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Parkinson’'s disease (PD) is a progressive neurodegenerative disorder characterized by substantial loss of
dopaminergic neurons in the substantia nigra, leading to both motor and non-motor symptoms that significantly
impact quality of life. The prevalence of PD is expected to increase with the aging population, affecting millions
globally. Current detection techniques, including clinical assays and neuroimaging, lack the sensitivity and
specificity to sense PD in its earliest stages. Despite extensive research, there is no cure for PD, and available
treatments primarily focus on symptomatic relief rather than halting disease progression. Conventional
treatments, such as levodopa and dopamine agonists, provide limited and often temporary relief, with long-term
use associated with significant side effects and diminished efficacy. Nanotechnology, particularly the use of
metallic-based nanomaterials (MNMs), offers a promising approach to overcome these limitations. MNMs, due
to their unique physicochemical properties, can be engineered to target specific cellular and molecular
mechanisms involved in PD. These MNMs can improve drug delivery, enhance imaging and biosensing
techniques, and provide neuroprotective effects. For example, gold and silver nanoparticles have shown
potential in crossing the blood—brain barrier, providing real-time imaging for early diagnosis and delivering
therapeutic agents directly to the affected neurons. This review aims to reveal the current advancements in the

Received 29th October 2024, use of MNMs for the detection and treatment of PD. It will provide a comprehensive overview of the limitations
Accepted 8th February 2025 of conventional detection techniques and therapies, followed by a detailed discussion on how nanotechnology
DOI: 10.1039/d4tb02428a can address these challenges. The review will also highlight recent preclinical research and examine the

potential toxicity of MNMs. By emphasizing the potential of MNMs, this review article aims to underscore the
rsc.li/materials-b transformative impact of nanotechnology in revolutionizing the detection and treatment of PD.
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1. Introduction

Parkinson’s disease (PD) is a public debilitating progressive
neurodegenerative disorder primarily affecting the elderly. It
ranks second in prevalence after Alzheimer’s disease. The
prevalence of PD has increased over the past 40 years compared
to previous periods, reaching about 9% among the elderly
population over 60 years, with a higher incidence in males.
This gender-related occurrence is thought to be due to the
potential neuroprotective effects of estrogen.” According to
the WHO, the population affected by PD is expected to rise to
about 2 million by 2030.> Although the etiology of PD is not yet
fully understood, it is attributed to both non-genetic factors,
such as dietary imbalances and pesticides, and genetic muta-
tions related to o-syn and dopamine, which are more prevalent
in patients under 40 years of age.>” To achieve a definitive
diagnosis and efficient therapy, the pathophysiology of PD
should be elucidated. While the PD etiology remains unclear,
ongoing research aims to provide a coherent and substantial
mechanistic explanation.

The dopaminergic neurons of the substantia nigra (SN)
provide dopamine to the striatum. In PD, the substantia nigra
pars compacta (SNpc) neurons, which are responsible for motor
functions, are disrupted, leading to a depletion of extracellular
dopamine in the synapse. This results in striatal malfunction
and induces motor disability.®® Other coherently pertinent
factors that exacerbate the PD ailment include altered mito-
chondrial function, triggered cerebral inflammatory response,
exacerbated ROS generation and activation of microglia.'®"*

Remarkably, the aggregation of a-synuclein (o-syn) and the
formation of Lewy bodies within the dopaminergic neurons of
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the substantia nigra are some of the main hallmarks. The a-syn
protein is composed of 140 amino acids divided into 3 regions;
N-terminal, amyloid-binding central domain and C-terminal.
The first region is responsible for the protein’s aggregation
where the phosphorylation of serine-129 within the last region
abrogates this event."*™*® The aggregation of a-syn contributes
to the dissipation of dopaminergic neurons within the SNpc
leading to dopamine deficiency.'®"’

The PD development and progression are mostly explained
by the Braak hypothesis that divides the disease into six stages,
where the symptoms start with olfactory disorders and end with
cognitive impairment.'®'® PD symptoms can be classified as
motor and non-motor symptoms as well (Fig. 1). Neuromotor
disability is mainly observed as tremors at rest and bradykine-
sia. The latter class is heterogeneous and includes cognitive
disorders in addition to the fast movement of the eye and some
non-PD-specific symptoms. All these symptoms culminate in
declined life quality and can occasionally embarrass the
patients.”’*>* The focus of this review is on the inciting devel-
opment of metallic nanomaterial (MNM)-based detection tech-
niques, therapeutics and theranostics. Furthermore, toxicity,
biocompatibility, challenges, and future outlook are delineated.

2. Detection of PD

PD clinical diagnosis remains a challenge as it is misleading in
most cases due to the overlap of its symptoms with other
neurodegenerative disorders. Intriguingly, the accumulation of
misfolded a-syn protein clumps and the development of Lewy
bodies in various parts of the brain are evident to be the primary
pathogenic hallmarks of PD. These a-syn aggregates, as well as
DA, levodopa (LD), and miRNAs, form essential biomarkers for
the early identification and control of this disease.”®° Current
diagnostic platforms involve enzyme-linked immunosorbent
assay (ELISA), fluorescence and electrochemical immunoassays,
high-performance liquid chromatography (HPLC), real-time
polymerase chain reaction (rt-PCR) and neurobiosensors.>®3%>"
ELISA is the most widely used method for the detection of
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markers such as PS65-Ub, indicating any mitochondrial dysfunc-
tion, and o-syn, especially in CSF because its levels are higher
than those in biofluids.>* Other methods, such as electrochemi-
luminescence and immunomagnetic reduction are becoming
more common and undergo more developments to detect extre-
mely low levels of biomarkers.** These conventional techniques
are used to selectively detect and quantify the levels of DA and a-
syn in body fluids such as blood and urine.** However, they
suffer from several limitations, as they can be complex, expen-
sive, time-consuming, and inaccurate, providing false results,
and requiring result interpretation.**?*

Molecular imaging techniques are also implemented in PD
diagnosis; they include magnetic resonance imaging (MRI),
single-photon emission computed tomography (SPECT), posi-
tron emission tomography (PET), transcranial ultrasound ima-
ging and their advancements. They provide quantitative
information about structural changes in the brain according
to their modalities and computer algorithms, and utilize tracers
and contrast agents to bind to specific targets and markers.?¢7®
Nevertheless, they are still expensive and labor-intensive tech-
niques, and this limits their accessibility for PD patients.

