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Adipose derived mesenchymal stem cell-seeded
regenerated silk fibroin scaffolds reverse liver
fibrosis in mice†

Weilong Li,‡a Xiaonan Shi,‡a Daxu Zhang,‡b Jingjing Hu,a Shuo Zhao,f Shujun Ye,a

Jingyi Wang,a Xiaojiao Liu,c Qian Zhang,d Zhanbo Wang,*e Yaopeng Zhang *c

and Li Yan *a

Liver fibrosis (LF) is an important process in the progression of chronic liver disease to cirrhosis. We have

previously demonstrated that a regenerated silk fibroin scaffold loaded with adipose-derived stem cells

(RSF + ADSCs) can repair acute liver injury. In this study, we established a chronic LF animal model using

carbon tetrachloride (CCl4) and a high-fat diet. We then investigated the liver repair capacity after

transplanting RSF + ADSC scaffolds and RSF scaffolds onto the liver surface of mice. Compared with the

control group, the concentrations of ALT and AST in the serum were significantly reduced in the RSF

and RSF + ADSC groups. HE staining and Masson trichrome staining revealed a decrease in the SAF

score in both the RSF and RSF + ADSC groups. Meanwhile, the biomarkers of blood vessels and bile

ducts, such as CD34, ERG, muc1, and CK19, were significantly elevated in the RSF + ADSC group. Finally,

transcriptome analysis showed that the PPAR signaling pathway, which inhibits liver fibrosis, was

significantly upregulated in both the RSF and RSF + ADSC groups. Our study suggests that, compared

with RSF scaffolds alone, RSF + ADSCs have a significant repair effect on chronic LF in mice.

1. Introduction

Currently, the global prevalence of fatty liver disease exceeds
30%.1,2 In China, the number of people with severe fatty liver
disease has reached approximately 36 million, and these indi-
viduals are at risk of liver fibrosis (LF).3 Without effective
intervention, patients with liver fibrosis may face the risk of
progression to cirrhosis or even liver cancer. At present, once
liver fibrosis progresses to cirrhosis, there are no effective drugs

available. Therefore, reversing the progression of liver fibrosis
is crucial.

In recent years, stem cell regeneration research has provided
new insights for treating liver fibrosis.4–6 Recent studies have
shown that stem cells can promote liver regeneration through
transdifferentiation or paracrine mechanisms.7 In some clinical
trials, stem cells have been used to treat hepatitis B-related
cirrhosis. However, issues such as the difficulty in controlling
stem cell quality, poor stem cell engraftment capacity, and
tumorigenicity make the therapeutic effects unpredictable.4,8,9

Fortunately, if stem cells are combined with biomaterials that
can mimic the liver microenvironment, their potential to promote
liver fibrosis repair can be greatly enhanced.10 Our preliminary
studies suggest that the combination of regenerated silk fibroin
(RSF) and adipose-derived stem cells (ADSCs) can effectively repair
liver damage.11,12 Additionally, we have observed the presence of
vascular structures in RSF,12 though their characteristics need
further validation.

In this study, we explored the role of RSF + ADSCs in
reversing liver fibrosis and their effect on the formation of
blood vessels and bile ducts. First, we established a liver
fibrosis animal model with carbon tetrachloride and a high-
fat diet. Subsequently, we transplanted RSF and RSF + ADSC
scaffolds onto the liver surface of the animal model. On the 7th,
14th, 30th, and 60th day after transplantation, we observed the
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recovery of liver function. With the help of HE staining, we
discovered good compatibility between the scaffold and the
liver. Furthermore, the result of Masson’s trichrome staining
showed that RSF + ADSCs could reverse liver fibrosis. Immu-
nohistochemical staining helped us to confirm the formation
of blood vessels and bile ducts. Finally, according to transcrip-
tome analysis, the molecules related to the inhibition of liver
fibrosis (PPAR signaling pathway), including Acad1, Cpt1a, Dbi,
Ppar, and Slc27a5 genes, were upregulated in both RSF and RSF
+ ADSC scaffold groups. We performed quantitative validation
using PCR technology. The results suggest that inducing the
formation of blood vessels and bile ducts through RSF + ADSCs
to promote liver repair and reverse liver fibrosis may become an
alternative therapeutic method for liver fibrosis.

