31,32 medical
diagnosis33–36 and food safety.37,38 The qualitative and quanti-
tative gas measurement in artificial olfactory systems is pri-
marily determined by two key factors: the sensor array and the
pattern recognition algorithms employed for analysis. Recently,
a great deal of research has been invested in gas sensor arrays
to improve the accuracy of gas and odor recognition. With the
development of the Internet of Things,39 there is an increasing
demand for distributed gas detection, which requires more
efficient and intelligent recognition algorithms.

Advancements in large-scale sensor array fabrication and
artificial intelligence have enabled machine-learning-assisted
optimization to enhance sensor array performance. Machine
learning addresses key limitations in gas sensing, such as
selectivity, signal drift, and adaptability to complex environ-
ments, by extracting patterns from high-dimensional data and
improving classification accuracy. Furthermore, adaptive algo-
rithms enable real-time calibration, aging compensation, and
precise discrimination of gas mixtures, expanding applications
in environmental monitoring, medical diagnostics, and indus-
trial control. This integration marks a transformative step
toward next-generation intelligent sensing systems.

Zhiyong Fan’s team has developed a high-performance
biomimetic olfactory system by integrating large-scale nano-
tube sensor arrays with advanced artificial intelligence algori-
thms.40 The system incorporates up to 10 000 high-sensitivity
sensors capable of detecting gases at ppb levels and employs a

gradient distribution of MOS materials to achieve a gas classi-
fication accuracy of 99.04%. It enables precise identification of
gas mixture components and 24 distinct odors. This work
addresses the limitations of traditional electronic nose systems,
including sensitivity, diversity, and power consumption, and
provides a foundation for the development of intelligent sen-
sing and multifunctional systems. Recent progress in computa-
tional capabilities and algorithm development has greatly
enhanced the precision of gas detection under controlled
conditions.41,42

The purpose of this paper is to have a comprehensive
overview of the gas sensing mechanisms of MOS/MOS sensor
arrays, common gas sensing materials and how various emer-
ging machine learning algorithms can assist in the application
of MOS gas sensor arrays. Firstly, the gas sensing mechanism of
MOS is summarized to reveal the underlying physical changes.
Next, we introduce various conventional metal-oxide semicon-
ductor materials. Then, various classical gas sensor algorithms
and neural network-based gas sensor algorithms are reviewed.
Additionally, we provide a comprehensive comparison of
machine learning algorithms for extracting the response of
gas sensor arrays. And we introduce various applications of
machine learning-assisted data processing of MOS gas sensor
arrays. Finally, we offer a perspective on the future advance-
ments and possible applications of MOS gas sensor arrays.

2 Gas sensing mechanism of MOS

The gas sensing mechanism in MOS is predominantly governed
by changes in resistivity or conductivity, which occur mainly
due to oxygen adsorption. MOS can be categorized into n-type
or p-type based on their conductivity characteristics. In n-type
semiconductors, such as zinc oxide (ZnO), stannic oxide (SnO2),
indium oxide (In2O3) and tungsten oxide (WO3), negatively
charged electrons serve as the primary charge carriers. Con-
versely, in p-type semiconductors like cupric oxide (CuO),
positively charged holes act as the key charge carriers. The
gas sensing response typically involves essential processes such
as gas chemisorption, charge transfer, and gas desorption.
When exposed to air, oxygen molecules adsorb on the sensor
surface, where they capture electrons from the conduction
band. This leads to the dissociation of oxygen and the for-
mation of oxygen ions through chemisorption, e.g. O2�, O and
O2�. The generation of reactive oxygen species reduces the
electron concentration and increases the hole concentration.
The degree of reactive oxygen species adsorption is largely

Fig. 1 Schematic illustration of the E-nose system.
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influenced by the operating temperature, which is described by
the following equation:

O2(gas) - O2(ads) (1)

O2(ads) + e� - O2�(ads) (o150 1C) (2)

O2�(ads) + e� - 2O�(ads) (150–300 1C) (3)

2O�(ads) + e� - O2�
(ads) (4300 1C) (4)

Under standard atmospheric conditions and typical operat-
ing temperatures, oxygen molecules tend to either adsorb or
chemically bond to the surface of the sensor. The oxygen
molecules capture electrons, creating a space charge layer
known as the electron depletion layer. This accumulation of
charge results in an expansion of the potential barrier. As a
result, due to the reaction of the trapped electrons with the
surface gas molecules, the non-intrinsic surface acceptor state
of the n-type MOS surface blocks the conduction band elec-
trons. Only a small fraction of electrons can overcome the
potential barrier. When a reducing gas interacts with the
sensitive MOS surface, it removes the reactive oxygen species
from the surface, releasing trapped electrons back into MOS.
This process results in a narrowing of the depletion region and
a reduction in the bending of the energy bands. Consequently,
the resistance of the n-type MOS decreases, while the resistance
of the p-type MOS increases. As a result, the presence of
reducing gases can be effectively detected by monitoring the
changes in the sensor’s resistance.

The sensing mechanism of n-type MOS, using ZnO as an
example, is depicted in Fig. 2.43 When ZnO is exposed to air,
oxygen molecules adsorb onto its surface and extract electrons
from the conduction band, forming reactive oxygen species.
Concurrently, an electron depletion layer develops on the sur-
face, leading to a decrease in electron concentration, which
narrows the depletion region and raises the sensor’s resistance.
Upon exposure to NO2, the NO2 molecules interact with the
adsorbed oxygen species, causing the release of trapped

electrons back into the conduction band of ZnO. This increases
the electron concentration, causes the depletion layer to
expand, and ultimately reduces the sensor’s resistance.

Based on the understanding of the gas sensing mechanisms
of n-type and p-type MOS, the modification of one material by
another can result in various types of junctions, including p–n
heterojunctions, n–n homojunctions, p–p homojunctions, and
Schottky heterojunctions.44–46 The formation of the junction
causes energy band bending, resulting in a charge depletion
region at the interface. This region has a low density of charge
carriers, which can be readily depleted by adsorbed oxygen
molecules, resulting in a notable change in the gas sensor’s
resistance. Additionally, dangling bonds and vacancies at the
junction create a low charge density state at the interface,
further enhancing the sensor’s performance. Owing to the
formation of dangling bonds and vacancies at the junction, a
low charge density state is established at the interface, which
enhances the sensing performance. Additionally, synergistic
reactions within the heterostructure further improve sensitiv-
ity. In this process, one material in the heterostructure may first
interact with the target gas or VOCs, while the second material
reacts with the byproducts of this reaction. Furthermore, the
heterojunction structure, with its high porosity and abundant
defect sites, facilitates faster gas adsorption, which contributes
to an overall increase in sensor sensitivity.