2.1. Artificial intelligence (AI)-based PD detection

With the urgent need for development and advancements of PD
differential diagnosis techniques, scientists have implemented
and integrated artificial intelligence (AI) and machine learning
(ML) in this process. They have employed data analytics to
accurately diagnose PD in the early stages and it is showing
promising results. AI holds a great potential for the automation
of diagnosis and accessibility in remote areas with high

Data source
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demands.??*°

They mainly depend on using different models
and algorithms to process inputs according to well-established
libraries. These inputs can be medical history, genetic informa-
tion, symptoms or PET images that need expertise to be
analyzed. Such inputs are provided to AI systems possibly
through wearable devices (WDs), so that they can detect pat-
terns and anomalies indicating PD incidences with remarkable
precision. Even breath patterns, as shown in Fig. 2, were proved
to have a link with PD, where a study was conducted on
nocturnal breath signals to predict the disease.”’ The devel-
oped model achieved specificity and sensitivity of 82.83% and
86.23%, respectively using wireless signals. While ML uses
algorithms to enable computers to process data without being
programmed, deep learning (DL) exploits more sophisticated
multi-layered neural networks for more complex data analysis
and accurate predictions.?® This allowed expanding the sample
size, reaching remote places, early decision making, and opti-
mizing more algorithms to outperform human expertise.
Moreover, WDs emerged as a promising tool that allows the
non-invasive detection and continuous monitoring of PD. They
have advanced sensors that capture motion patterns and phy-
siological signals in real time, and collect data to analyze motor
functions indicative of PD. The design of these devices was
integrated with AI to aid in data interpretation and highlight
any deviation from normal motor functions.** Al also facilitates
the continuous improvement of WDs and adaptation through
learning from any new inputs for further enhancement of the
accuracy.”’ Besides, different types of sensors such as inertial,
acoustic, optical, electrical, and force sensors were exploited in
WDs. Once the patient uses the device, it begins retrieving and
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Fig. 2 Scheme of Al-based diagnosis process for PD. Breathing patterns are collected through signals or wearable devices and processed using Al
models. Based on the analysis, PD is predicted if present, and its severity is determined according to the movement disorder society unified Parkinson's

disease rating scale (MDS-UPDRS) questionnaire. Reproduced from ref. 41.
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collecting specific data to be processed and analyzed using differ-
ent Al and DL or ML models and algorithms.** However, this
technology suffers from several drawbacks; ML models implemen-
ted in the studies lack full description of findings or techniques.
Moreover, the number and kind of subjects and their medical
history are not accurately reported and assessed, while DL models
are limited due to difficulty in handling their datasets.*>*°

2.2. MNM-based biosensors for the detection of PD

Nanotechnology holds great potential to overcome the afore-
mentioned challenges and confer revolutionary advances in
developing diagnostic assays to enable the early detection of
this incurable neurological disorder. Although the mechanism
of nanomaterials in biosensing remains unclear, they are cur-
rently being explored for their ability to offer high sensitivity,
specificity and low limit of detection (LOD).*” Metal nano-
particles (MNPs) such as gold and silver nanoparticles (NPs)
exhibit unique tunable electronic and optical properties, which
make them applicable for the imaging of PD. They can interact
with incident light and form characteristic absorption signals
that shift depending on their sizes and shapes.*® Moreover, they
can be functionalized with specific chemical moieties to be able

View Article Online
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to cross the blood-brain barrier (BBB) and act as contrast agents
or bind to any desired biomarker and quantify it with high
sensitivity.**>! Different metals can be used to develop diagnos-
tic assays for the detection of PD depending on their properties
and the type of sensors.”>® For instance, a study was conducted
to develop an immunosensor based on electrochemical impe-
dance spectroscopy. They used an electrode system modified
with palladium nanoparticles (PANPs) to enhance the signals
and conductivity. This PANP-plated electrode was functionalized
with o-syn antibodies to quantify the levels of o-syn and epi-
nephrine in clinical serum samples. It showed linear response
in phosphate buffer and serum samples with LOD values of
0.13 ug mL™" and 1.3 ug mL ™", respectively.>* Based on that,
research has recently focused mainly on exploiting MNMs to
enhance the sensitivity and performance of different types of
biosensors. Biosensors can be categorized into immunosensors,
DNA- and enzyme-based biosensors, and piezoelectric and ther-
mal biosensors.>>>® This review focuses mainly on different
MNMs such as zine, platinum, gold, silver, cerium, and iron in
the fabrication of biosensors for the detection and imaging of PD.

2.2.1. Gold nanoparticle (AuNP)-based biosensors for the
detection of PD. The nanoparticles of the noble metal gold
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(A) Schematic of the SPR phenomenon of AuNPs and its implementation in a diagnostic platform, where the interaction between the antibody

and the analyte (target) causes a shift in the SPR signal, indicating the presence of the target. (B) Schematic of an electrochemical biosensor exploited in
PD diagnosis. The antibodies are linked to an electrode, and the presence of the analyte alters the electrical signal output, which may be observed in the
form of (a) cyclic voltammetry (CV) signal, (b) differential pulse voltammetry (DPV) signal, or (c) electrochemical impedance spectroscopy (EIS) signal.
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(AuNPs) are extensively used for the detection of PD owing to
the ease of fabrication, their inert nature, large surface area,
and high affinity to biomolecules.’® In addition, they are
biocompatible and good conductors of electricity, and they
have unique optical properties manifested in their surface
plasmon resonance (SPR). SPR is related to the oscillation of
conducting electrons, resulting in a distinguished absorption
profile that depends on the shape and size of AuNPs. On
account of this phenomenon, they are considered as signal
transducers, as shown in Fig. 3(A).>”>® Moreover, they have been
used in different structures to construct simple and sensitive
biosensing platforms to enable the rapid and early detection of
biomarker of PD, as shown in Fig. 3(B). For instance, biotinylated
antibody-conjugated AuNPs combined with graphene were used to
design an electrochemical immunosensor to linearly detect the
concentration of o-syn antigen in plasma. This nanocomposite
enabled immobilization of the antibody, enhanced the conductiv-
ity, sensitivity, and specificity of the immunosensor, and produced
a higher current peak of 5.5 pA. Moreover, its electrochemical
performance was investigated using square wave voltammetry
(SWV) and showed linear detection of the antigen from 4 to
128 ng mL ™" with an LOD of 4 ng mL™". However, the immuno-
sensor stability and reproducibility were still under investigation
before it can be used as a point-of-care device.**

Another research work was performed using activated
charcoal modified with AuNPs to detect the levels of LD in
synthetic serum, urine, and river water. This nanocomposite was
deposited on a glassy carbon substrate to fabricate an electrode
that measures the electrochemical response of LD by square-
wave adsorptive anodic stripping voltammetry. Various factors
were also studied according to the Doehlert experimental matrix
to assess their impact on the electrode performance. The results
indicated the linear detection of LD and LOD of 50 nmol L'~
10 umol L™" and 8.2 nmol L™, respectively.**

Several studies were also conducted using the same
integrated nanocomposite with different carbon allotropes to
construct an electrochemical immunosensor. The reason is
that it proved to have high surface area and conductivity,
unique electronic properties, and biocompatibility. For exam-
ple, recent work was conducted using multi-walled carbon
nanotubes with AuNP-doped indium tin oxide electrodes. This
electrode was developed to detect levels of DJ-1 protein as a
biomarker of PD in cerebrospinal fluids and saliva. The analysis
of the biosensor efficiency was performed by electrochemical
impedance spectroscopy (EIS), single-frequency impedance,
and cyclic voltammetry (CV), and it showed the detection range
and LOD of 4.7-4700 fg mL~" and 0.5 fg ml~ ", respectively.”**

Carbon nanotubes were also used in another work as single-
walled (SWCNTs) to fabricate interdigitated electrodes functiona-
lized chemically with anti-o-syn-conjugated Au nanourchin.”® This
electrode was designed to detect the levels of a-syn, and the results
were confirmed by ELISA technique. Due to the integration of Au
nanomaterials into electrodes, higher sensitivity and selectivity
were achieved because they can detect low currents. Therefore, the
LOD was enhanced from 1 pM using the bare SWCNT electrode to
1 fM after applying conjugated gold nanourchin.*®