2. Materials and methods
2.1. Preparation of electrospun RSF matrices

Based on the literature,13 the RSF matrix was prepared from all
aqueous solutions. In short, Bombyx mori silkworm cocoons
were degummed and subsequently dissolved in a 9.0 M aqueous
solution of LiBr. The solution was diluted, centrifuged, and
filtered, and then dialyzed in deionized water to remove salts.
Finally, a 33% RSF aqueous solution was obtained by forced air
cooling. Using conventional electrospinning technology, RSF
mats were prepared on an aluminum collection plate with an
electric potential of 20 kV, a flow rate of 1.2 mL h�1, and a span
of 10 centimeters between the sample and the spinneret. Then,
the obtained mat with a thickness of 130 mm was soaked in a
90 vol% ethanol aqueous solution for 30 minutes to convert the
RSF to an insoluble state in water.

2.2. Cell culture assay

After collecting adipose tissue from the inguinal region of mice,
it is transferred to Dulbecco’s modified Eagle’s medium
(DMEM) containing antibiotics (100 mg mL�1 penicillin and
100 mg mL�1 streptomycin), and 2 mM Glutamax under sterile
conditions. The adipose layer is cleaned with phosphate-
buffered saline (PBS). Then, these small pieces are digested
with 15 mL of 0.2% collagenase type 1 at 37 1C for 2 hours.
DMEM containing 10% fetal bovine serum (FBS) is used to
terminate the collagenase activity, and the cells are centrifuged
at 400 � g for 10 minutes to separate the floating cells from the
vascular matrix. The pellet is resuspended in the complete
medium containing 10% FBS, 5% penicillin/streptomycin,
and 1% Glutamax, and passed through a 100 mm nylon mesh
filter to remove undigested tissue. The filtered cells are care-
fully transferred to a 50 mL tube containing 1.077 g mL�1

Percoll, and subjected to density gradient centrifugation at
400 � g for 30 minutes. Enriched cells are collected from the
interface, and washed twice with serum-free medium. Finally,
the pellet is resuspended in DMEM containing 10% FBS,
100 mg mL�1 penicillin/streptomycin, and 2 mM Glutamax,
and cultured in an incubator at 25 1C with 5% CO2/95% air and
90% relative humidity. The medium is changed every 24 hours

for the first 3 days to remove non-adherent hematopoietic cells,
and then changed every 3 days. After the adherent mesenchy-
mal stem cells reach confluence, they are digested with 0.25%
trypsin-EDTA, and transferred to new 25 cm2 culture flasks for
further culture. All experiments are performed using mesench-
ymal stem cells after three to six passages. Ultimately, these
cells are seeded onto RSF scaffolds.

2.3. Cell induction

The sterilized bioscaffolds were placed in 24-well culture plates
(Corning, USA). Then, 1 � 106 ADSCs were seeded into each
3D-PSFS. The ADSCs were cultured at 37 1C with 5% CO2. Once
the ADSCs adhered to 3D-PSFS, the basic medium (DMEM with
10% FBS) was replaced with hepatocyte induction medium
which has been used in our previous research.14 Then,
1.5 mL of hepatocyte induction medium was added to each
well of the 24-well culture plate and replaced every 48 hours.

2.4. Animal model construction

All animal experiments were approved by the Institutional
Animal Care and Use Committee of the Chinese People’s
Liberation Army General Hospital. Mice aged three days were
utilized to prepare mesenchymal stem cells, and 6 to 8 weeks
were used for animal experiments. To establish a chronic LF
animal model, 6- to 8-week-old mice were intraperitoneally
injected with an olive oil solution containing 40% CCl4 at a
dose of 2 mL kg�1, three times a week. They were also fed a
high-fat diet containing 60% fat for 6 to 8 weeks.

2.5. Transplantation and sample collection

All surgeries were performed by the same surgeon. Mice were
anesthetized through an intraperitoneal injection of pentobar-
bital (1%, 50 mg per kg). The left lateral lobe of the liver was
exposed and the scaffold was sutured in place. Standard layered
closure of the wound was performed. Mouse survival was
recorded and monitored for 60 days post-transplantation. Liver
tissue and blood samples were obtained on the 7th, 14th, 30th,
and 60th days after transplantation for subsequent experi-
mental analysis. n = 3 mice per group.