Among them, p–n heterojunctions have garnered consider-
able attention due to their ability to control the electron
depletion layer thickness. Their formation in sensor materials
significantly enhances sensing performance by facilitating
charge transfer and improving overall sensitivity.47,48 For
instance, CuO/WO3 hierarchical hollow microspheres, con-
structed from irregular two-dimensional nanosheets with a
distinct three-dimensional structure, demonstrated superior
sensitivity, faster response/recovery times, and better selectivity
for xylene.49 The formation of a heterojunction between CuO
and WO3 is crucial for these enhanced properties. As depicted
in Fig. 3, when WO3 contacts CuO, free electrons move from the

Fig. 2 Schematic illustration of gas sensing mechanism of ZnO. Reproduced from ref. 43 with permission from Elsevier B.V., copyright 2019.
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n-type WO3 to the p-type CuO, while holes migrate in the
opposite direction. This charge redistribution continues until
the Fermi levels of both materials align, which leads to the
expansion of the electron depletion layer. This interaction
results in the formation of a heterojunction at the WO3–CuO
interface, thereby increasing the material’s resistance.

However, when xylene is introduced, its interaction with
reactive oxygen species results in the release of trapped elec-
trons back into the conduction band of WO3. This process
reduces the width of the depletion layer, consequently lowering
the electrical resistance of the material. The incorporation of
CuO also reduces the agglomeration of the WO3 nanoparticles,
providing adsorption sites for xylene. On the other hand,
during the formation of the heterojunction, the mismatch in
lattice parameters between the two materials can introduce

numerous defects at the interface. These defects act as active
sites for gas adsorption, allowing more gas molecules to adhere
to the composite surface. Consequently, these adsorbed mole-
cules can interact with reactive oxygen species, promoting
reactions with the target molecules.

3 Conventional sensing materials for
MOS/MOS sensor arrays

The study of gas sensing using metal oxides began in the 1960s,
when Seiyama et al. found that the adsorption and desorption
of ethanol molecules on ZnO thin films resulted in changes to
their electrical conductivity.50 Since that pioneering work, a
wide range of metal oxides have been thoroughly investigated

Fig. 3 Schematic illustration of the xylene gas-sensing mechanism on WO3 and CuO/WO3 surfaces. (a and b) The gas-sensing mechanism of the
CuO/WO3 surface in air and xylene. (c and d) The energy band structures of WO3 in air and xylene. (e and f) The energy band structures of CuO/WO3 in air
and xylene. Reproduced from ref. 49 with permission from Elsevier B.V., copyright 2022.

Review Journal of Materials Chemistry C

Pu
bl

is
he

d 
on

 0
3 

Fe
br

ua
ry

 2
02

5.
 D

ow
nl

oa
de

d 
on

 2
/1

7/
20

26
 1

2:
52

:2
7 

PM
. 

View Article Online

https://doi.org/10.1039/d4tc05220j


This journal is © The Royal Society of Chemistry 2025 J. Mater. Chem. C, 2025, 13, 4285–4303 |  4289

and are now commonly employed as sensing materials for
detecting flammable, toxic, and hazardous gases.

3.1 ZnO

ZnO is a widely used n-type semiconductor with a band gap of
3.37 eV, making it an ideal material for applications such as gas
sensors, doped substrates, and composite components. Its
appeal lies in its non-toxic, environmentally friendly properties,
low cost, and ease of synthesis.

ZnO materials exhibit excellent chemical reactivity and
thermal stability, with their morphology playing a crucial role
in determining their sensing capabilities. Various ZnO
morphologies have been employed for the detection of toxic
and hazardous gases.51–54 Choi et al. prepared a porous ZnO
nanosheet gas sensing element with good response character-
istics to NO2 gas at 200 1C.55 The gas-sensing performance of a
material is significantly influenced by its specific surface area.
As demonstrated in Fig. 4(a), the BET surface area (BET) of
porous ZnO nanoparticles is three times higher than that of
conventional ZnO nanoparticles. Its highly porous morphology
provides abundant pore channels, which leads to a higher

response in ZnO nanoparticles gas sensing elements. Moreover,
owing to the n-type nature of this gas-sensing material, it
contains oxygen vacancies (or metal intermediates).56 These
surface defects provide ideal sites for the adsorption of oxygen
and NO2 gases, thereby enhancing the gas response, as illu-
strated in Fig. 4(b).

Liu et al. designed a highly sensitive triethanolamine (TEA)
gas sensor using ZnO ultrathin films that are rich in oxygen
vacancies.57 The response of the gas-sensitive element to TEA is
governed by electron transfer through surface redox reactions,
as shown in Fig. 4(c) Atmospheric oxygen adsorbs onto the ZnO
surface, forming a depletion layer that increases resistance.
Upon exposure to TEA, redox reactions release electrons, lead-
ing to changes in conductivity. The optimized ZnO thin-film
sensor exhibits a high response to TEA concentrations ranging
from 21.6 to 10 ppm, with rapid response and recovery times,
excellent selectivity, and a low detection limit of 22 ppb.

Moreover, MOS gas sensors are often limited by high detec-
tion thresholds, poor selectivity, and slow response and recov-
ery times. Therefore, noble metal functionalized ZnO becomes
a sensible choice.56,58 Liu et al. fabricated a high-performance

Fig. 4 (a) The BET of ZnO NPs (above) and porous ZnO NSs (below). (b) Effect of surface defects in the porous ZnO NSs gas sensor. Reproduced from
ref. 55 with permission from Elsevier B.V., copyright 2021. (c) Surface reaction mechanism of ZnO films in air (left) and TEA (right). Reproduced from
ref. 56 with permission from Elsevier B.V., copyright 2021. (d) Schematic diagram illustrating the sensing mechanism of Pt–ZnO microspheres sensor.
Reproduced from ref. 57 with permission from Elsevier B.V., copyright 2021.

Journal of Materials Chemistry C Review

Pu
bl

is
he

d 
on

 0
3 

Fe
br

ua
ry

 2
02

5.
 D

ow
nl

oa
de

d 
on

 2
/1

7/
20

26
 1

2:
52

:2
7 

PM
. 