3810 | J. Mater. Chem. B, 2025, 13, 3806-3830
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A different study was conducted using labelled gold nano-
bipyramids (GNBPs) to construct a lab-on-a-chip diagnostic
system based on surface-enhanced Raman scattering (SERS).
This nanostructure was anisotropic, which offered sharp
tips and edges, and consequently, enriched the plasmonic hot
points. In addition, it was functionalized with hairpin DNA and
Raman reporter moieties which caused GNBPs to aggregate if the
analyte was present. This platform enabled the detection of
altered expression of miR-221 and miR-214 as biomarkers of
PD through amplified SERS signals due to aggregation.®

SERS technique was also implemented in another study
conducted on AuNPs. However, this study aimed to image DA
in retinal tissues and live cells. AuNPs were labelled with
modified thiol molecules due to their high affinity to the Au
surface where DA-positive samples result in the aggregation of
functionalized AuNPs. The positive response was detected by
the Raman scattering signals due to formed plasmonic hot
spots, and it is speculated that this technique can be further
applied in the detection of DA in live cells in PD patients.®>
Furthermore, the biodistribution of administered gold
nanoclusters (AuNCls) was studied as a function of the route
of administration in mice as the animal model. Intravenous,
intraperitoneal, intranasal, and intragastric routes were
assessed, and it was found that AuNCs were mostly located in
the brain in the case of intraperitoneal administration. This
implies that they had the ability to cross the BBB, and therefore,
can be further investigated to use such nanoparticles in
the imaging of PD upon irradiation along with treatment.®®
Besides, Adam et al. focused on developing a AuNP-based
interdigitated tetraelectrode to detect o-syn in the fibril for-
mation process. This electrochemical biosensor was investi-
gated using a cyclic and differential pulse voltammeter, and
the results showed a linear range of 1 aM-1 pM and an LOD of
100 aM.®* All these biosensing models will enable the early
detection and monitoring of PD once they are well developed
and pass the stages of the clinical trials.

2.2.2. Silver nanoparticle (AgNP)-based biosensors for the
detection of PD. Silver nanoparticles (AgNPs) were reported in
the literature for the detection of PD by biosensing different PD
biomarkers.®® Like Au, Ag has unique SPR properties, good
chemical stability and biocompatibility, and enables Raman
spectroscopy. For example, Ma et al. exploited silver nanoclus-
ters (AgNCls) functionalized with 5-mercapto-2-nitrobenzoic
acid (MNBA) to fabricate a photoelectrochemical biosensor to
detect the levels of DA and glutathione (GSH), simultaneously
in PD-bearing animal models with different stages. The cell
structure was designed using Ag electrodes as multi-channels
for the detection of multiple analytes through changes of
photocurrent. AgNCls were further integrated with hybrid
nanomaterials such as graphene oxide (GO), carbon dots
(CDs), and AgNPs to enhance the photoelectric activity, sensing
performance, and the selectivity. The results indicated that the
biosensor hybrid with AgNPs and GO achieved an LOD and
linear range of DA of 53 nM and 0.16-6 pM, respectively,
whereas the biosensor hybrid with CDs reported an LOD and
linear range of GSH of 34.3 nM and 0.1-1 uM, respectively.”®

This journal is © The Royal Society of Chemistry 2025
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Another work employed AgNPs to fabricate label-free SERS plat-
form as a sensitive and robust diagnostic assay to detect 5-S-
cysteinyl-DA, which is an important metabolite in PD. The results
indicated that this technique allowed the detection of the meta-
bolite in the synthetic cerebrospinal fluid with low concentrations
of about 10 nM, and 100 nM in simulated urine.®®

The same technique was implemented in another work to
detect the levels of DA in situ using AgNPs where the label-free
SERS measurements were conducted with a laser of wavelength
488 nm. The results displayed the reproducibility of SERS
spectrum when using citrate-reduced AgNPs upon binding to
DA through surface adsorption.’” Besides, Rouhani et al
worked on developing a biosensing electrode made of AgNPs
with GO as a nanocomposite to detect LD in serum and urine
samples. The performance of the modified electrode was
measured through CV, and it showed enhanced oxidation-
reduction peaks. Different parameters such as concentration
of GO, pH, and accumulation time were optimized, and the
results showed that this accurate assay achieved an LOD of 0.76
nM and a linear range of 0.003-10 puM of LD.%®

2.2.3. Iron oxide nanoparticles (ION)-based biosensors for
the detection of PD. Avowedly, iron oxide nanoparticles (IONs)
are extensively used in the bioimaging and biosensing of
neurodegenerative diseases due to their inherent biocompat-
ibility, biodegradability, and small tunable sizes.®® They also
exhibit unique SPR properties and high refractive index; there-
fore, they can cross the BBB and serve as excellent MRI contrast
agents in clinical bioimaging. Moreover, they can be functio-
nalized with specific chemical moieties for enhancing the
active targeting and bypassing BBB. Superparamagnetic IONs
(SPIONS) align and become magnetic in the presence of exter-
nal magnetic field, and this property can be employed for
sustained drug release, controlling the targeting and avoiding
the clearance.’” Furthermore, SPIONs have also been used to
tag, track, and monitor stem cells and their spatial distribution
via MRL’® An et al. managed to synthesize ultra-small IONs
functionalized with polyacrylic acid (PAA) and polyethylene
glycol (PEG) to prevent protein corona formation and reduce
the immunogenic response in vivo. These particles acted as
effective MRI agents with a relaxation rate of 84.65 s~ mM ",
and they enabled labeling and tracing of primary human
adipose-derived stem cells for up to 3 weeks.”* This can be
further implemented as a diagnostic technique to trace poten-
tially therapeutic stem cells in PD patients.

Another study employed PEGylated SPIONs conjugated to a
W20 antibody as the MRI probe to detect amyloid oligomers in
PD transgenic mice. The results proved the BBB penetration of
these small SPIONs and showed high magnetic resonance
relaxation and significant contrast in 72-weighted image.
Therefore, this system was able to detect amyloids at the early
stages because of its high sensitivity and biocompatibility.”>
Additionally, magnetic IONs were exploited in the biosensing of
different biomarkers of PD due to the ease of their functionaliza-
tion and their high sensitivity. For instance, Yang et al. developed
a sensitive immunosensor depending on immunomagnetic
reduction (IMR) of magnetic IONs labelled with anti-o-syn.

This journal is © The Royal Society of Chemistry 2025
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The IMR signals in plasma samples were detected using
a magnetosusceptometer, and the results showed that they
achieved an LOD and range of o-syn concentration of
0.3 fg mL " and 0.1-100 pg mL %, respectively.”*”* Another work
was done using anti-o-syn-functionalized ION hybrids with GO to
construct Mg-based micromotors for the detection of a-syn in
whole-blood samples. This sensitive electrochemical biosensor
enabled the effective capturing of the biomarker in 100 s and its
concentration was inversely proportional to the signal amplifica-
tion capability of the developed biosensor.” Besides, Zhang et al.
investigated ION-based interdigitated electrode for the identifi-
cation of a-syn through using both the aptamer and the antibody
to sandwich the analyte. They enhanced the performance of this
biosensor by modifying it with AuNPs where the current changed
as a response to binding to the target in a linear manner. The
results recorded an LOD of 10 aM and a linear range of 10-10” aM
with R* = 0.9729, thereby enabling the sensitive and accurate
detection of a-syn (Fig. 4).”° Table 1 summarizes the main studies
of MNM-based biosensors of PD.

