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Defect formation in CsSnI3 from density
functional theory and machine learning†

Chadawan Khamdanga and Mengen Wang *ab

Sn-based perovskites as low-toxicity materials are actively studied for optoelectronic applications.

However, their performance is limited by p-type self-doping, which can be suppressed by substitutional

doping on the cation sites. In this study, we combine density functional theory (DFT) calculations with

machine learning (ML) to develop a predictive model and identify the key descriptors affecting formation

energy and charge transition levels of the substitutional dopants in CsSnI3. Our DFT calculations create a

dataset of formation energies and charge transition levels and show that Y, Sc, Al, Zr, Nb, Ba, and Sr are

effective dopants that pin the Fermi level higher in the band gap, suppressing the p-type self-doping.

We explore ML algorithms and propose training a random forest regression model to predict the defect

formation properties. This work shows the predictive capability of combining DFT with machine learning

and provides insights into the important features that determine the defect formation energetics.

1 Introduction

Halide perovskites are promising candidates for optoelectronic
applications due to their straightforward synthesis methods
and optical and charge transport properties.1–4 The power
conversion efficiency (PCE) of Pb-based perovskite-based solar
cells (PSCs) has dramatically improved.5,6 CsSnI3 has been
explored as a promising low-toxicity alternative to Pb-based
perovskites.7–10 Despite its potential, the PCE of CsSnI3 remains
lower (14.8%)11 than that of CsPbI3. This reduced efficiency is
primarily attributed to the substantial self-p-type doping and
defect-assisted nonradiative recombination.8,12–14

To address these limitations, defect engineering through doping
has been investigated as a potential solution to improve Sn-based
perovskite properties. Experimental studies on Ba-doped Sn–Pb
perovskites indicate that Ba incorporation can reduce hole concen-
tration, thereby reducing the effects of p-type doping.15 Density
functional theory (DFT) calculations provide a theoretical under-
standing of the mechanism, showing that Ba acts as an energetically
favorable donor in CsSnI3 that shifts the Fermi level upward and
decreases the background hole concentration.16 DFT studies also
propose that trivalent cation doping on the Sn site in MASnI3

including Sc, La, and Ce can also raise the Fermi level, which is
supported by experimental validation that La doping in MASnI3

results in an increase in photocurrent and open circuit voltage.17

Another DFT study on MASnI3/MASnI2Br proposes that Sc, Y, and
La doping can shift the Fermi level upward, thereby reducing hole
concentration compared to pristine perovskites.18

DFT is widely used to predict defect formation energies
under various chemical potentials and has reliably predicted
intrinsic defect and dopant formation energies and charge transi-
tion levels in semiconductors.13,19–21 Defect calculations require
large supercells and hybrid functionals with spin–orbit coupling
(SOC) to correctly describe the electronic structure and charge
localization, which are computationally demanding.19,22–24 To
overcome these limitations, machine learning (ML) algorithms
offer a promising approach to predict and understand defect
properties efficiently. Recent studies have demonstrated that
DFT can be combined with ML algorithms to predict formation
energies and charge transition levels for both dopants and intrin-
sic defects.25–28 Specifically for dopant incorporation energetics,
data generated from DFT calculations using the PBE functional
has been used to train ML algorithms to predict defect formation
energies in perovskite oxides (ABO3) and halide perovskites
(MAPbX3).25,26 There is also a growing interest in applying ML
algorithms to predict defect energetics at the hybrid functional
accuracy.27,28 These studies reveal opportunities and the need to
improve the prediction of defect formation energetics by combin-
ing DFT calculations with hybrid functionals and machine learn-
ing methods, which is also promising to provide insights into the
physical and chemical descriptors underlying these properties.

This work combines DFT using HSE06 + SOC with ML to predict
formation energies and charge transition levels for substitutional
dopants in CsSnI3. We explore elements from group II-A (e.g.,
Mg, Ca), transition metals (e.g., Sc, Y), post-transition metals
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(e.g., Al, Ga, In), and metalloids (e.g., Ge, As, Sb). DFT calcula-
tions are performed to generate a dataset for formation energies
in the neutral (q = 0) and q = +1 charge states as well as the +1/0
charge transition level. We then identify key descriptors affect-
ing formation energy and develop predictive models for the
formation energies and charge transition levels of dopants in
CsSnI3. Linear and nonlinear regression models including
linear regression, Gaussian process regression, kernel ridge
regression, and random forest regression are trained. We also
analyze the feature correlations and feature importance and
extend predictions to other out-of-sample dopants in CsSnI3.