View Article Online

https://doi.org/10.1039/d4tc05220j


4290 |  J. Mater. Chem. C, 2025, 13, 4285–4303 This journal is © The Royal Society of Chemistry 2025

gas sensor for TEA detection by utilizing Pt–ZnO micro-
spheres.59 The modification of Pt notably improved the adsorp-
tion of active oxygen species on the surface of the composite,
which in turn facilitated a greater extraction of electrons from
the conduction band of ZnO. This effect, together with the
establishment of a Schottky junction, further intensified the
electron depletion layer within the Pt–ZnO microspheres, as
depicted in Fig. 4(d). The sensor demonstrated excellent selec-
tivity and stability for TEA, with a response range from approxi-
mately 242 to 100 ppm. Riek et al. developed a gas sensor array
using a mixture of metals and organic polymers. The sensitivity
of all the gas sensors exceeded 85%, significantly enhancing
gas selectivity.60

3.2 SnO2

SnO2, an n-type semiconductor with a wide band gap ranging
from 3.5 to 4.0 eV, has been widely employed in MOS gas
sensors since the 1960s due to its remarkable stability and high
sensitivity. To enhance the sensing performance of these
sensors, significant improvements can be achieved through
the development of tailored nanostructures, the creation of
nanocomposites, and the application of various surface mod-
ification techniques.61–70

Li et al. synthesized porous SnO2 nanotubes featuring oxy-
gen vacancies and a large specific surface area. These nano-
tubes demonstrated superior NO2 sensing performance at
50 1C, with a quick response time of under 10 seconds, a low
detection limit of 0.1 ppm, and remarkable selectivity.71 Liu
et al. developed an NH3 gas sensor by integrating electrospun
SnO2 nanotubes with a composite material consisting of poly-
aniline and molybdenum disulfide nanosheets, which were

further capped with an additional nanosheet layer. At room
temperature, the sensor exhibited a response value of 10.9 for
100 ppm NH3, along with a detection limit of 200 ppb.72 It also
demonstrated fast response and recovery times, excellent repro-
ducibility, good flexibility, and exceptional selectivity. Song
et al. synthesized heterostructured SnO2/MOx nanotubes and
nanofibers, and the sensor array constructed using sensors
accurately detected ethanol, acetone, and xylene gas mixtures.73

The gas sensing capabilities of the sensor showed a marked
improvement over those of pure SnO2 nanotubes. These find-
ings underscore the fact that the heterostructure design not
only enhances the selectivity of metal oxide-based gas sensors
but also facilitates the creation of sensor arrays capable of
detecting complex gas mixtures.

Lee et al. designed a 3–3 sensor array that integrates three
distinct metal oxides—WO3, SnO2, and NiO—to create a gas
sensor with high sensitivity and selectivity, as illustrated in
Fig. 5.74 This sensor comprises three different nanostructural
configurations: thin film and dome-shaped structures, both of
which are tested with and without the incorporation of Au
nanoparticles. Notably, the dome-shaped nanostructures
enhanced the sensor’s ability to detect four target gases—
acetone, toluene, ammonia, and hydrogen sulfide. Addition-
ally, the inclusion of Au nanoparticles significantly improved
the sensor’s overall responsiveness. The response of the dome-
shaped SnO2 film with Au nanoparticles to acetone is enhanced
by 121 times compared to the original SnO2 film. This study
highlights that the integration of metal oxides with catalysts
can lead to the development of gas sensors with enhanced
sensitivity and selectivity, making them ideal for targeted
applications.

Fig. 5 (a) Digital image of the 3–3 gas sensor array. (b) Schematic representation of the design of the 3–3 gas sensor array. Reproduced from ref. 74 with
permission from Royal Society of Chemistry, copyright 2021.
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3.3 In2O3

In2O3 is a significant n-type semiconductor with a direct
bandgap ranging from 3.5 to 3.7 eV, offering high electrical
conductivity and strong photoelectrochemical stability. Despite
these advantages, its use in gas sensing is frequently hindered
by issues related to low sensitivity and poor selectivity. To
overcome these limitations, several strategies have been
explored to enhance the microstructure of In2O3, improving
its performance in gas detection, aiming to increase its surface
area and create more abundant pores, thereby enhancing its
gas sensing performance. Up to now, In2O3 with various
microstructures, such as nanospheres,75,76 nanosheets,77

nanorods,78 and flower-like structures,79 have been successfully
constructed.

Beyond optimizing the structure, various compositional
adjustments, including lattice doping, surface treatments,
and the creation of heterojunctions, are regarded as effective
approaches to enhance the selectivity and sensitivity of MOS.
One such approach is the introduction of noble metals onto the
surface of In2O3 to enhance its response.80–82 Oh et al. prepared
arrays of five gas sensors, including pure In2O3, three different
Cr-doped In2O3, and one Cr/Pd co-doped In2O3 sensor for five
indoor air pollutants were gas-sensitized.83

The gas response of In2O3 can also be enhanced by engi-
neering specific morphologies or interfaces.84–86 Li et al. suc-
cessfully combined In2O3 with CuO to fabricate a gas-sensitive
element that exhibits a strong response to H2S. The sensor
operates effectively at an optimized temperature as low as
70 1C, achieving an 8.5-fold enhancement in response com-
pared to the pure In2O3 gas sensor.87 Zhang et al. prepared a
20% ZnO/In2O3 hetero structured sensor.88 Owing to its dis-
tinctive hierarchical design, a high density of mesopores, and
the creation of n–n heterojunctions, the sensor shows excep-
tional responsiveness to ethanol gas at 240 1C. For 50 ppm
ethanol, the response value reaches 170, which is 3.3 times
higher than the performance of the pure In2O3-based sensor.

3.4 WO3

WO3 is a highly adaptable n-type metal oxide semiconductor
with a band gap ranging from 2.6 to 2.8 eV, which makes it an
ideal candidate for sensing VOCs and harmful gases. Upon
contact with air, oxygen molecules are chemisorbed onto the
surface of WO3, where they capture electrons from the conduc-
tion band, resulting in the formation of an electron-depleted
layer. The oxygen molecules adsorbed on the surface are
subsequently transformed into reactive oxygen species, which
actively engage with the molecules of the target gas. This
interaction induces a shift in the carrier dynamics; for example,
when reducing gases are present, they can react with the
reactive oxygen species, leading to the release of the previously
captured electrons back into the conduction band.

The gas-sensing performance of pure WO3 materials can
be improved through the control of their structure and
morphology.89–91 The prepared NO2 gas sensors had a selectiv-
ity of high, good stability, good reproducibility and superior

response. Park et al. designed a sensor array consisting of three
individual sensors, each consisting of a layer of WO3 nano-
particles coated with zeolite, and successfully detected four
VOCs—acetone, ethanol, acetaldehyde, and ammonia—at dif-
ferent concentrations.92 The hierarchical structure of the sen-
sors promotes better gas diffusion and provides more reactive
active sites. Therefore, incorporating a three-dimensional hier-
archical structure is an effective strategy for enhancing the gas-
sensing performance of MEMS-based MOS sensors.