These MN-based electroanalytical techniques have advan-
tages over conventional ones as they require a small volume of
sample and exhibit high sensitivity and specificity. They also
allow multiplexing where one electrochemical biosensor can be
functionalized with various ligands for the detection of multi-
ple analytes simultaneously, and this, as a return, enhances the
accuracy of the result. As for the imaging techniques, contrast
agents such as IONs enabled higher resolution in MRI and easy
penetrability due to their ultra-small sizes, and they can detect
any minor changes in the brain structure. However, using
MNPs may encounter some limitations where they can be
expensive to manufacture, complex according to the design,
and difficult in standardization because of the low reproduci-
bility and high reactivity of the nanoparticles. These hurdles
require more advanced research and optimization in imple-
menting nanotechnology in diagnostic techniques to overcome
such limitations and enhance the nanoparticle applicability.

3. Treatment of PD

BBB is a semi-permeable membrane that surrounds the central
nervous system including the brain. It confers selective perme-
ability that constrains the passage of pathogens and toxins but
passively transport the essential nutrients for survival and
homeostasis.*> On the other hand, this semi-permeability con-
strains the treatment as only 1% of the therapeutic doses reaches
the brain. However, increasing the doses is stumbled by the
severity of the adverse effects.'®®® PD is irremediable and the
available therapy is mainly palliative for both the motor and non-
motor symptoms. Therefore, the patients’ plight is ameliorated
through the easiness of the symptoms by increasing the intra-
neuronal dopamine (DA) or enhancing DA receptors.”° Due to the
noted DA deficiency in the PD patient’s brains, the efforts lead to
the development of a DA precursor, levodopa (-3,4-dihydro-
xyphenylalanine, known as 1-dopa). L-Dopa is characterized by
its ability to penetrate the BBB and get converted into DA when
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(A) Scheme of the biosensor construction. Iron oxide (I0)-modified aptamers and polyethylene glycol (PEG) were immobilized on the surface of

interdigitated di-electrode (IDE), where a-syn is sandwiched between the anti-a-syn aptamer and antibody-AuNPs (B) and (C) quantitative detection of
a-syn at various concentrations and (D) selective detection of a-syn in the presence of other analytes. Reproduced from ref. 76.

Table 1 Summary of the main studies reporting the development of MNM-

based PD biosensors

Targeting Linear
Target ligand Sample type Detection method Nanomaterial range LOD Ref.
o-syn Rabbit Serum Label-free SPR Iron oxide (Fe;04) NPs 0.01-100 pg mL ™" 5.6 fg mL ™" 30
Ab138501
mAb
o-syn Specific Synthetic cere- Electrochemical impedance Palladium (Pd) NPs 1.5-15 g mL™"  0.13 pg mL~* 54
antibodies  brospinal fluid spectroscopy
Epinephrine — 0.75-100 umol L' 0.051 umol L™*
DA — Live human Enzyme-less electro- NiAl layered double hydro- 0.1-97 pM 2 nM 77
nerve cells chemical biosensor (CV)  xides nanosheets
integrated with GO
o-syn Anti-o-syn Diluted human Label-free electrochemical Cysteamine-functionalized 10-1000 ng mL~" 1.13 ng mL™" 78
sera immunoassay fluorine-doped tin oxide
NPs
Anti-a-syn Human plasma Electrochemical Gold nanostars-decorated 0.5-10 pg mL™'  0.08 pg mL ™" 79
immunoassay zinc oxide (ZnO) nanowires
Monoclonal Plasma and Immunomagnetic Magnetic Fe;O, NPs ND In plasma: 3.60 £ 80
antibody serum reduction assay 2.53 pg mL ™"
In serum: 0.03 +
0.04 pg mL™"
Thiolated Diluted serum  Electrochemiluminescence AuNPs@Metal organic 2.43 fM-0.486 pM 0.42 fM 81
aptamer (ECL) frameworks (MOFs)
Carboxylated composite 1.39 fM-0.243 pM 0.38 fM
aptamer

absorbed by the nerve cells. Hitherto, the DA precursor, L-dopa,
is the indispensable choice for the treatment and it exerts
its effect through replenishing the deficiency. t-Dopa can
be undesirably converted to DA in the peripheral nerves;
therefore, carbidopa (peripheral dopa-carboxylase inhibitor)
is co-administered with r-dopa.** However, DA does not exert
efficient remedial effect on the non-motor symptoms as

3812 | J Mater. Chem. B, 2025, 13, 3806-3830

hallucination and can culminate dopaminergic “type A” adverse
effects.> There are some drug classes that were proven to
have anti-PD effects as monoamine oxidase-B (MAO-B) inhibitors
and catechol-O-methyltransferase (COMT) inhibitors. However,
they may also induce the dopaminergic ‘“type A” adverse
effects.®® Different treatment mechanisms are illustrated in
Fig. 5.

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 Classes of anti-PD drugs affecting the DA (dopamine) synapse. In the presynaptic nerve terminal, tyrosine is converted to L-dopa by tyrosine
hydroxylase (TH) and then to DA by L-dopa-decarboxylase (DDC). Monoamine oxidase-B (MAO-B) inhibitors prevent DA breakdown, and catechol-O-
methyltransferase (COMT) inhibitors prevent the peripheral degradation of L-dopa. D1 and D2 are DA agonists, specifically non-ergot agonists. DOPAC,
dihydroxyphenylacetic acid; 3MT, 3 methoxy-tyramine. Recreated from ref. 86.

The resistance-dependent debilitating ability of the neurons
to maintain the DA in addition to the limited plasma half-life of
L-dopa aggravates the PD motor stability. For instance, the DA
level fluctuates causing on/off cycles of akinesia and dyskinesia.
Therefore, non-ergot DA agonists such as ropinirole and prami-
pexole are currently used as long-acting treatments available for
PD.*"% In order to sequester the limitations of PD, the applica-
tion of nanotechnology and the development of nano-based
therapeutics emerged as efficient and probable definitive treat-
ment. Nanomaterials can penetrate the BBB, interact with the
cells, encapsulate and deliver drugs to obtain desirable drug
release rate while dissipating off-targeting of the drugs.®”*®
Intriguingly, many studies have shown the ability of the MNMs
to overcome this permeability obstacle and effortlessly penetrate
the BBB.*® Consequently, the MNMs’ effect is potentiated to play
a crucial role in the development of central nervous system (CNS)
novel treatments (Fig. 6). Other classes of nanostructures
are described in elsewhere in the literature as liposomes,”
nanoemulsions®! and polymeric nanoparticles.’>

3.1. MNMs-based treatment of PD

3.1.1. Gold nanoparticles (AuNPs)-based systems for the
treatment of PD. Gold-based nanostructures have been exten-
sively exploited in biomedical applications due to their bio-
compatibility, inertness and the presence of versatile well-
established preparation approaches. Several factors govern
the use of AuNPs such as the size, shape, charge, incorporation
within nanoformulations and the use of specific surface-