2.6. Evaluation of liver function and C-reactive protein (CRP)

On days 7, 14, 30, and 60 post-transplantation, serum levels of
alanine aminotransferase (ALT), aspartate transferase (AST),
alkaline phosphatase (ALP), albumin (ALB), total bilirubin
(TBIL), triglycerides (TG), total cholesterol (TC), and CRP were
measured using an automated analyzer (Mindray, BS-240 Vet).

2.7. Histological staining and scoring

The collected liver tissue was fixed in 4% paraformaldehyde for
24 hours to obtain paraffin sections. Following embedding, sec-
tions were cut into 6 mm slices using a Leica SM2000R microtome.
HE staining, as well as Masson’s trichrome staining, was carried
out following the manufacturer’s instructions (Solarbio, n = 3).

Histological scoring was conducted using the SAF scoring
system: hepatocyte steatosis was scored from 0 to 3, ballooning
degeneration from 0 to 2, inflammation from 0 to 2, and
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fibrosis from 0 to 4. The fibrosis scoring follows the same
criteria as the European SAF and American NAS scoring sys-
tems. When fibrosis is graded as F1, it is further categorized
into F1a, F1b, and F1c. The total SAF score is obtained by
summing the individual scores.

2.8. Immunohistochemical staining

The frozen liver tissue sections were rehydrated and fixed with
4% PFA. After peroxidase treatment, the sections were blocked
with PBS containing 5% goat serum and 2% BSA. Then the
sections were incubated with primary antibodies, including
anti-CD34 (Abcam), anti-ERG (Abcam), anti-MUC1 (Abcam),
and keratin 17/19 (cell signaling) overnight at 4 1C. Secondary
antibodies were applied for 1 hour at room temperature. The
sections were then incubated with 3,30-diaminobenzidine and
retained with hematoxylin. Finally, the sections were cover-
slipped with xylene and neutral resin. Images were taken with a
microscope (Nikon, Japan). n = 3 samples in each group.

2.9. Reverse transcription polymerase chain reaction

After 7 days of transplanting the material, the liver of the mouse
was lysed using the Trizol reagent (from Invitrogen Life Tech-
nologies). The RNA was then reverse-transcribed into cDNA
under the following conditions: 50 1C for 15 minutes and 85 1C
for 5 seconds. After the synthesis of cDNA, it was stored at 4 1C
before being used for real-time quantitative PCR. The PCR
reaction conditions were set as follows: pre-denaturation at
95 1C for 30 seconds, annealing at 95 1C for 10 seconds, and
extension at 60 1C for 30 seconds, with a total of 40 cycles.
Three replicate wells were set, with actin as the internal
reference, and the relative expression level was calculated using
the 2�DDCt method. To verify the expression levels of CPt1a, Dbi,
Ppar, Slc27a5, Tnfrsf1a, and Tnfrsf1b genes in liver tissue. The
sequences for the primers used are listed in Table S1 (ESI†).

2.10. mRNA transcriptome sequencing analysis

Liver tissue samples were collected after 7 days, and immediately
frozen and stored in a �80 1C refrigerator. TRIzol reagent or a
commercial RNA extraction kit was used to extract total RNA,
and the concentration, purity, and integrity of the RNA were
detected using a NanoDrop spectrophotometer and Bioanalyzer.
Then, mRNA was enriched using poly(A) selection or ribosomal
RNA depletion, followed by reverse transcription to synthesize
cDNA and library preparation, which includes fragmentation of
the cDNA, end repair, addition of an A-tail, and ligation of
adapters. Finally, PCR amplification and purification were per-
formed. High-throughput sequencing was performed on the
Illumina NovaSeq 6000 or HiSeq 4000 platform, selecting the
appropriate read length and sequencing depth. The quality of
the raw data was evaluated using FastQC, the data were filtered
using Trimmomatic or Cutadapt, and the filtered reads were
aligned to the reference genome using HISAT2 or STAR. Gene
expression levels were calculated using HTSeq or featureCounts,
and differential expression gene analysis was performed using
DESeq2 or edgeR. Finally, functional annotation and pathway

enrichment analysis of the differentially expressed genes were
performed through databases such as GO and KEGG.