2 Computational details

DFT calculations were performed using the Vienna Ab initio
Simulation Package (VASP).29 Projector-augmented wave (PAW)
pseudopotentials30 were employed with a plane-wave energy cutoff
of 400 eV. The HSE06 hybrid functional31 was used with a mixing
parameter of 0.54, and the spin–orbit coupling was also included.
The Brillouin zone for the primitive unit cell was sampled using a
2 � 2 � 2 G-centered k-mesh. The atomic positions were fully
relaxed until the forces were less than 0.02 eV Å�1. We obtained a
lattice constant of a = 8.53 Å, b = 8.81 Å, c = 12.34 Å, and a band gap
of 1.32 eV for orthorhombic CsSnI3 with space group Pnma, which
are in good agreement with experimental values.8,32 For defect
calculations, we used a 2 � 2 � 1 supercell with a 1 � 1 � 2
G-centered k-point grid.

The formation energy of a substitutional dopant X on the
Sn-site (XSn) with the charge state of q is calculated by

Ef[Xq
Sn] = Etot[X

q
Sn] � Etot[bulk] + mSn � mX + q(EF + Evbm) + Ecorr

(1)

Etot[X
q
Sn] is the total energy of the supercell containing the

substitutional dopant X at charge state q. Etot[bulk] is the total
energy of the perfect supercell. EF is the Fermi level and EVBM is
the value for the valence band maximum (VBM). Ecorr is the
Freysoldt’s charge correction.33 mSn and mX are defined as mSn =
mbulk

Sn + DmSn, and mX = mbulk
X + DmX. mbulk

Sn and mbulk
X are the single

atom energy of the bulk Sn and the dopants. DmSn and DmX are
the chemical potentials of Sn and dopants defined by the
thermodynamic equilibrium condition of CsSnI3, and against
the formation of the competing secondary phases including
CsI, SnI2, SnI4, and Cs2SnI6.

DmCs + DmSn + 3DmI = DHCsSnI3
(�5.51 eV),

DmCs + DmI o DHCsI (�3.72 eV),

DmSn + 2DmI o DHSnI2
(�1.65 eV),

DmSn + 4DmI o DHSnI4
(�2.92 eV),

2DmCs + DmSn + 6DmI o DHCs2SnI6
(�10.52 eV),

(2)

The numbers in parentheses are the calculated formation
enthalpy of the secondary phases using HSE06 + SOC, which

show good agreement with the experimental values for CsSnI3

(�5.35 eV), CsI (�3.29 eV), SnI2 (�1.99 eV), SnI4 (�2.54 eV), and
Cs2SnI6 (�9.31 eV).34 This thermodynamically stable domain of
CsSnI3 is illustrated in orange in Fig. 1(b), which is consistent
with previous reports.24 The chemical potentials for I, Sn, and
Cs are�0.605 eV,�0.50 eV, and�3.20 eV under I-rich (Sn-poor)
condition (point A) and �0.89 eV, 0 eV, and �2.84 eV under I-
poor (Sn-rich) condition (point B). We note that DmX’s are also
determined by the formation of the competing phases XIn’s,
where n depends on the oxidation state of the dopant. The data
for the formation enthalpy of the XIn’s are made available in the
section Data and Code Availability. The charge transition level
(CT) from one charged state (q1) to another (q2) is defined as

CT q1=q2ð Þ ¼
Ef X

q1
Sn;EF ¼ 0

� �
� Ef X

q2
Sn;EF ¼ 0

� �

q2 � q1
(3)

Here, Ef X
q1
Sn;EF ¼ 0

� �
and Ef X

q2
Sn;EF ¼ 0

� �
are the formation

energies calculated at EF = 0 for the defect in different charge
states. The same approach is applied to calculate the formation
energy and charge transition level of intrinsic defects in CsSnI3.