This journal is © The Royal Society of Chemistry 2025

modified ligands, DNA or proteins. Concerning the CNS speci-
fically, AuNPs gained specific interest due to their capability to
cross the BBB and their antioxidant and anti-inflammatory
effects without significant toxicity.®® To consolidate the impor-
tance of size, Gao and coworkers reported the inversely propor-
tion relation between the size of the AuNPs and the intensity of
AB fibrillation. For instance, relatively bigger AuNPs (36 and
18 nm) enhanced the fibrillation, while small AuNCs (6 nm)
constrained this process. Intriguingly, even smaller AuNCs
(1.9 nm) showed utter fibrillation.”® Ultrasmall nanoclusters
(AuNCs, <3 nm) were used to develop remedial nanoformula-
tions for PD,**°® due to their remarkable penetration of the
BBB.”” For example, Ma et al. formulated AuNCs coated with
peptides that are either positive or negative. Both types bind to
20S proteosome. Nonetheless, the AuNC(—) preferentially con-
ferred cellular neuroprotective effects simultaneously with
the decreasing a-syn.”> This study highlighted the impact of
different surface charges on PD manifestations and the shape
also represented a controversial aspect in terms of its effect. Wang
et al. compared Au nanospheres (AuNSs) and Au nanocubes
(AuNCs) of the same size (20 nm) and found that AuNSs induce
more fibrillation of amyloid-B peptide (Ap(1-40)) more than {100}
faceted AuNCs owing to the greater chemical activity of the surface
atoms.”® Additionally, the stabilizers of the AuNPs were found to
have a potentiation effect. Citrate-stabilized AuNPs were reported
to decrease the membrane potential by binding to glia neuro-
transmitters receptors, and thus, neutralize the astrocyte
activation.”® Their release causes diverse neurological disorders

J. Mater. Chem. B, 2025, 13, 3806-3830 | 3813


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4tb02428a

Open Access Article. Published on 17 February 2025. Downloaded on 1/25/2026 9:00:19 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Journal of Materials Chemistry B

’0
" 90@ 200 0°
%9 %o
Metallic NPs L-Dopa ® 04

View Article Online

Review

]
Enhanced drug delivery to PD °

Polymetallic NPs

Anti-oxidant effect

' o, K
RV /,

Increased BBB permeability
High drug delivery to neuronal cells
Locomotor and cognitive improvement
Anti-inflammatory effect

A

e
XY (-
Exosome \\ \

(3)

Polymer

(b)

a-synuclein

accumulation
Inflammatory
\ mediators
X /i 4 l

Neuron

Fig. 6

AZA\N'7\\7,N
DNA

Plasmid
DNA

(4)

PEGylation

) Metallic nanomaterials (MNMs)

\

[x'gv Polymetallic MNMs

J. Surface functionalized MNMs

( ) Drug-loaded MNMs
Neuron synapse

(a) Schemeatic of several protocols for the implementation of MNMs in developing PD-based drug delivery platforms. MNMs can be prepared

from a single metal or multiple metals (1), loaded with drugs (2), impeded into nanoformulations (3) and functionalized with different classes of surface-
attached targeting ligands (4), (b) Scheme of how MNMs exert their anti-PD effects by decreasing a-syn levels, blocking inflammation and reducing

oxidative stress to normalize neuronal function.

as PD through the activation of astrocytes by surface-attached
receptors.'’

Naturally derived AuNPs were found to be promising for
effective treatment of PD,'°%'%% and can ameliorate the induced
neurotoxicity through exerting protective effects from destructive

3814 | J Mater. Chem. B, 2025, 13, 3806-3830

oxidation, inflammation and cell death.'® For instance, AuNPs
derived from Hibiscus sabdariffa have been reported to have
remedial effects on PD by preventing the aggregation of o-
lactalbumin.'”" AuNPs (30-50 nm) derived from Cinnamomum
verum neutralized the oxidative activity and neuromotor

This journal is © The Royal Society of Chemistry 2025
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dysfunction in the MPTP-induced PD model in addition to
mitigated tumor necrosis factor-o. (TNF-o), Interleukin-1 (IL-f)
and Interleukin-6 (IL-6) levels and normalized TLR/NF-kB
signal.’® Hu et al. adopted gene drug delivery for the treatment
of PD using a nanocomposite based on chitosan and AuNPs
loaded with plasmid DNA and nerve growth factor (CTS@GNP-
pPDNA-NGF) (Fig. 7). The NGF facilitated the cellular endocytosis
into the PC12 cells in the in vitro model. Moreover, the MPP*-
based apoptosis was inhibited by the nanocomposite as proven
by confocal microscopy due to the suppressed overexpression of
a-syn. These results resembled those obtained from the Western
blot analysis, which proved that CTS@GNP-pDNA-NGF deterio-
rated the expression level of a-syn. Additionally, in the PD in vivo
model induced in C57bl/6 mice by MPTP, CTS@GNP-pDNA-NGF
nanocomposite improved the body weight, healed the substantia
nigra density, crossed the BBB and were cleared from the body
through the spleen after exerting its therapeutic effect.'®
AuNPs were exploited as neuronal drug delivery cargoes for
the most efficient therapies of PD. Nanoflowers of multi-
branched AuNPs were prepared and used as transposing car-
riers of 1-DOPA to penetrate the BBB.'°® A novel AuNP-based
platform for the cerebral drug delivery of i-DOPA and DA was
developed. The AuNP surface was functionalized by three
different amantadine derivatives due to their ability to bypass
the BBB and their biocompatibility.*”'°”'%® The surface-
functionalized AuNPs were compared to polyethylene glycol-
coated AuNPs (PEG-AuNPs). .-DOPA or DA were attracted to the
AuNPs by several potential surface interactions. The developed
systems were investigated in the presence of bovine serum
albumin (BSA) as it is the most abundant protein in the body
that may form a protein corona hindering the drug’s release.
Peptidoglycan monomer-AuNPs (PGM-AuNPs) was proved to be
the most successful drug delivery tool as it had the highest drug
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cargo especially from the DA. Additionally, the impact of the
BSA on pharmacokinetics and pharmacodynamics was almost
diminished.®” However, neither in vitro assessments nor in vivo
studies were performed to further reveal the anti-PD activity
and efficiency. AuNPs were reported to be incorporated with
other therapeutic agents to exploit the beneficial characters of
the AuNPs. For example, it acted as the conductive component
in the self-healing hydrogel that exerted anti-inflammatory
effects.'® Another hydrogel was also prepared using AuNP
conductive properties to design an injectable implant in the
brain for PD treatment."'® Additionally, AuNPs acted as a drug
carrier through electrostatic interactions,®” as NIR-responsive
agents,""" gene carriers and''® for CT imaging.""® Diverse
applications of AuNPs for the treatment of PD are listed in
Table 2.

3.1.2. Silver nanoparticles (AgNPs)-based systems for the
treatment of PD. AgNPs are widely distributed to multiple
organs. However, it is cleared from all the organs after 8 weeks
of the initial exposure except from the testis and remarkably,
the brain, as they have the ability to cross the BBB.'*”"*'° They
were reported to stimulate inflammation, especially in the first
24 h of exposure,''7*?°
several in vitro assays were comparing biogenically prepared
AgNPs and AuNPs by Acacia auriculiformis leaves. AgNPs
decreased the fluorescence and absorption magnitude in the
in vitro assessments in addition to the enhanced anti-oxidant
effect. Thus, AgNPs were speculated to have superior inhibitory
effects in comparison to the Au counterparts.'*’ Gonzalez-
Carter et al proved that the citrate-capped AgNP-induced
immune response enhanced the microglia ability to upregulate
anti-inflammatory enzymes and reduce ROS. Following AgNP
microglial internalization, AgNPs induced the expression of
cystathionine-y-lyase (CSE) that detained the release of Ag" ions.