3.5 CuO

CuO, a p-type semiconductor with a narrow band gap of 1.2 to
2.1 eV, has been extensively studied for detecting toxic and
flammable gases. However, its high operating temperature,
long response time, and low detection limit pose challenges
for practical applications. To address these issues, several
promising approaches, such as noble metal functionalization,
catalysis, and the incorporation of carbon nanomaterials, have
been explored to enhance sensor performance. Zheng et al.
developed a Pd–CuO/rGO sensor with a hierarchical nanowire
structure, which showed significantly enhanced response to
trace NO2 gas at room temperature.93 The abundant active sites
created by the porous rGO modification facilitated enhanced
gas adsorption and diffusion, while Pd nanoparticles sensitized
the CuO substrate, improving the sensor’s sensitivity and
selectivity.

In addition, the creation of heterojunctions is a promising
approach to improving the gas-sensing performance of MOS-
based sensors. Yin et al. developed graded CuO@WO3 nano-
composites to optimize gas-sensing performance.94 Under opti-
mal conditions at 100 1C, the 5 wt% CuO@WO3 composite
showed a response of 223 to 5 ppm H2S, 14 times higher than
pure WO3. The formation of a p–p heterojunction further
promotes the generation of oxygen molecules, which are then
converted into oxygen ions, enhancing the sensing perfor-
mance of the composite material. Lu et al. successfully synthe-
sized Cu2O–CuO microflowers assembled from nanorods.95

The Cu2O–CuO microflower-2 sensor exhibited excellent stabi-
lity, selectivity, and rapid response and recovery times for NO2

detection at 187 1C. This sensor shows promising potential for
detecting NO2 at ultra-low concentrations. Huo et al. developed
graded CuO/NiO nanowall arrays, which exhibited good self-
assembly properties.96 The NiO sensor modified with 2.84 at%
CuO showed excellent sensing performance at 133 1C. Com-
pared to pure NiO, the CuO/NiO heterostructure sensor with an
optimal composition demonstrated enhanced response to H2S
gas, improved selectivity, significantly reduced recovery time,
and a much lower detection limit, enabling real-time monitor-
ing of H2S at the ppb level.

4 Classical gas sensing algorithms

In the basic architecture of gas sensing algorithms, the main
structural modules and commonly used machine learning
algorithms from the perspective of signal and data processing
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are shown in Fig. 6. First, signal preprocessing of the raw data
set is required for bandwidth control and basic feature extrac-
tion. The general preprocessing methods include missing value
handling, validation dataset, normalization process, explora-
tory analysis, similarity metrics, and so on. These normalized
data will be used for subsequent analysis and feature proces-
sing. In machine learning, the data is typically divided into
three subsets: training, validation, and test datasets. The train-
ing dataset is used to train the model and fine-tune its para-
meters. The validation dataset is employed to assess the
model’s performance during training and to optimize hyper-
parameters. Lastly, the test dataset is used to evaluate the
model’s ability to generalize and perform on new, unseen data.
Based on this, a classifier or regression model is built for gas
species identification or concentration prediction.

4.1 Principal component analysis

Principal component analysis (PCA) is a widely used linear,
unsupervised technique primarily employed for reducing the
dimensionality of a dataset, thereby enhancing its interpret-
ability. It minimizes information loss by retaining the main
information in the data. This helps to simplify the data analysis
process, reduce computational costs, and filter out noise and
redundant information from data. The method works by trans-
forming high-dimensional data into a lower-dimensional
space. New feature vectors called principal components
(PCs),97 are used to maximize the explanation of the variance
of the original data.

Shooshtari et al. created a virtual array for the E-nose by
designing four distinct electrodes on the surface of TiO2.98

Temperature modulation and discrete wavelet transform were
employed to extract new features from the E-nose data. Fig. 7(a)
presents a 3D plot that displays the maximum relative ampli-
tudes from each electrode of the electronic nose when exposed
to four distinct VOCs. Fourteen distinct features were selected

and dimensionality reduction was performed using PCA. The
SVM algorithm was used to classify the extracted features,
taking advantage of the data’s covariance properties. The
system successfully classified four different VOC gases, achiev-
ing an impressive classification accuracy of 97.5%, as shown in
Fig. 7(b). However, some overlap occurred between gases, with
a 2.5% misclassification rate, as shown in Fig. 7(c). Despite
this, the error rate is minimal and does not impact overall
accuracy. Filianoti et al. analyzed VOCs for the diagnosis of
urological diseases using an electronic nose.99 Prostate cancer
patients were successfully differentiated from healthy controls
through PCA, as shown in Fig. 7(d).

The core idea of PCA is to reduce the dimensionality of high-
dimensional data through linear transformations, mapping it
into a lower-dimensional space, thus enabling data reduction
and feature extraction. When reducing the size of the dataset, it
is often necessary to sacrifice the accuracy of the data to a
certain extent. The principle is to trade some precision for more
concise data structures. A streamlined dataset is easier to
analyze further and also allows for easier and faster processing
of the data without the need to introduce additional variables.
However, despite its excellent dimensionality reduction capa-
bilities, PCA has some limitations and is unable to separate
subsets when dealing with smaller datasets. PCA is particularly
important when sensor arrays detect multiple analytes. It
centers on the use of feature vectors to guide the construction
of a new feature space, where the magnitude of these vectors
reflects the sensor array’s response to a specific analyte. Using
PCA techniques, gas sensor arrays are able to simultaneously
extract and record data for multiple cross-reactive gases, which
is difficult to achieve with individual sensors.

4.2 Linear discriminant analysis

Linear discriminant analysis (LDA) is a widely used supervised
learning method, primarily applied for dimensionality

Fig. 6 Schematic illustration of the general process of gas sensing algorithms.
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reduction and the classification of reduced data. Its core
principle is to effectively separate data by projecting the dataset
into a low-dimensional space with distinct categorical features.
The variance of different categories in the projected feature
space is maximized, while the intra-category variance is mini-
mized. It helps to extract key features and reduce the complex-
ity of the data.

Similar to PCA, LDA is a multivariate data analysis method
that aims to construct feature sets that effectively capture the
underlying characteristics of the input data. However, LDA
chooses the projection direction that best improves classifica-
tion performance, whereas PCA focuses on the direction
with the highest variance after sample projection. LDA utilizes
the category information to expand the distance between
different categories, thus improving the signal-to-noise ratio and
classification performance. Sberveglieri et al. utilized LDA to
analyze VOCs in three types of fruit flavors and five recipe profiles,
investigating the aromatic fingerprint characteristics of jams.100

However, LDA has some limitations, which mainly depend
on the size and dimensionality of the training dataset. For
effective classification and dimensionality reduction, LDA

usually requires a sufficiently large sample size, otherwise it
may lead to overfitting or underfitting problems. When the
dimensionality of the dataset is high, the dimensionality cata-
strophe problem may be encountered. It leads to challenges
such as increased computational complexity and reduced
model generalization capability. Itoh et al. developed an LDA-
based identification method for analyzing sensor arrays, capa-
ble of distinguishing various target gases under polluted and
clean air conditions in the LDA space.101 Fig. 7(e) illustrates the
improved LDA directional discrimination model. In Method 1, the
reference point is established based on the steady-state signifi-
cance observed in the training data. In Method 2, the reference
point is defined by the linear discriminant score of the test data,
which is the first to deviate from the steady-state region.