2.11. Statistical analysis

Statistical analysis of two groups of parameter data was per-
formed using the Student’s t-test. Normality tests were con-
ducted, and all analyses were carried out using GraphPad Prism
9 software. Data are reported as mean � standard deviation,
with significance defined as a p-value o 0.05.

3. Results
3.1. Construction of the liver fibrosis animal model

We constructed a mouse model of LF using intraperitoneal injec-
tion of CCl4 combined with a high-fat diet. After constructing the
LF mouse model through intraperitoneal injection of CCl4 com-
bined with a high-fat diet, we transplanted either a regenerated
silk fibroin scaffold loaded with adipose-derived stem cells (RSF +
ADSCs) or a pure regenerated silk fibroin scaffold onto the liver
surface of the fibrotic mice. Upon macroscopic inspection, the
liver surface of mice in the control group appeared bright red and
smooth. In contrast, the liver surface of mice, after 8 weeks of
intraperitoneal injection of CCl4 combined with a high-fat diet,
appeared dull (Fig. 1C). We performed Masson and HE staining
(Fig. 1A and B) on the liver tissues of the mice to determine the
progression of fibrosis: After eight weeks, the normal lobular
structure of the liver had disappeared. We observed excessive lipid
droplet accumulation, ballooning degeneration, hepatocyte swel-
ling and necrosis, and extensive inflammatory cell infiltration.
Under Masson staining, the density and coverage of collagen fibers
(stained blue or dark blue) were significantly higher than in the
normal group. This resulted in dense fiber bundles or clusters,
forming a complex ‘‘chicken wire’’ network structure. The SAF
score reached 10 (Fig. 1D), indicating significant fibrosis charac-
teristics in the liver by the eighth week. All of the above patholo-
gical diagnoses have been evaluated by pathology specialists to
ensure accuracy and reliability. The survival rates of the RSF +
ADSC group compared to the control groups (LF or Control) in
mice showed no significant differences at various time points
(P 4 0.05). At the endpoint of the experiment (day 60), the survival
rate of the RSF + ADSC group was 97% (�2%), the RSF group was
98% (�2)%, and the LF group was 95% (�4%). The differences
were not statistically significant (P = 0.339) (Fig. 1E). This suggests
that neither RSF + ADSCs nor RSF had a significant impact on the
survival rate of mice after transplantation.

3.2. Biocompatibility and degradation of RSF + ADSCs and
RSF on liver surface

HE staining showed that the degree of injury in mice trans-
planted with RSF and RSF + ADSCs was much weaker than that
in non-transplanted injured mice (Fig. 2A). Seven days after
transplantation, there was still liver injury, accompanied by
liver cell edema, fatty liver degeneration, inflammatory cell
infiltration, and cytoplasmic degeneration. On the 14th day,
compared with the RSF group, the RSF + ADSC group had less
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large vacuolar fatty degeneration. At 60 days, all experimental
groups were basically recovered in terms of histology. However,
significant damage areas could always be observed in the LF
group. These observations suggest that RSF and RSF + ADSCs
have similar protective effects on liver injury induced by CCl4

combined with high-fat diet, but the RSF + ADSC group has a
faster repair effect than the RSF group (Fig. 2B).

3.3. Dynamics changes of the histopathology of liver fibrosis

To observe the changes in the degree of fibrosis in the liver
tissue of mice after implantation, we performed Masson stain-
ing on the liver of mice at 7 days, 14 days, 30 days, and 60 days
(Fig. 3A). At 7 days, the results showed the presence of collagen
fibers in liver tissue, indicating a high degree of fibrosis.
At 14 days, the collagen area in all experimental groups was
significantly reduced. At 30 days, the collagen area in the
experimental group was further reduced, indicating the
potential of RSF implantation to improve fibrosis. At 60 days,
the results of Masson staining showed a significant reduction
in the area of collagen fibers compared with the initial state,
indicating that the repair effect of RSF implantation on LF
gradually increased (Fig. 3B).