3 Results and discussions
3.1 Defect formation energy and charge transition level

We performed DFT calculations to obtain the formation energies
(Ef) and charge transition levels (CT) for 24 dopants substituting at
the Sn site and 15 dopants substituting at the Cs site in CsSnI3,
aiming to identify elements that can suppress p-type self-doping.
The dopants we calculated are listed in Fig. 1(c), including 4
alkaline earth metals, 15 transition metals, 4 post-transition
metals, and 3 metalloids. We calculated the formation energies
for all possible charge states, including �1, 0, +1, and +2. The �1
and +2 charge states exhibit higher formation energies and do not
appear in the formation energy diagram. As a result, only thermo-
dynamically favorable charge states (q = 0 and q = +1) will

Fig. 1 (a) The structure of orthorhombic CsSnI3 perovskite with the Sn or
Cs site substituted by dopants. (b) The thermodynamically stable region for
CsSnI3 is shown in orange. Points A and B mark I-rich (Sn-poor) and I-poor
(Sn-rich) conditions and the chemical potentials for Sn (DmSn) and I (DmI). (c)
The dopants calculated by DFT.
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be analyzed. Our search for XSn is mainly focused on the trivalent
dopants, which are expected to be stable at q = +1 under a wide
range of the Fermi level, and bivalent dopants, which are expected
to be stable at q = 0 under a wide range of the Fermi level. These
dopants tend to have shallow or no charge transition levels in the
band gap.17,18,35 To reveal the key features that determine Ef and
CT, we also calculated the dopants with different oxidation states,
such as Zr, Nb, and Bi.

Fig. 2 includes the intrinsic defects and the dopants with
relatively low formation energies under both I-rich [Fig. 2(a)]
and I-poor [Fig. 2(b)] conditions. Under the I-rich condition, the
EF determined by the native defects in CsSnI3 is pinned within
the valence band (VB). At VBM, the Cs vacancy (VCs) at q = �1
has the lowest formation energy, indicating the origin of the
p-type self-doping is primarily driven by VCs, consistent with
previous studies.24 Our DFT study of the CsSnI3 surface phase
diagram also shows that surfaces with Cs vacancies are stable
under I-rich conditions.36 Among the calculated dopants, YSn at
q = +1 has the lowest formation energy at VBM. However, under
the I-rich condition, the formation energy of YSn at q = +1 is still
higher than VCs at q = �1. Therefore, the Fermi level cannot be
shifted to a higher energy under I-rich conditions.

The I-poor condition is preferred to suppress the p-type
self-doping. The EF determined by the native defects is pinned
at 0.11 eV above the VBM under the I-poor condition: VCs with
q =�1 is compensated by the I vacancy, which prefers q = +1 near
VBM. We note that the low cation vacancy formation energies
indicate the low stability of the host material. The cation vacancy
formation energies are higher under I-poor and Sn-rich condi-
tions, which benefit the phase stability of CsSnI3. This can be
achieved by adding SnF2 or SnCl2 during the synthesis of
the perovskite material, which has been found to slow down
the phase transformation to double perovskite and increase the
Fermi level.37 We identified three trivalent elements Al, Sc, and Y
that can pin the EF to higher energies, which are 0.27, 0.32, and
0.33 eV above VBM. YSn is only stable at q = +1 in the band gap
while AlSn and ScSn have a shallow CT(+1/0) near CBM.

We confirmed electron localization20 at the neutral charge state
(Fig. S1, ESI†). For example, Fig. S1(a) (ESI†) corresponds to the
ground state of AlSn with the charge localized near the defect while
Fig. S1(b) (ESI†) represents a metastable state that is 0.40 eV higher
in energy, where the charge is delocalized. When Sn is substituted
by bivalent elements including Mg and Zn, the defect is only stable
in the neutral charge state and has relatively low formation energies.
We also identified two dopants with higher oxidation states (ZrSn

and NbSn) that pin the Fermi level above the VBM (B0.2–0.3 eV).
ZrSn and NbSn are stable in the +1 charge state near the VBM,

while NbSn prefers the neutral charge state across a wide range of
the Fermi level. This results in a relatively deeper charge transition
level (0.30 eV) within the gap compared to dopants with an
oxidation state of 2 or 3. However, we note that deep defects
may lead to slow nonradiative recombination rates due to the
anharmonicity in perovskite materials.38 As shown in the density
of states (Fig. S2, ESI†), AlSn and ScSn in the q = 0 charge state have
localized occupied states near the Fermi level. At q = +1, only
delocalized states are observed for the dopants with shallow charge
transition levels. Dopants with deep transition levels tend to have a
localized unoccupied state in the band gap. For example, NbSn and
BiSn in the q = +1 charge state have an unoccupied state below the
CBM, indicating that NbSn

+ and BiSn
+ can potentially gain an

electron to become the neutral charge state.
We now analyze the elemental descriptors of the substitu-

tional dopants that correlate with the target properties including
Ef (q = 0), Ef (q = +1), and CT(+1/0) of XSn, aiming to identify key
features to predict these properties. The oxidation state (OS) is an
important feature that determines both Ef and CT(+1/0). For
elements with OS = 3, the formation energy at q = 0 is higher
than the bivalent elements like Zn, Mg, and Ca. The (+1/0) charge
transition levels are located near or above CBM for trivalent
elements and located below VBM for bivalent elements.