Furthermore, LDA creates the classifier by choosing dimen-
sions that maximize the ratio of variance between classes to
variance within classes, thereby improving its ability to distin-
guish between classes, particularly in low-dimensional spaces.
Dong et al. used Ti-doped Co3O4 sensors for gas recognition of
aromatic compounds.102 Due to the varying surface redox rates
of the Ti-doped Co3O4 sensor, the aromatic gases exhibited

Fig. 7 (a) Results from the exposure of the 4-electrode array to four different VOC vapors. (b) Classification of the PCA 3D plot using the SVM algorithm.
(c) Accuracy of the SVM classification shown in the truth table. Reproduced from ref. 98 with permission from Elsevier B.V., copyright 2022. (d) 2D PCA
analysis plot showing that prostate cancer patients can be distinguished from healthy controls. Reproduced from ref. 99 with permission from MDPI,
copyright 2022. (e) The discrimination model for the target gas in the direction of the LD score from the reference point to the test data. Reproduced
from ref. 101 with permission from Elsevier B.V., copyright 2023. (f) Response and recovery curves of a single 3-Ti-Co3O4 sensor for 50 ppm of five gases
at 280 1C. (g) PCA analysis of features from the response–recovery curve dataset. (h) Comparison of classification accuracy using KNN, LDA, RF, and SVM
classifiers. Reproduced from ref. 102 with permission from American Chemical Society, copyright 2022.
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distinct response characteristics, as shown in Fig. 7(f), provid-
ing an opportunity for algorithm-based identification. Excellent
grouping was achieved through PCA, as illustrated in Fig. 7(g),
showing clear separation of toluene, xylene isomers, and
methane. The feature vectors obtained from PCA were used
as inputs for KNN, LDA, RF, and SVM classification algorithms.
Fig. 7(h) presents the prediction accuracy of the four classifica-
tion algorithms. Notably, LDA achieved a classification accu-
racy of 100% for aromatic compounds, successfully enabling
their chemical identification.

4.3 Support vector machine

Support vector machine (SVM) is a supervised learning algo-
rithm that utilizes a mathematical model to maximize the
margin between two classes in a given dataset. When new data
points are added to the training set, they are classified based on
their position relative to this hyperplane. The key idea behind
SVM is to prioritize data points according to their distance from
the decision boundary. Points near the decision boundary,
called support vectors, are crucial for defining the classification
boundary, while points farther away have less influence.

In the gas sensor array, SVM functions as an optimization
tool to determine the most effective decision boundary, allow-
ing for the classification of the two datasets into separate
groups. The algorithm achieves classification of different gas
types or concentrations by using features in the training dataset
to classify samples of different gases into two or more classes to
build a gas classification model. SVM uses only a single data
point and predicts the next data point through multiple itera-
tions. Smaller datasets do not affect the accuracy of the
predicted data and are not limited by covariance information.
Meng et al. improved the selectivity of gas sensors by combin-
ing Z-shaped rectangular wave temperature modulation with
the SVM algorithm, demonstrating superior capability of SVM
in handling small sample sizes.103 SVM has better general-
ization ability, which LDA and PCA cannot do. Gerhardt et al.
employed LDA and SVM to distinguish between different
categories of extra virgin olive oil.104 While the SVM method
outperformed the linear LDA method, the overall accuracy
improvement was only 5%. It is because SVM is not suitable
for large datasets. SVM is effective in dealing with either linear
or nonlinear discriminative problems, but when the dataset
contains both complex linear and nonlinear relationships, the
method cannot perform effectively. In addition, SVM does not
perform well with datasets that are incomplete or contain noise.
Researchers often use two or more algorithms to improve accu-
racy. Meng et al. used raw data as input for the SVM, achieving
100% accuracy in gas type identification. After successfully iden-
tifying gas types, PCA was applied for data dimensionality
reduction, with a relative error of approximately 5%.105

4.4 k-Nearest neighbors

k-Nearest neighbors (k-NN) is a widely used supervised learning
algorithm for classification and regression tasks. In classifica-
tion, k-NN identifies the k nearest neighbors by calculating
Euclidean distances between the input data point and all points

in the training dataset. It then assigns the class label based on a
majority vote from the neighbors. The simplicity of the algo-
rithm and its ease of implementation make k-NN a suitable
choice for a variety of algorithm problems. Moreover, since the
decision boundary of k-NN is nonlinear, it is better than linear
classifiers in dealing with data classification problems with
irregular boundaries.106 Yun et al. used k-NN to analyze 22 tea
compounds that were present in the samples in order to
determine the origins of black tea, and the k-NN identified
100% of the aroma constituents from nine origins.107 However,
the k-NN algorithm has low data tolerance and high depen-
dence on the quality and balance of data samples, which can
affect the prediction accuracy if there are erroneous samples in
the training data is not balanced.

4.5 Decision tree and random forest

Decision tree (DT) is a tree-based model widely applied to
classification and regression tasks. It provides good decision
support by quickly and efficiently decomposing a complex
decision process into a series of simple decisions. It automa-
tically selects features and reduces complexity, and constructs
decision trees by recursively dividing the dataset into purer,
more homogeneous subsets. Each tree is made up of nodes and
leaves, where each node represents a parameter and compares its
value to a threshold. This comparison determines the direction
the tree takes, ultimately leading to a leaf node that corresponds
to a specific category. The final classification result is obtained by
summing the activated leaves from all the trees. In principle, by
utilizing the properties of gases (e.g., toxicity, flammability, den-
sity, etc.), it is possible to decompose the complex task of multi-
gas identification into several simple tasks.

Random forest (RF) is an ensemble method that combines
predictions from multiple decision trees to reduce overfitting.
While a single tree cannot provide effective results, Random
forest improves the learning ability of the model by increasing
the number of trees. However, the training time increases
proportionally with the number of trees in the random forest.
These decision trees work by designing tree-like classifiers,
where each node is determined by features chosen based on
maximizing information gain. The estimated parameter repre-
sents the total number of trees in the forest, while the maximum
depth refers to the number of levels or layers within each tree, and
the final result is the average of all tree decisions. Random forests
improve the stability and accuracy of the model by randomly
selecting the sensor responses, calculating the weights of each
sensor and averaging them. Kanaparthi et al. predicted NH3, CO2

and H2S with 99.8% accuracy using RF classification algorithm.108

Wang et al. used the random forest algorithm to achieve 99%
accuracy in identifying VOC vapor species.109

5 Neural network based gas sensing
algorithm

Neural networks (NN) are powerful machine learning based
classifiers that specialize in nonlinear mapping. Neural
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networks replicate the information processing behavior of
animal brains, utilizing distributed and parallel processing.
By adjusting the connections between numerous internal
nodes, they harness the system complexity to effectively process
information. Neural networks have proven to be ideal for
complex gas recognition tasks. Compared with classical gas
sensing algorithms, it can improve the recognition accuracy by
adjusting the number of layers, the number of neurons in each
layer, the choice of activation function, and the associated
parameters. In general, the richer the gas data samples are,
the better the recognition results of the neural network will be.