3.4. Dynamics of liver function and inflammatory marker CRP

To assess the recovery of liver function and the levels of
inflammatory markers, we conducted blood biochemical ana-
lysis. The results showed that 7 days after stent transplantation,
the biomarker levels representing liver cell injury (AST, ALT),
liver metabolic function (ALP, Tbil, TC, TG), and liver inflam-
mation (CRP) were high. The expression levels in the RSF +
ADSC group were lower at different time intervals than those in
the LF group and RSF group. In addition, both the RSF group and

the RSF + ADSC group showed the lowest expression of liver injury
and inflammatory biomarkers on the 60th day (Fig. 4). Further-
more, the RSF group showed a certain degree of therapeutic
ability, but it was much weaker than the RSF + ADSC group.

3.5. Formation of new vascular and bile duct structures in the
RSF scaffold

To observe the neotissue formed on the liver surface by RSF +
ADSCs, we performed HE and immunohistochemical staining
on the neotissue 7 days after transplantation. HE staining
showed that tube-like structures had formed on the scaffolds
in the RSF + ADSC group (Fig. 5A). Immunohistochemical
staining of these tube-like structures revealed significant
expression of angiogenesis markers (ERG, CD34) and biliary
markers (MUC1, CK19) (Fig. 5B). These results suggest that
RSF + ADSCs play an important role in liver regeneration and
angiogenesis.

3.6. RNA transcriptome analysis

To investigate the potential mechanism of RSF in repairing LF,
we performed transcriptomic analysis of liver tissue on the
7th day after transplantation. Cluster analysis showed that the
gene expression modules were similar in the RSF group and
the RSF + ADSC group, but significantly different from the
control group (Fig. 6A). The Venn diagram results showed that
the RSF + ADSC group expressed 7070 deferentially expressed
genes, while the RSF group expressed 7345 deferentially
expressed genes (Fig. 6B). Through KEGG pathway enrichment
analysis, compared with the normal group, the RSF group and
the RSF + ADSC group significantly up-regulated cell prolifera-
tion, fat degradation, redox, protein synthesis, drug metabo-
lism and other pathways. We found that both the RSF and

Fig. 1 Construction of the liver fibrosis mouse model by intraperitoneal injection of CCl4 combined with high-fat diet. (A) HE staining of the control group and
the LF group (green arrows: fatty degeneration of hepatocytes; red arrows: hydropic degeneration of hepatocytes; black arrows: inflammatory cells; blue
arrows: macrovesicular steatosis). (B) Masson staining of the control group and the LF group. (C) Gross liver images of normal liver versus liver after 8 weeks of
combined intraperitoneal injection of CCl4 with a high-fat diet. (D) SAF scores. n = 3. (E) Survival rate of mice in each group after transplantation. n = 3.
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Fig. 2 HE staining of mouse livers after transplantation of materials. (A) HE staining of mouse livers at 7, 14, 30, and 60 days post-transplantation in each
group (green arrows: fatty degeneration of hepatocytes; red arrows: hydropic degeneration of hepatocytes; black arrows: inflammatory cells; blue
arrows: macrovesicular steatosis). (B) Semi-quantitative analysis of HE staining. Data are presented as mean � SD. Statistical analysis: *p o 0.05,
**p o 0.01, ***p o 0.001, ns: not significant.
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RSF + ADSC groups significantly up-regulated the PPAR path-
way, which helps maintain the balance of fat metabolism in the
body by regulating fatty acid uptake, synthesis, and oxidation.
In addition, both the RSF and RSF + ADSC group significantly
down-regulated immune response, inflammation, and apopto-
sis pathways, mainly including TNF, NF-kappa B signaling
pathways (Fig. 6C and D).

3.7. RSF + ADSC scaffolds upregulate the PPAR signaling
pathway and the downregulate TNF signaling pathway

To further verify the specific mechanism of RSF + ADSCs in
repairing LF, we used the RT-qPCR method to evaluate the gene
expression of the PPAR signaling pathway and TNF signaling
pathway in the liver tissue-scaffold connection of treated mice.
The results showed that compared with the control group, the
expression of CPt1a, Slc27a5, Acadl, Dbi, and Ppar genes in the
RSF + ADSC group was significantly up-regulated (Fig. 7A).
These genes are involved in the process of fatty acid uptake,
transport and oxidation. On the other hand, the expression
levels of Tnfrsf1a and Tnfrsf1b genes in the RSF + ADSC group
were significantly decreased, which is related to inflammatory

response and fibrosis. RSF + ADSC scaffolds regulate the PPAR
signaling pathway: a simplified diagram is shown in Fig. 7B.
The results suggest that the PPAR signaling pathway and the
TNF signaling pathway may be involved in the fibrosis repair of
LF mice after RSF + ADSC transplantation.