However, based on a comparative study,
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Fig. 7 Schematic of the preparation of the nanocomposite, coated with pDNA (plasmid DNA) and nerve growth factor (NGF). The NFG-driven
endocytosis into PC12 cells resulted in enhanced cellular and dopaminergic neuron proliferation. In vivo models of PD showed BBB permeability and
inhibition of a-syn overexpression. Adapted from ref. 105 with permission from Elsevier, copyright 2018.
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Moreover, Ag,S is formed as a covering layer on the surface of the
AgNPs. Consequently, ROS, nitric oxide and TNF-a production
are mitigated. From all these findings, it can be concluded that
AgNPs suppressed the inflammation and neurotoxicity of the
microglia cells.'*?

The green synthesis of AgNPs for the treatment of PD'**'*® and
exerting anti-oxidant effects have been reported previously.'>”'*®
The plant extract of Mucuna pruriens was found to have reduction
capability that was exploited to produce AgNPs and simulta-
neously, containing high i-dopa amounts.””® Sardjono et al.
reported the preparation of AgNPs (36.5 nm) by extraction from
seeds and performed catalepsy assessment to investigate the
efficiency of the prepared NPs in the in vivo model. Gradually
increasing doses starting from 5 to 25 mg kg~ ' were tested on
3 months old male mice. Groups of mice treated with 5, 10 and
15 mg kg~ of AgNPs significantly improved the catalepsy symp-
toms relative to the control and pure extract-treated groups, where
the dose of 5 mg kg '-treated group was remarkably the most
efficient.> Therefore, in order to circumvent the potential toxicity
of AgNPs, green synthesis, coating with biocompatible polymers or
decorating the surface with neural-cell-specific targeting ligands
are all potential pathways that should be adopted."*°

3.1.3. Iron oxide NPs (IONPs)-based systems for the treatment
of PD. The application of iron oxide nanoparticles (IONPs) can be
adopted through either of the two approaches. The first one is
through actively targeted therapy. For example, IONPs were coated
with oleic acid, which acted as a cargo and then layered with short
hairpin RNA (shRNA). The molecule was endocytosed through
NGF-receptors. The developed nanoparticles constrained the
expression of a-syn as concluded from the adopted in vitro
and in vivo models by PC12 cells and MPTP-bearing mice,
respectively.'*' Cheng et al. exploited the NIR-assisted penetration
through the BBB to deliver the anti-PD drug minocycline through
loading it into Fe;O, NPs."** A theoretical simulation study was
performed to design a PEGylated Fe;O,-based nanocargo as a
carrier for DA. PEGylated Fe;0, NPs were coated with albumin to
enhance the BBB penetrability and were loaded with DA; thus, the
developed NPs were speculated to provide sustained DA release
after the neuronal uptake."** Iron oxide NPs coated with curcumin
were developed and the results indicated rescued DA and norepi-
nephrine levels in addition to the anti-oxidant effect."** Ferric ions
were coordinated with curcumin and poly(vinylpyrrolidone) (PVP)
to develop PVP ultrasmall coordination polymer NPs (Fe-Cur NCPs,
10 nm), which was proven through the in vivo model to alleviate the
PD symptoms by improving the mitochondrial stress and exerting
anti-inflammatory effects.’*> The purpose of the study conducted
by Moayeri et al. was the replacement of the missing dopaminergic
neurons with stem cell therapies that are guided towards specific
injury. Therefore, an external magnetic field was applied to an
in vivo rat PD model and the therapeutic effect of superparamag-
netic iron oxide nanoparticles (SPIONs)/poly-L-lysine hydrobromide
(PLL) was found to be about 96%. Consequently, the transfection
with SPIONs/PLL was found to be a successful strategy for the
translocation of the stem cells in the target tissue.'*®

The second approach is underpinned on the application of
an external magnetic field. For example, dextran-coated IONPs
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can ameliorate the remedial effect of human mesenchymal stem
cells (hMSCs). Both rotational and motor behaviors were signifi-
cantly improved relative to the control. This improvement was
attributed to the enhanced migration of hMSCs towards the
damaged DA neurons and their subsequent differentiation to
resemble the DA-neurons.”®” To enhance the selectivity of the
SPIONs towards PD, the binding affinity of streptavidin (SA) and
biotin was exploited. The developed SA/PEI-SPIONs were tested
using a biotin-treated PC12 cell as an in vitro model. The surface-
modified SPIONs demonstrated greater binding of the PC12 cell
membrane, as observed by TEM."*®

3.1.4. Other MNM-based systems for the treatment of PD.
The experiment using a 6-OHDA-bearing hemi Parkinson’s mouse
model showed that the release of DA from the implanted DA-
loaded TiO, lattices improved the motor symptoms for one month
and significantly reduced the symptoms, which was still observed
after two months."*® Interestingly, TiO,-based implants with
nanopores provided sustained release up to 30 days post-implant
incorporation.**® Punitha and coworkers adopted a green synth-
esis pathway to prepare TiO, NPs (34 nm) and the cytotoxicity
using PC12 cells was in the range of 31.2-62.5 pg mL™ """ Yet,
dose-dependent dopaminergic neural toxicity of TiO, was corro-
borated after accumulation in the midbrain substantia nigra of
Balb/c mice.®

Selenium NPs (Se NPs) were proven to exert neuroprotective
effects, and hence, were reviewed as potential therapy for CNS
diseases such as PD.'*? For instance, the effect of the Se NPs is
attributed to the crucial role of Se to allow the normal function
of several peroxidase enzymes'** and inhibit inflammatory
mediators such as TNF-o, Nf-kB and PEG2'** to exert its anti-
oxidant and anti-inflammatory effects, respectively. Derivatives
of aminothiazole were synthesized and used for the development
of Se NPs pursuing fortified enhancement of the neurological
functions. The molecular docking studies revealed blocking of the
hMAO isoforms (A and B). Simultaneously, the ICs, value of the
NPs was only 0.033 pM, preceding the normal-sized counterparts’
potency by about 70%. In the haloperidol-induced PD in vivo
model, the behavioral test results of the NP group showed
improvements and enhanced exploration. Therefore, the Se-
based nanoformulation is elicited as an effective anti-PD drug.'*®

Gao et al. developed combined genetic and antioxidant
therapy using NIR-stimulated magnesium oxide (MgO)-based
nanocomposites; MgOp@PPLP and both in vitro and in vivo
assessment results demonstrated enhanced permeability to the
BBB in addition to the exerted anti-inflammatory and antiox-
idant effects."*®

PD-lesioned cell model by 1-methyl-4-phenylpyridinium
(MPP") was adopted to reveal the remedial effects of hexagonal
boron nitride NPs (hBNs). MTT and LDH showed boosted cells’
viability and neural cell protection. Moreover, hBNs had aggra-
vated defense against destructive oxidants, opposed the MPP-
induced cellular apoptosis and exerted neural cryoprotection.*”

Cerium oxide nanoparticles (CeO, NPs) are well-known anti-
oxidant materials that resemble the effect of superoxide dis-
mutase and catalase."*®*>° Therefore, exploiting CeO, NPs’
antioxidant properties was pertinent with PD treatment.