5.1 Multilayer perceptron

Multilayer perceptron (MLP) is a feed-forward neural network
consisting of multiple layers of neurons, which is a basic
artificial neural network model (ANN). It has excellent non-
linear mapping and generalization capabilities. MLP consists of
three or more layers, including an input layer, an output layer,
and one or more hidden layers, as shown in Fig. 8. MLP
employs a nonlinear activation function for its neurons, with
each layer being fully connected to the subsequent layer. By
integrating multiple perceptrons and employing nonlinear or
linear activation functions to define decision boundaries, each
perceptron offers a nonlinear mapping in a higher-dimensional
space. A neuron is activated when the weighted sum of its
inputs exceeds the threshold defined by the activation function.
The output is passed through successive layers of neurons until
it reaches the output layer. During the training phase, both the
activation function parameters and the connection weights are
optimized. The backpropagation algorithm minimizes the glo-
bal error between the network’s predicted output and the actual
target values. Tang et al. utilized an MLP-based hybrid deep
neural network for environmental compensation to address

sensor drift caused by external factors. Their innovative archi-
tecture, combining CNN and MLP, boosted classification accu-
racy to 95%.110

Due to its nonlinear mapping capability, high parallelism,
and global optimization features, MLP has demonstrated sig-
nificant success in areas such as image processing, predictive
systems, and pattern recognition. Geng et al. used MLP and
PCA to differentiate ammonia from other gases at four different
concentrations, respectively.111 The results demonstrated that
PCA is inferior to MLP in terms of gas recognition accuracy.
However, MLP can be inefficient in high-dimensional spaces,
which may result in overfitting. Moreover, the presence of
hidden layers increases the number of hyperparameters, mak-
ing the training process more computationally intensive and
leading to slower convergence. In the traditional MLP model,
each neuron can only receive a single real number of data
inputs, and thus is ineffective in dealing with multidimen-
sional signal inputs. Zhai et al. developed a high-precision MLP
based on an array of SnO2 gas sensors for solving the nonlinear
problem in odor recognition with an accuracy of 97.4%.112

5.2 Backpropagation neural network

Backpropagation neural network (BPNN) is a multilayer feed-
forward neural network with a forward structure, widely used in
pattern recognition and quantitative prediction. BPNN consists
of input, hidden, and output layers, with complete internal
connectivity between the upper and lower layers and the ability
to adjust the connection weights of each layer through data-
driven learning. The input vector is multiplied by initial
weights and passed through the activation function to the next
layer, reaching the output neuron. The loss function computes
the difference between the output and true value. Using the

Fig. 8 Schematic illustration of MLP network.
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chain rule, the weights are updated iteratively to optimize the
model towards a local optimal solution.

The application of BPNN in gas identification has gradually
grown recently. Song et al. quantitatively detected and pre-
dicted the composition of formaldehyde and ammonia mix-
tures using sensor arrays and BPNN algorithms.113 Fig. 9(a)
shows the BP–NN results used to predict formaldehyde and
NH3 concentrations in the mixture. The vertical coordinates
indicate the predicted values and the horizontal coordinates
indicate the experimentally calibrated values. As shown, mix-
ture components predicted by neural networks agrees with
the experimental calibration values with a prediction error
of o0.8 ppm.

However, there are some limitations in BPNN. BP neural
networks are typically nonlinear algorithms, and may have local
minima, which makes it difficult for global optimal solution
search.115 In the case of large sample data, the mean-square
error is too large and it is difficult to converge. Wang et al.
designed an improved deep BP neural network to reduce the
influence of environmental factors on the accuracy of NO2

detection, and achieved accurate monitoring in the compli-
cated environment.114

Li et al. developed a r-nearest BPNN (rN-BPNN) model, as
illustrated in the flowchart in Fig. 9(b).116 The model works by
training the BP neural network to estimate gas concentration
using the r nearest samples from the training set to the test
sample. This method reduces the influence of distant samples,
thereby improving the model’s accuracy. The rN-BPNN model
effectively estimates gas concentrations, achieving an average
absolute percentage error of 15–500 ppm for hydrogen detec-
tion. Fig. 9(c) shows the prediction of rN-BPNN and BPNN for
each hydrogen concentration in 100 experiments. The inset
shows the distribution of absolute errors for each hydrogen

concentration. The rN-BPNN model exhibits more stable esti-
mation performance and higher accuracy for low-concentration
samples compared to the standard BP neural network. With
standard deviations of 9.31% for BPNN and 4.72% for rN-
BPNN, the latter demonstrates better stability and precision.

5.3 Convolutional neural network

Convolutional neural network (CNN) is a fundamental and
widely utilized model in the deep learning. The local connec-
tivity, weight sharing and down-sampling properties of CNN
enable it to exhibit sample invariance and show great robust-
ness in dealing with translations, scaling and distortions.117

The key difference between CNN and traditional BPNN lies in
weight sharing and local connectivity. Weight sharing makes
CNN architecture more akin to biological neural networks,
while local connectivity reduces model complexity and the
number of parameters. The basic CNN structure is shown in
Fig. 10. The convolutional layer generates a feature map from
the input data by applying multiple convolutional filters.
Through the features of local connectivity, parameter sharing
and multiple convolutional kernels, more features can be
extracted using fewer parameters when extracting data features
compared to a fully connected layer. In addition, CNN extracts
feature in the convolutional and pooling layers, and then the
fully connected layer obtains high-level classification informa-
tion by integrating the feature maps output from the convolu-
tional layer, and performs data classification and output.

CNNs extracts local gas features through convolution, but
they do not capture the global correlations between these
features.118,119 Kang et al. employed glancing angle deposition
(GLAD) technology to create a gas sensor array with consistent
sensing performance on a silicon wafer, as shown in
Fig. 11(a).120 The array utilized SnO2, In2O3, WO3, and CuO

Fig. 9 (a) Curve fitting of the prediction and actual values. HCHO (left); NH3 (right). Reproduced from ref. 113 with permission from Elsevier B.V.,
copyright 2021. (b) The flowchart of the rN-BPNN model for concentration estimation. (c) The predictions of rN-BPNN (left), and BPNN (right) for each
concentration of hydrogen. Reproduced from ref. 116 with permission from Elsevier B.V., copyright 2023.
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for the MOS gas sensors, as illustrated in Fig. 11(b). To meet the
high-temperature requirements of low-power MOS sensors, a
MEMS-based suspended microheater platform was integrated.
The sensor data was processed using CNN in matrix form for
selective gas detection, incorporating both the sensor array and
the temporal patterns of gas responses. By applying the CNN to
the preprocessed data within a moving time window, transient
data was effectively leveraged for real-time gas detection, even
for gases not included in the training algorithm, as shown in
Fig. 11(c).