For certain elements with the same OS, there is a direct
trend between the atomic radius (AR) of the elements and Ef at
both charge states. For example, for Zn, Mg, and Ca with OS = 2,
the Ef at q = 0 under the I-rich condition increases [ZnSn

(�0.16 eV) o MgSn (�0.06 eV) o CaSn (0.04 eV)] while the
atomic radius increases from Zn (1.42 Å), Mg (1.45 Å) to Ca
(1.94 Å). The trend is consistent for the elements with OS
greater than +2. For example, Al has a smaller atomic radius
(1.18 Å) than Zr (2.06 Å) and Al has a lower formation energy
than Zr in both charge states under I-rich conditions.

The Goldschmidt tolerance factor (t)39 can be calculated
using AR as

t ¼ rCs þ rIffiffiffi
2
p

rX þ rIð Þ
(4)

where rCs, rX, and rI are the atomic radii of the Cs, X, and I
atoms. This factor shows an inverse trend with Ef. Additionally,
we find that the octahedral factor (u = rX/rI)

40 calculated using
Shannon’s ionic radii (IR)41 also shows an inverse trend with Ef.
Moreover, we also find that the density (D) also shows a direct
trend with Ef. The observed trends between AR, D, t, and u and
the formation energies are provided in Fig. S3 (ESI†). We note
that most of these dopants have a larger AR than Sn.

Fig. 2 The calculated defect formation energy diagrams as a function of
the Fermi level for native point defects (dotted lines) and substitutional
dopants (solid lines) in CsSnI3 under (a) I-rich (Sn-poor) and (b) I-poor (Sn-
rich) conditions. The vertical dashed lines (black and grey) indicate the
pinned Fermi level (Epin

F ).
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Electron negativity (EN), ionization energy (IE), and electron
affinity (EA) of the dopants play important roles in determining
CT(+1/0). For Ca, Mg, and Cu with OS = +2, CT(+1/0) of these
dopants are below the VBM following the trend CuSn (�0.70 eV)
o MgSn (�0.30 eV) o CaSn (�0.27 eV) and negatively correlated
with EN of Cu (0.97) 4 Mg (0.67) 4 Ca (0.51). For TMs, CT(+1/0)
decreases while the first, second, and third IE increase. For
example, CT(+1/0) of ZrSn, NbSn, and ZnSn are 1.31 eV, 0.30 eV,
and �0.27 eV respectively, with 1st, 2nd, and 3rd IE increases
from Zr, Nb, to Zn. A similar trend is observed in electron affinity
(EA). For instance, the CT(+1/0) levels of CuSn, CrSn, and ZrSn are
�0.70 eV, �0.29 eV, and 1.31 eV, respectively, with EA decreasing
accordingly. The observed correlations of EN, IE, and EA with the
charge transition levels are plotted in Fig. S4 (ESI†). The calcu-
lated dopants with OS = +4 are not stable in the q = +2 charge
state. For example, removing an electron from ZrSn at q = +1 is
energetically unfavorable due to the low energy level of the
corresponding occupied state.

In summary, we propose that trivalent dopants including Al,
Sc, and Y can raise the Fermi level and suppress the p-type
doping of CsSnI3, with YSn exhibiting the lowest formation energy
under I-poor conditions. Dopants with higher oxidation states,
such as Zr and Nb are energetically favorable at q = +1 near the
VBM, which also raise EF to higher values. We also find that
formation energies are correlated with properties including the
oxidation state, tolerance factor, octahedral factor, and density.
Charge transition levels are more correlated with elemental
properties including oxidation state, electronegativity, ionization
energy, and electron affinity. These observations will guide us in
determining features for property predictions using machine
learning algorithms.