4. Discussion

In recent years, research on stem cells and biomaterials has
provided new insights into the treatment of liver fibrosis. Some
clinical trial reports show that stem cells have been used to
treat LF, but the application of stem cells still has limitations.15

Fortunately, our previous research has indicated that biomater-
ials such as regenerated silk fibroin,11 apple extract,16 and
nucleic acid tetrahedra17 contribute to the repair of acute liver
injury. However, these materials have not yet been applied to
the repair of chronic liver injury.

In this study, we combined CCl4 and a high-fat diet to establish
a mouse model of chronic liver injury. Additionally, we explored
the mechanisms of liver fibrosis repair using RSF and RSF +
ADSCs and found that the RSF + ADSC group had a stronger

Fig. 3 Masson staining and collagen area of mouse livers after transplantation materials. (A) Masson staining of mouse livers at 7, 14, 30, and 60 days
post-transplantation for each group. (B) Collagen area measured from Masson staining. The data are presented as mean � SD. Statistical analysis:
*p o 0.05, **p o 0.01, ***p o 0.001, ns: no significance.
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ability to repair chronic liver injury than the RSF group. This
group also formed a large number of new blood vessels and bile
ducts in the transplanted materials. Finally, we used transcrip-
tome analysis and PCR technology to validate that the expression
of anti-fibrosis-related molecules in the PPAR pathway was higher
in the RSF + ADSC group compared with the RSF group.

In this study, by combining CCl4 with high-fat diet, we estab-
lished a mouse model of liver fibrosis model that closely resembles
the human living environment.18,19 Unlike conventional non-
alcoholic fatty liver disease models, which are established using
diets rich in fats, fructose (or sucrose), and cholesterol,20,21 our
model showed late-stage histological features of liver fibrosis by
the 8th week, with a SAF score of 10. This model reflects both
lifestyle-induced liver fibrosis and drug-induced liver fibrosis,22–24

aligning with the mechanisms of liver fibrosis caused by the high-
paced lifestyle and drug abuse that are prevalent today.

The liver possesses a strong regenerative ability, which varies
depending on the extent of injury and its underlying cause.7 In
previous studies, various biomaterials, such as hydrogels;25 poly-
dimethylsiloxane;26,27 and various natural biomaterials,28 includ-
ing, hyaluronic acid,29 and animal extracellular matrix,30,31 have
been used, but none have been able to form liver-like tissues with
complex structures that include functional vascular and bile duct
networks. The reconstruction of complex vascular and bile duct
systems remains a common challenge in tissue engineering.
Compared with previous studies,11 our innovation lies in the
confirmation of vascular and bile duct formation in the RSF +
ADSC group with the help of immunohistochemical staining.

RSF is a natural biomaterial with good biocompatibility and
biodegradability, widely used in clinical applications.32,33

The degradation process of the RSF materials is a complex
biological degradation process, and its properties directly affect

Fig. 4 Analysis of liver function and inflammatory markers after RSF and RSF + ADSCs transplantation in liver fibrosis mice. Levels of AST, ALT, ALP, ALB,
Tbil, TC, TG, and CRP in the plasma of each group. All data are presented as mean � SD (n = 3). Statistical analysis was performed using t-tests: *p o 0.05,
**p o 0.01, ***p o 0.001, ns: no significance.
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its application in the biomedical field.34 As a natural protein-
based biomaterial, the degradation of RSF primarily occurs
through enzymatic action, particularly by proteinase XIV, which
exhibits high efficiency in degrading RSF both in vivo and in
vitro.35,36 The degradation of RSF typically begins in its hydro-
philic unordered regions, such as the C-terminus, N-terminus,
connecting segments, and light chains, and then gradually
infiltrates the crystalline regions, such as the b-structured
areas.37 Finally, RSF is degraded into small peptide fragments
and amino acids, which are non-toxic and can be metabolized
or cleared by the host without accumulating in the tissue.38–40