At present, the application of CNN in gas recognition is
gradually developing.121 Li et al. developed a CNN-based high-
sensitivity breath ammonia detection system, achieving high
precision and sensitivity in decay time extraction.122 With the
development of computer vision, CNN has shown excellent
performance in image recognition. Therefore, as long as we
convert the sensor response curve into an image, we can
distinguish various gases with the help of CNN. Han et al.

converted time-series data into an image-like matrix for CNN
parameter tuning, achieving a gas recognition rate of 96.67%.
This approach provides a novel method for classifying mixed
gas data.123 However, CNNs demand large, diverse training
datasets. A small or imbalanced dataset can lead to overfitting,
reducing the model’s generalization ability. Wei et al. devel-
oped a LeNet-5 convolutional neural network structure for
recognizing CO, CH4 and their mixed gases, and the gas
recognition accuracy reaches 98.67%, which further improves
the gas classification accuracy and avoids the overfitting
problem.124

6 Machine learning assisted gas
sensing data processing

With the diversification of gas sensing materials and gas
sensing mechanisms, the substantial improvement of sensing

Fig. 10 Schematic illustration of the CNN structure.

Fig. 11 (a) Schematic illustration of the fabrication process for high batch-uniform MOS gas sensors using GLAD. (b) Microscopic image of MOS gas
sensors with a suspended microheater platform. (c) Real-time classification and regression of target gases using CNN-based analysis of gas sensor data.
Reproduced from ref. 120 with permission from American Chemical Society, copyright 2022.
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performance, and the miniaturization of devices, MOS gas
sensor devices are rapidly developing towards large data
volumes and high-level features. This trend opens up broad
prospects for realizing smarter and more sensitive gas sensors.
However, traditional data processing techniques are over-
whelmed in coping with the massive amount of sensing data,
which usually requires manual intervention, complex and
time-consuming processes. To overcome these challenges, a
machine learning approach to assist gas sensor array technol-
ogy data processing can effectively accelerate the process.
Machine learning not only has the ability to process high-
dimensional and non-linear data, but also can mine complex
or hidden relationships from massive data sets, thus signifi-
cantly improving the efficiency and accuracy of data analysis.
This approach automates the extraction of important features,
such as sensor response patterns, sensitivity, selectivity, and
signal-to-noise ratios, and optimizes the performance of sensor
arrays, making them more resilient in complex environments.

Moreover, the inherent low selectivity of MOS sensors has
been a major bottleneck in their applications, especially when
confronted with multiple gas compositions that are prone to
interference. With machine learning algorithms, the sensors
are not only able to overcome the lack of selectivity, but also
enhance the ability to recognize specific gases. ML algorithms
can also neutralize multiple interferences, such as fluctuations
in environmental conditions and cross-talk between different
gases. Yang et al. used two convolutional neural networks to
compensate for the effect of ambient temperature variations on
H2 concentration prediction.125 Comparison with single hidden
layer BPNN and double hidden layer BPNN showed that the
CNN model had the smallest error in predicting the concen-
tration. 12.3% for concentrations below 1 ppm and 5.7% for
concentrations above 1 ppm.

In the design of a smart electronic nose system, choosing a
suitable gas sensing algorithm is one of the key steps. The
selection of an algorithm is typically based on the character-
istics, dimensions, and volume of the sensor data. Different gas
sensing tasks involve a variety of complex chemical composi-
tions and multidimensional data, which makes the demand for
algorithms diverse. To meet this challenge, the selection of gas
recognition algorithms should not only consider the character-
istics of the data, but also the processing power and real-time
performance.

Among the gas sensing algorithms discussed above, classi-
cal gas sensing algorithms and neural network-based gas

sensing algorithms have their own advantages. In Table 1, the
main attributes of these algorithms are summarized and com-
pared to better understand the applicable scenarios and per-
formance differences of each algorithm. For example, certain
classical algorithms are good at handling high-dimensional gas
data containing multiple chemical features, and achieve effi-
cient identification by extracting important features in the data.
Neural network-based algorithms, on the other hand, are better
suited to deal with sensor data with large fluctuations due to
their strong adaptive learning capability, thus maintaining
high recognition accuracy in dynamic environments. In addi-
tion, neural network algorithms perform particularly well in
dealing with complex nonlinear data, and are able to capture
potential relationships that are difficult to be discovered by
traditional algorithms. Zheng et al. developed a genetic
algorithm-tuned neural network model to analyze the gas
sensing responses of SnO2, ZnO, In2O3, NiO, and Cr2O3 to eight
VOCs, achieving optimal performance.126 Ren et al. developed a
4-sensor array for the trimethylamine detection.127 BPNN and
PCA-based linear regression models were trained using gas-
sensing data to achieve accurate identification of different
gases. The predictions of BPNN were very close to the actual
gas concentrations, while the predictions of PCA-LR model
deviated from the true values. Each algorithm has its advan-
tages and disadvantages which should be carefully evaluated in
different situations. Choosing the right algorithm is essential,
as it can greatly improve the system’s overall performance.

Therefore, machine learning-assisted MOS gas sensor arrays
are increasingly employed in environmental monitoring, med-
ical diagnostics, and food safety analysis, as shown in Table 2.
These systems aid in monitoring air quality, detecting harmful
gases, assisting in disease diagnosis through VOC detection,
and ensuring food safety by identifying pollutants. These
diverse applications highlight the essential role of algorithms
in improving the capabilities of MOS gas sensors and demon-
strate its potential to advance gas sensing technologies. How-
ever, despite the significant progress made in integrating gas
sensing technologies with machine learning algorithms, the
development of smart electronic nose systems still faces several
unavoidable challenges.