3.2 Features for machine learning

We initially selected 18 features representing atomic and bulk
properties of the substitutional dopants and the corresponding
iodide compounds (XIn). Each feature is expressed as the ratio

of the dopant property to the corresponding property of Sn. The
atomic and bulk features include the ratios of electronegativity
(EN), electron affinity (EA), ionization energy (IE) (including the
1st, 2nd, and 3rd IE), Pauling electronegativity (X), density (D),
atomic weight (M), atomic radius (AR), covalent radius (CR),
Shannon’s ionic radius (IR), and oxidation state (OS) in its most
thermodynamically stable substitutional form. We also consid-
ered the dopant atomic features including octahedral factor (u),
tolerance factor (t), specific heat (S), and heat of vaporization
(HV), and thermodynamic properties of XIn including the heat
of formation (HF) from HSE06–SOC calculations [HF(cal)] and
experiments [HF(exp)].

We used the Pearson correlation coefficient (p) to identify
the features with strong linear correlations with properties and
the highly correlated features.42 If two features have a high
absolute Pearson correlation coefficient (|p| 4 0.8), the one
with a low correlation with the property is eliminated from the
feature list. In total, 11 features were selected for the ML model
training. The correlations between these features and the target
properties are shown in Fig. 3. The heatmaps illustrate the
relationships between the down-selected features and target
properties including Ef (q = 0) [Fig. 3(a)], Ef (q = +1) [Fig. 3(b)],
and CT(+1/0) [Fig. 3(c)] under the I-rich condition.

For Ef at q = 0, HV has a positive Pearson correlation
coefficient (p = 0.60) with the target property while t(AR) has a
negative value of p = �0.31, which is consistent with our
observation in Section 3.1. Additionally, the 3rd IE has a strong
negative correlation (p = �0.56) and the OS has a strong positive
correlation (p = 0.70) with Ef at q = 0. For Ef at q = +1, stronger
correlations were observed across most features compared to the
other two target properties. Specifically, the HF (exp) exhibited a
strong negative correlation (p = �0.55), while D showed a strong
positive correlation (p = 0.61). t(AR) has a correlation of �0.20,
which is close to the correlation observed in Ef at q = 0 (�0.31).
These results indicate that structural stability and physical prop-
erties of the dopants are important descriptors to predict Ef.

Fig. 3 Pearson correlation matrix capturing pairwise feature–feature and target–feature correlations for the XSn dataset. The target properties (a) Ef (q =
0), (b) Ef (q = +1), and (c) CT(+1/0) along with the down-selected feature sets are listed on the diagonal. The upper and lower triangular regions of the plot
convey the same information in two different visualization schemes. The filled fraction of the pie charts in the upper triangle represents the absolute value
of the associated Pearson correlation coefficient, while the lighter and darker shades of color correspond to the strength of the correlation. The matrix of
target property-feature correlations ranges from negative to positive correlation, from left to right, or from top to bottom. The features are arranged from
strong negative to strong positive correlations, left to right (or top to bottom).
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For CT(+1/0), the features with the strongest negative and
positive correlations align with those observed in Ef at q = 0, as
indicated by 3rd IE with p =�0.50 and OS with p = 0.55 As noted
in Section 3.1, the EN is negatively correlated with CT(+1/0) for
dopants with an oxidation state of +2. In the selected feature
list, EN was excluded due to its high correlation with D (p =
0.79) and the HF (exp) (p = �0.87) and its relatively small
variance compared to other elemental properties.

After down-selecting the key features, we trained four machine
learning (ML) algorithms including linear regression (LR), Gaus-
sian process regression (GPR), kernel ridge regression (KRR), and
random forest regression (RFR) on our DFT dataset to explore
their predictive capabilities. In our study, we used the scikit-learn
package43 to train the ML models. We followed standard prac-
tices to split the data into training (80%) and testing (20%), apply
grid-based hyperparameter search, and employ five-fold cross-
validation to reduce overfitting.25,26 Model performance was
evaluated using root mean square error (RMSE) as the key metric.
Additionally, we also evaluate feature importance and compare it
with the Pearson correlation coefficients.