3818 | J Mater. Chem. B, 2025, 13, 3806-3830
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Saccharomyces cerevisiae yeast model of PD was adopted to
investigate the effect of CeO, NPs. The o-syn expressing yeast
cells showed enhanced viability with gradually increasing con-
centrations of CeO, NPs up to 50 ng uL ™" due to the accumula-
tion of a-syn in the plasma membrane instead of the cytoplasm,
as shown by the cell lysate analysis. There was also observable
diminishing of the mitochondrial impairment and ROS gen-
eration. This improvement was thought to be through the
surface absorption of a-syn on CeO, NPs, which constrained
the o-syn fibrillation."" Several shapes of ceria NPs were also
investigated and the flower shape had the most powerful anti-
oxidant activity.">*

Although in vivo manganese (Mn) accumulation causes
idiopathic PD-resembling symptoms,'* controversial results were
reported in the literature. Based on Sharma and coworkers’ study,
Mn NPs (30-40 nm) showed impairment of the cognition and
motor ability of the rats after 8 days of administration. Addition-
ally, definitive brain injuries were detected in multiple regions
accompanied by BBB distortion, dissipated blood flow to the
brain and cerebral edema.'® Furthermore, citrate-capped
Mn,0; NPs (C-n,0O; NPs) ameliorated the PD consequences and
chelated the excess Mn, preventing subsequent neuro-damage.'*>
Wang et al. prepared chiral Mn,O; NPs. The D-NPs showed
enhanced o-syn fibrillation inhibition and anti-oxidant effect
driven by an electromagnetic field."® Additionally, using dopa-
minergic neural cells, MN9D, PD lesion was developed and then
treated with NPs of different facets. It was observable the Mn;O,
nanorods with the (103) facet had high anti-oxidant capacity and
diminishing of o-syn in the cerebrospinal fluid as elaborated by
the biological assessments.'*”

3.1.5. Polymetallic nanoparticles (nanozymes)-based sys-
tems for the treatment of PD. Nanozymes are recently gener-
ated nanomaterials that gained special interest due to their
anti-oxidant capacity by scavenging the harmful hydrogen
peroxide into oxygen and water.'*®**° For example, PtCu
nanoalloys (NAs) were found to have catalase-like and super-
oxide dismutase-like activity. Therefore, they were applied to
develop an anti-oxidant platform for the amelioration of
PD."*®™° Liu et al investigated the effect of PtCu NAs and
found that they are effective antioxidants. They dissipated the
PD through significantly mitigating the level of ROS and a-syn
preformed fibrils (PFF) in the adopted in vitro and in vivo
models using primary cortical neurons and in PFF treated mice,
respectively.””® The tri-element nanozyme PtCuSe was devel-
oped and found to have anti-oxidant effects. PtCuSe nanozymes
caused the degradation of hydrogen peroxide and inhibited
xanthine oxidase; therefore, they have catalytic activity for
hydrogen peroxide reduction (CAT) and resembles the action
of super oxide dismutase (SOD). The cell viability of SH-SY5Y
cells was investigated and the cytotoxic effect of PtCuSe was
minute at concentrations below 120 ug mL ™' and the cellular
uptake investigation by laser confocal microscopy showed
a great endocytosis of PtCuSe. MPTP-induced PD in vivo
model was adopted, and the nanozyme-treated groups showed
improvement in the locomotor and cognitive functions'’

(Fig. 8).
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water maze test, showing the path of mice. (f) and (g) The mean time and the

The experiment of chiral r/p-Cu,Co,S SPs comparison
between the two counterparts indicated that the p-SPs had
preceding ability to prevent the formation of o-syn and disin-
tegrate the already existing fibrils. This effect was attributed to
the capability of b-SPs to generate ROS that exert its effect on a-
syn.'®® However, the study did not elucidate any off-target
harmful effect of the generated ROS or any subsequent neu-
tralizing cascades.

Li et al. formulated nano-bioconjugate/nanozyme of lacto-
ferrin (Lf)-modified Au-Bi,Se; nanodots (NDs) (Lf-Au-Bi,-Se;).
The nanozyme Lf-Au-Bi,-Se; had characteristic protective anti-
oxidant activity that resembles that of SOD, CAT, POD and GPx,
a group of enzymes that scavenge the ROS and normalize their
level in the normal cells. The catalytic activity of Au-Bi,-Se; is
attributed to two reasons. First, the Au atom can alter the Se
atoms within the lattice and replace it with Bi atoms representing
defect points. The Bi defect points would enhance the electron
transport, and consequently, the catalytic effect.'®" Second,
the Au atoms would act synergistically by allowing electron
transport.'®* Additionally, the LF-surface modification did not
affect the catalytic activity of Au-Bi,—Se;. To assess the cellular
internalization, bEnd.3 cells were used and Lf-Au-Bi,-Se; was
found to have great ability to penetrate the BBB. The Morris
water maze in vivo model was adopted to assess the treatable
effect of Lf-Au-Bi,-Se; and the treated mice exhibited the best

This journal is © The Royal Society of Chemistry 2025

relative mean time spent in the target quadrant. Reproduced from ref. 159.

intellectual and physical improvement and confirmed the
pivotal role of Lf in enhancing the transcytosis in the BBB.
Additionally, high levels of tyrosine hydroxylase (TH), healed
mitochondria, protected Nissel-positive cells and normalized
ex vivo lipid peroxidation were confirmed in the Lf-Au-Bi,-Se;-
treated group. The biosafety of Lf-Au-Bi,-Se; was corroborated
by the normally functioning main organs. The uptake of Lf-Au-
Bi,—Se; into the brain cells was found to be 2.67 times more
than that of Au-Bi,-Se;z, which further confirmed the ability of
the nanorods to penetrate the BBB. Finally, the clearance of Lf-
Au-Bi,-Se; was found to be mainly through the urine, which is
attributed to the enhanced renal infiltration of the tiny-sized
nanorods.®®

4. MNMs-based systems as
theranostics for PD

Due to the continuous urge of early accurate detection and
effective treatment of PD, researchers invested their efforts to
develop theranostic platforms that achieve both goals. Novel
multifunctional nanoparticles were designed for the real-time
monitoring of the disease as well as use as targeted therapeutic
agents like SPIONs. As mentioned earlier, SPIONs are biocom-
patible and biodegradable contrast agents exploited in MRI,

J. Mater. Chem. B, 2025, 13, 3806-3830 | 3819
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and their tunable sizes and shapes allow manipulation to cross
the BBB. Additionally, they can be green-synthesized, ensuring
great biocompatibility.”” Moreover, they can remain circulating
in the body allowing for better therapy and can be controlled
using an external magnetic field.”’"**® For instance, SPIONs-
loaded liposomes were used as theranostic agents for image-
guided drug delivery under glioma conditions; therefore, this
formulation can be employed in PD."®*

Another study was conducted using resveratrol-Fe;O4-loaded
liposomes for sustained drug release at the target site using an
external magnetic field. This formulation was guided using
MRI to ensure crossing the BBB and reaching the target site in
PD rat models.’®® Niu et al. investigated the use of magnetic
nanoparticles in gene delivery, where they synthesized N-
isopropylacrylamide-acrylic acid-functionalized Fe;O, NPs to
confer pH and temperature responsiveness. Then, they photo-
immobilized nerve growth factor to the NPs along with short
hairpin RNA for gene delivery in PD models; however, they did
not assess the MRI properties of such NPs.'®® Thus, this
multifunctional system can be further implemented in MRI-
guided drug and gene delivery in PD cases. Garcia-Pardo et al.
also formulated DA-encapsulated iron nanoparticles made of
iron metal nodes polymerized using bidentate ligands as
bioinspired nanotheranostic agents. It displayed MRI proper-
ties, allowed for efficient DA delivery to PD animal models, and
proved to be biosafe in vivo.'®”