In vivo degradation is closely related to the host immune system
and is primarily mediated by macrophages and foreign body
giant cells (FBGCs).41,42 It is worth noting that the degradation
process of RSF materials typically does not cause significant
inflammation or immune reactions.43 Its natural components
(e.g., silk protein) exhibit good biocompatibility, and its degra-
dation products (e.g., peptides and amino acids) are natural
metabolites that will not trigger immune reactions.44 These
characteristics make RSF materials highly safe and reliable for
clinical applications.

As a material with a three-dimensional spatial structure, RSF
provides a microenvironment for cell adhesion, proliferation,
and differentiation, and also contributes to the formation of
new blood vessels, making it a popular material in the field of
liver regeneration. In this study, transcriptomic technology was
used to identify that RSF scaffolds may promote protein synth-
esis, regulate fatty acid metabolism balance, and reverse liver
fibrosis by upregulating the valine, leucine, and isoleucine
degradation signaling pathway, the P450 signaling pathway

(metabolism of xenobiotics by cytochrome P450), and the PPAR
signaling pathway.

A potential limitation of this study is the lack of a treatment
group that uses ADSCs alone or other materials combined with
ADSCs for comparison.45 However, ADSCs alone may not be
sufficient for effective liver fibrosis repair due to their inability to
specifically target the fibrotic area.46 Additionally, the choice of
RSF as a scaffold is based on its unique properties,47 making it
difficult to find an equivalent control group with similar char-
acteristics. The aim of our research is to investigate whether RSF,
as a carrier for stem cells, can provide an appropriate micro-
environment for ADSC proliferation and differentiation, and
whether it has the potential to promote ADSC-mediated liver
injury repair. The RSF material itself only plays an auxiliary role
in liver injury repair, similar to other synthetic scaffolds such as
polycaprolactone48,49 and PEG-based scaffolds,50 but these differ
significantly from RSF scaffolds and are not suitable as controls.
Therefore, we emphasize the combination of RSF and ADSCs,
investigating their combined potential for promoting liver injury
repair. This study focuses on exploring the mechanism of local
liver transplantation of regenerative biomaterials combined with
stem cells for liver injury repair. Future studies could explore the
addition of other materials or different scaffold types to further
optimize the repair process.

To further verify the mechanism of RSF on ADSCs, this study
performed transcriptomic analysis between the RSF + ADSC
group and the RSF group. The results showed that the RSF +
ADSCs scaffold significantly upregulated the expression of genes
associated with the PPAR signaling pathway,51 such as Cpt1a,
Slc27a5, Acadl, Dbi, and Fabp1 (log 2FC Z 2, P o 0.05). PPAR52 is

Fig. 5 Formation of new tissue on the surface of the liver after 7 days of RSF + ADSC scaffold transplantation. (A) HE staining of liver vessels and bile
ducts in the RSF + ADSC group. (B) Immunohistochemical staining of vascular markers CD34 and ERG, as well as bile duct markers MUC-1 and CK19 in
the RSF + ADSC group (indicated by black arrows).
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a transcription factor involved in inflammation and lipid meta-
bolism, and its activation can inhibit liver fibrosis. In addition,
the RSF + ADSC scaffold can inhibit the TNF signaling pathway.

TNF53 can bind to its receptors TNFR1 (Tnfrsf1a) and TNFR2
(Tnfrsf1b),54 activating downstream pathways such as NF-kB,55

thereby triggering inflammatory responses and cell apoptosis.56

Fig. 6 RNA sequencing after scaffold transplantation. (A) Cluster heatmap of differentially expressed genes (DEG) expression. (B) Venn diagram showing
the DEGs between groups. (C) Upregulated pathways via KEGG pathway enrichment analysis. (D) Downregulated pathways via KEGG pathway
enrichment analysis.
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5. Conclusions

In summary, RSF + ADSCs have great potential in liver regen-
eration and LF treatment. In the future, we will continue to
explore the effects of RSF + ADSCs on the upstream and down-
stream molecules of the PPAR and TNF signaling pathways in
reversing liver fibrosis.
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