3.3 Training machine learning models

We first applied the linear regression (LR) model to predict the
defect formation energies at q = 0 and q = +1 and CT(+1/0). The

parity plots, training/testing RMSE, and feature importance for
the LR model are provided in Fig. S5 (ESI†). The RMSE values
for the training/testing data sets were 0.23/0.44 eV for Ef(q = 0),
0.16/0.31 eV for Ef(q = +1), and 0.31/0.45 eV for CT, respectively.
Compared with the nonlinear model that will be discussed
later, the RMSE of the LR model is higher. Our findings for LR
align with previous studies that used linear models to predict
defect properties in halide perovskites, where linear regression
gives higher RMSEs as compared to nonlinear methods.26 This
highlights the necessity for nonlinear models to fully capture
the complexity of defect features and properties.

Gaussian process regression (GPR) is known for modeling
complex nonlinear correlations, employing the kernels to define
a function based on the covariance of the prior distribution over
the target functions.44,45 We explored five types of kernels and
the corresponding hyperparameters, alpha (the regularization
parameter), and length to optimize model performance. The
kernel functions include Radial Basis Function, ExpSineS-
quared, Rational Quadratic, DotProduct, and Matern.46 Hyper-
parameter optimization was performed using the randomized
search method. The optimized hyperparameters are listed in
Table S1 (ESI†). The parity plots using GPR are presented in
Fig. 4(a), yielding training/testing RMSE values of 0.21/0.32 eV
for Ef(q = 0), 0.18/0.23 eV for Ef(q = +1), and 0.16/0.31 eV for CT.

Fig. 4 Parity plots from (a) Gaussian process regression, (b) kernel ridge regression, and (c) Random forest regression. The relative feature importance
from random forest regression for predicting (d) formation energy (q = 0), (e) formation energy (q = +1), and (f) charge transition level [CT(+1/0)]. The
shaded purple region highlights the top five most important features.
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GPR outperformed LR for all three target properties, indicating
its effectiveness in capturing the underlying relationships in
the data.

Kernel ridge regression (KRR) is also a nonlinear regression
model integrating ridge regression with kernel functions.47 The
same kernel functions were tested as in GPR. The best estima-
tors for KRR result in RMSE values of 0.15/0.25 eV for Ef(q = 0),
0.16/0.19 eV for Ef(q = +1), and 0.15/0.27 eV for CT, as shown in
Fig. 4(b).

Random forest regression (RFR) is a widely used machine
learning technique that combines multiple decision trees into
an ensemble of predictors.48 Training the RFR model involves
optimizing hyperparameters including the number of trees (or
estimators), maximum tree depth, number of leaf nodes, and
the maximum number of features used to split a tree. The best
hyperparameters that yielded the best predictions for all regres-
sions are listed in Table S1 (ESI†). The parity plots from the RFR
model are shown in Fig. 4(c). The RMSE for the training/testing
datasets are 0.17/0.20 eV for Ef(q = 0), 0.11/0.15 eV for Ef(q = +1),
and 0.17/0.22 eV for CT, respectively. These results demonstrate
improved predictions for both Ef and CT(+1/0) compared to
those achieved by using LR, GPR, and KRR.

During the training of the RFR model, we also assessed the
feature importance for the three target properties [Fig. 4(d)–(f)].
For Ef(q = 0) [Fig. 4(d)], the top five most important features
from the RFR training are 3rd IE, t(AR), HV, OS, and EA. For
Ef(q = +1) [Fig. 4(e)], the top five most important features include
HF(exp), D, 3rd IE, t(AR), and EA. The feature importance for
predicting formation energy for both charge states highlights
three important features: 3rd IE, t(AR), and EA. These features
exhibit relatively strong positive or negative Pearson correlations
in Fig. 3 and partially overlap with the top important features
predicting Ef of neutral defects in ABO3.25 For CT(+1/0)
[Fig. 4(f)], the top import features include 3rd IE, t(AR), 1st IE,
OS, and HF(exp). These features are also consistent with the
highly correlated features shown in Fig. 3(c).

3.4 Prediction with random forest regression

We also trained RFR and KRR using the formation energies of
XSn under the I-poor condition, aiming to directly predict out-
of-sample dopants that can suppress the p-type self-doping.
The RMSE values for the training/testing datasets of RFR are
0.22/0.28 eV for Ef(q = 0) and 0.16/0.21 eV for Ef(q = +1), which are
lower than KRR as shown in Fig. S6 (ESI†). The top important
features for q = 0 [3rd IE, HV, and OS] and q = +1 [HF(exp), D, and
3rd IE] remain consistent with the top important features derived
from the formation energies calculated under the I-rich condition
[Fig. 4(d) and (e)]. We apply the trained RFR model to predict the
formation energies of 23 out-of-sample dopants under the I-poor
condition. The formation energies for q = 0 and q = +1 are
provided in Table S2 (ESI†). Our predictions indicate that there
are three trivalent dopants (La, Ce, and Pr) with the Ef(q = +1)
lower than that of VI at q = +1 and the CT(+1/0) level is close to
CBM. This suggests that these dopants can shift the Fermi level,
pinning it closer to the conduction band compared to the
intrinsic Fermi level at 0.11 eV above VBM. Additionally, Sr and