While machine learning enables systems to automatically
integrate information and learn from experience to improve
prediction accuracy, it is difficult to avoid the limitations
inherent in machine learning-based data processing with its
algorithms. First, for the purpose of assure the predictive

Table 1 Comparisons of machine learning algorithms

Property Efficiency Data demand Precision Robustness Interpretability

PCA Unsupervised Fast Low Low Moderate High
LDA Supervised Fast Low Low Moderate Moderate
SVM Supervised Moderate Moderate Moderate Low Moderate
k-NN Supervised Slow High Moderate Moderate Low
DT/RF Supervised Moderate Moderate Low Low High
MLP Supervised Moderate High High Low Low
BPNN Supervised Slow High High Moderate Low
CNN Supervised Slow High High High Moderate
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model accuracy, the sensing system requires a large, diverse,
and rigorously filtered amount of training data, a process that
is both cumbersome and time-consuming. In addition, due to
inherent shortcomings, the behavior of gas sensors never
stabilizes over time, which makes the repeatability problem
particularly acute. This problem is directly related to model
training, thus significantly increasing the difficulty of integrat-
ing machine learning algorithms. Therefore, it is particularly
important to develop smarter machine learning algorithms to
simplify the training steps and improve the sensor performance
(especially stability and sensitivity). Wang et al. proposed
combining a surface state model with a GRU-based regression
method to enhance the analytical capabilities of gas sensor
data.146 Liu et al. developed a soil nutrient content prediction
model combining electronic sensing and machine learning.147

An E-nose system with 10 gas sensors was used to monitor soil
pyrolysis gas concentrations. To predict soil nutrient content,
SVM, RF, MLP, and MLP-RF models were applied, with the
MLP-RF model outperforming the others.

7 Conclusion and outlook

This paper provides an overview of recent advances in MOS gas
sensor arrays based on machine learning algorithms. Based on
sensor arrays, the basic gas sensing mechanism of MOS is
discussed and various common MOS sensing materials are
described. Machine learning algorithms applied to MOS
gas sensor arrays are reviewed, covering gas algorithms and

neural network-based gas sensing methods. A comprehensive
comparison of various machine learning algorithms used to
extract the response of gas sensor arrays is presented, and a
variety of studies of machine learning-assisted data analysis of
MOS gas sensor arrays are described.

With the rapid advancements of semiconductor and
machine learning technologies, MOS gas sensor arrays based
on machine learning algorithms are poised for further advance-
ments in the following aspects.

(1) MOS gas sensors are still facing challenges such as high
power consumption, environmental susceptibility and limited
selectivity. Future research should focus on improving the
selectivity through effective strategies such as optimizing the
structure and composition of the sensing materials, e.g., sur-
face functionalization and building MOS@MOFs structures.
Moreover, researchers should focus on developing new design
strategies to further optimize the application of metal oxides
for gas sensing using novel 2D nanomaterials (e.g., MXene148),
which sensing mechanisms have not been fully elucidated and
still need to be further explored. In addition, most of the gas
sensors reported in laboratories can detect ppm or sub-ppm
level gases. But some applications, e.g., respiratory diagnostics,
industrial inspection, etc., require higher sensitivity sensors
that extend the detection limit to ppb or even ppq. Therefore, it
is essential to seek effective ways to improve sensor sensitivity,
e.g., UV light irradiation.

(2) Despite advancements in sensor arrays with machine
learning, the integration of sensors with diverse operating
principles remains underexplored and overlooked. The

Table 2 Applications of machine learning algorithms in gas sensor arrays

Field Applications
Sensors number
in the array ML algorithms

Precision
(%) Target gases Ref.

Environmental
monitoring

Air quality assessment 4 CNN 94.55 NO2, CO 128
Combustible/hazardous gas
identification

5 k-NN, SVM, RF 97.54 C4H10, CH4, C3H8, H2 129

Indoor VOCs testing 16 k-NN, ANN, DT, RF,
SVM

98.75 NH3, CH3CHO, C3H6O, C7H8,
ethanol, C2H4

130

Vehicle exhaust pollution detection 4 SVM 96 NO, NO2, NH3, C3H8 131
Pest control 4 PCA, LDA, SVM, k-

NN, PNN
97.62 Plants volatile organic

compounds
132

VOCs gas analysis 6 SVM, ANN 97.9 CH2O, ethanol, toluene, C8H10 133

Medical
diagnostics

Diabetes testing 7 PCA, MVRVM 99.72 Acetone, ethanol 134
Asthma testing 32 PCA 70.4 VOCs 135
Non-invasive prediction of lung
cancer

6 PCA, DFA 98.6 VOCs 136

Lung cancer detection 19 SVM 94.25 VOCs 137
Gas detection 16 CNN 98.75 NH3, CH3CHO C3H6O, C2H4,

ethanol, toluene
138

Non-invasive detection of lung cancer 5 SVM, k-NN 92.3 VOCs 139

Food safety
analysis

Wine quality rapid detection 6 MLP 96.34 Acetic acid 140
Beer quality assessment 9 ANN 97 Ethanol, CH4, CO, NH3, H2S, H2 141
Infested rice detection 32 PCA 90 VOCs 142
Identification of essential oils from
herbs and fruits

9 PCA, SVM, LDA 98 VOCs 143

Moldy apples recognition 10 BPNN 96.3 CH4, H2S, NO2 144
Chicken meat classification 6 RF 98.42 NH3, TMA, H2S 145

Note: probabilistic neural network (PNN); multivariate relevance vector machine (MVRVM); discriminant function analysis (DFA)
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flexibility and performance of systems can be significantly
enhanced by combining MOS sensors with different types of
sensors, such as electrochemical sensors, photoionization
detection sensors, catalytic sensors, and combustible sensors.
Thus, the system can meet the requirements of diversified
targets and realize high sensitivity and selective detection of
multiple gases. In addition, the miniaturization of smart elec-
tronic nose systems still faces many challenges. Significant
research efforts, including advancements in microelectro-
mechanical systems technology, have been dedicated to min-
iaturizing gas sensors and enabling system integration.
Advancements optimize sensor configurations, enhancing algo-
rithm accuracy and reducing training costs, paving the way for
portable, miniaturized electronic noses.

(3) Gas sensing performance improvement studies often
focus narrowly on specific aspects, such as enhancing sensitiv-
ity or response speed. While these isolated approaches may
achieve progress in laboratory settings, they struggle to address
the complex and dynamic demands of real-world applications.
The key to advancing sensor technology commercialization lies
in establishing a comprehensive, high-quality platform that
integrates chemical, mechanical, and biological sensing to
deliver multidimensional information support. In this context,
machine learning algorithms are expected to play a key role in
the design of complex systems. And analyzing data, optimizing
sensor array performance, and accelerating adoption across
diverse applications. Beyond data processing in smart e-nose
systems, machine learning can influence the design phase,
including sensor configuration and material selection. By lever-
aging reverse design, machine learning can identify ideal
materials with desired functionalities and optimize sensing
configurations, enabling compact, efficient implementations.

As sensing materials, sensors, microprocessor units, and
computational technologies continue to improve, machine
learning will assist MOS gas sensor arrays to show even greater
benefits for commercialization, ranging from environmental
monitoring, medical testing, food safety, and other related
fields.
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