Ba with OS = 2 have relatively low formation energies at q = 0,
which is consistent with previous DFT calculations using the
HSE06 functional, confirming the predictive capability of the RFR
model for formation energy.16 We performed DFT calculations
for LaSn and CeSn, as shown in Fig. S7 (ESI†), which found that
the Ef of LaSn is lower than that of CeSn. This is consistent with
the ML predictions. The prediction of the formation energy at q =
+1 performs better than q = 0. These calculations are in good
agreement with previous calculations using the HSE06 func-
tional, which show that La and Ce doping in MASnI3 raises the
Fermi level due to the low formation energy at q = +1 and no
charge transition level in the band gap.17

3.5 Substitutional dopants on both Sn and Cs sites from
random forest regression

We performed DFT calculations of 15 substitutional dopants on
the Cs site. BaCs and SrCs are only stable at q = +1 within the
band gap. BaCs has the lowest formation energy and will pin the
Fermi level at 0.26 eV under the I-poor conditions, which is also
consistent with the previous study on alkaline-earth metal
doping at the Cs site.16 We also find SrCs to have low formation
energy, pinning the Fermi level at 0.21 eV under the I-poor
conditions.

We also applied RFR to predict the formation energy at q =
+1 under I-rich conditions for substitutional dopants on both
the Cs site (XCs) and the Sn site (XSn). Fig. 5(a) shows the parity
plot of DFT calculated versus the RFR predicted values for Ef (q =
+1) with a train/test RMSE of 0.17/0.26 eV. This RMSE is higher
than that of the XSn system as the features need to describe the
interaction between dopants with two cation sites. The top five
features from the RFR training are shown in Fig. 5(b), including
HV, OS, D, EA, and 1st IE. Two of these features [D and EA] are
consistent with the top features from RFR training using only
the XSn data points [Fig. 4(e)], indicating the consistency in
feature correlations on both sites.

4 Conclusion

In conclusion, we performed DFT calculations using the HSE06
functional with SOC to identify substitutional dopants in
CsSnI3 that suppress the p-type self-doping. Trivalent dopants

Fig. 5 (a) Parity plot obtained from random forest regression and (b)
highlights the top five most important features for the formation energy
(q = +1) of XCs and XSn.
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including AlSn, ScSn, and YSn prefer the +1 charge state and have
shallow or no charge transition levels in the band gap, which
pin the Fermi level at 0.27, 0.32, and 0.33 eV under the I-poor
conditions. Bivalent dopants including Mg and Zn are only
stable in the neutral charge state and have low formation
energies. We also identified the dopants with a high oxidation
state, ZrSn and NbSn, which can also raise the Fermi level under
the I-poor condition. For the substitutional dopants on the Cs
site, we identified BaCs and SrCs that are only stable in the q = +1
charge state and can pin the Fermi level at 0.26 and 0.21 eV
under the I-poor condition.

We explore machine learning regression algorithms and
determine that the random forest regression can be used to
develop a predictive model for the formation energy and charge
transition levels of substitutional defects at the cation sites in
CsSnI3. By analyzing the feature correlation and feature impor-
tance from the random forest regression training, we identified
key features including oxidation state, the heat of formation,
density, and ionization energy as key descriptors that deter-
mine the defect formation energetics. The trained model is also
applied to predict out-of-sample dopants and predicts three
dopants including La, Ce, and Pr that have low formation
energies at the q = +1 charge state. From a theoretical perspec-
tive, this study identifies key features that predict formation
energy and charge transition levels. We believe that this
predictive model will be valuable for investigating defects
that suppress p-type behavior in other Sn-based perovskite
materials, and provide insights into the key elemental descrip-
tors that determine the energetics in defect formation.

Data availability

Datasets containing the defect formation energies and chemical
potentials and the ML codes for training and prediction are
available from https://github.com/Mengen-W/Doping_CsSnI3_
DFT_ML.
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