Switchable nanoparticles for simultaneous drug/gene deliv-
ery and CT imaging were developed. The programmed drug
delivery system (MBPCS) was composed of levodopa-quinone
gold nanoparticles (GNPs) integrated with 2 derivatives of
Zwitterionic poly-(carboxybetaine)-based curcumin, where the

7\
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end feet
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last was releasable via a cleavable link in the DA neurons of PD.
B6 peptide was linked on the surface of the nanoparticles
facilitating their penetration of the BBB. The intracellular
internalization was adopted by using mazindol (MA) that binds
preferentially to the DA neurons. Following the endosomal/
lysosomal escape, the gene delivery phase starts by releasing
a-syn gene (SNCA). The GNP and curcumin are then released
because of MBPC degradation. GNP interacts with Fe*" and
quinone groups allowing the CT.'®

5. MNMs and BBB penetration

Generally, several BBB penetration mechanisms of the different
classes of the nanomaterials were described and reviewed
elsewhere.'®® Concerning the MNMs, they can penetrate the
BBB cither by active or passive pathways. Receptor-mediated
endo/transcytosis, adsorption-mediated endocytosis and car-
rier mediated transport are all examples of the active pathways.
Furthermore, the passive pathway involves the passage of the
hydrophilic small-sized NPs across the endothelial cells.'®®
(Fig. 9). Proteins as nerve growth factor (NGF),'°>'"> poly
unsaturated fatty acids as docosahexaenoic acid (DHA)'"> and
PGM*” are all examples of surface functionalizing moieties
allowing receptor-mediated endocytosis.'®® Li et al. prepared
Au-Bi,Se; nanodots and functionalized the surface with lacto-
ferrin (LF) to enable the active targeting of the BBB through
receptor-driven transcytosis.®® The B6 peptide (CGHKAKGPRK)
was used to design switchable AuNP-based theranostic formu-
lations, where the penetration of the BBB was confirmed and
the cellular internalization of SH-SY5Y cells was described to be

—_— Blood (— Endothelium

2\
N=="4

(b) Transcellular
°s 7S 4
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Fig. 9 Mechanisms of BBB penetration by the nanomaterials. Passive pathways include (a) paracellular and (b) transcellular penetration, while active
transport pathways include (c) carrier-mediated and (d) receptor-mediated BBB penetration.
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through caveolae and clathrin-driven endocytosis.""®> AuNCs
(2.5 £ 1 nm) were investigated, and their penetration of the
BBB was proven. The AuNCs were injected intraperitoneally in
mice and after 6 h of 20 mg kg™ injection, the AuNCs were
detected by TEM in the SN sectors in addition to the neurons.®
Cheng et al. investigated the penetration of an iron-based
nanoformulation through an in vitro model and found that
the cellular penetration can be through 3 different pathways."*>
Consequently, the MNMs were reported to penetrate the BBB
through different mechanisms depending on the sizes and
surface properties.

6. Toxicity and biocompatibility of
MNMs

Majorly, the axiomatic transportation of nanomaterials into
clinical application was constrained by the inscrutable toxic
effects on the CNS, specifically, the brain. Heavy metals have
been previously reported to induce neurotoxicity that may
resemble the PD-associated manifestation.'®>'”® Therefore,
the toxicity of the nano-constructed counterparts would be of
great importance and pertinent as many of these nanoparticles
release metallic ions after in vivo administration. Additionally,
the tiny size of the nanostructures permeates their smooth flow
across the BBB and distribution within the brain parts remark-
ably, to the SP which has great importance due to the existence
of dopaminergic neurons.*'”' PD is associated with other
physiological alterations such as inflammation, a-syn aggrega-
tion and impaired anti-oxidant response. All these impairments
were observable from the exposure to several MNMs.'”>"*7* For
instance, TiO, NPs affect the hippocampus, cerebellum and
substantia nigra.>'”> Certain specific pathways of the TiO,-
induced toxicity have been illustrated in the literature proving
detrimental effects. Wu and Xie conducted a study to investi-
gate the in vitro and in vivo toxicity of TiO, adopting PC12 cells
and zebrafish embryos, respectively. The results corroborated
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the presence of neurotoxic effects due to the accumulation of
TiO, NPs and the generation of ROS. The degradation of the
dopaminergic neurons was observable.’”® TiO, administration
also caused electrolyte imbalance and activated inflammatory
response by stimulating IL-6 and NF-kB,"””"'”® Moreover, TiO,
promoted cerebral stimulation of the oxidative stress-driven
cellular damage by constraining the anti-oxidant factors'’® and
elevating the intra-mitochondrial ROS alone or with simulta-
neous exposure to AgNPs.'®® From other studies, TiO, caused
the accumulation of a-syn that mitigates the DA in the brain,
which is a substantial mechanism causing PD."7>'8%18>
Despite the remedial effect of green-synthesized zinc
oxide NPs (ZnO NPs),'®® other studies reported their cerebral
cytotoxicity.!”"*#* A study performed by Jin and coworkers
compared the induced cytotoxic effects by several ZnO-based
nanostructures. ZnO NPs, long ZnO nanorods (I-ZnO NRs)
and short ZnO nanorods (s-ZnO NRs) were prepared and the
in vitro assessment was performed using human neuroblas-
toma cells SH-SY5Y, revealing that 1-ZnO NPs had the least
toxicity (LD50 = 17 ug mL™ ). Several concentrations of 1-ZnO
NPs were tested using an in vivo zebrafish larva model. From
the investigation of the brain, 1-ZnO NRs at high doses stimu-
lated the ROD production that consequently, sequestered the
motor ability and neuron development, disruption of dopami-
nergic neurons and cerebral apoptosis, coherently leading to
PD-resembling manifestations."®* The toxicity of the Zn>" ions
from ZnO NPs was investigated through in vitro and in vivo
assessments. The cell viability of the glial cells A172 was greatly
decreased after 1 day of exposure and DNA damage was
observable after only 3 h, as confirmed by the comet assay.
The zebrafish embryos were exposed to gradient concentrations
of ZnO NPs. After 96 hours post-fertilization (hpf), locomotor
impairment was observed, suggesting the possible role of the
released Zn>*. The cytotoxicity and genotoxicity were believed
to be caused by enhanced ROS production. Additionally, the
locomotor disorder was not elucidated explicitly but attributed
to dopaminergic cells destruction, therefore affecting the
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Table 3 Several MNMs, exposure durations and the resulting neurotoxicity
Exposure

Type & size of NPs duration Biocompatibility & toxicity Ref.
Fe;0,, about 10 nm 24 h Neuro-destructive effect through oxidative stress. Interaction between the iron and DA may 186-189

induce neurons toxicity by generating toxic products. The aggregated o-syn can cause

accretion of the iron level that leads to generation of OH destructive radicals.
Ag NPs, less than 100 nm 28 days Induced neuronal apoptosis and cellular degeneration known as dark neurons due to ROS 190

production and exaggerated inflammatory response.

Co NPs, less than 100 nm

24 h and 6 days Destructive oxidative stress evidenced by the depletion of GSH, neurotoxicity due to calcium 191

homeostasis and lipid peroxidation. Also, mitochondrial swelling and structures that
resembles fibrosis were notable, leading to ferroptosis-like cell death.

CuO NPs, 50 nm 60 and 120 h  a-syn aggregates, promote pertinent cellular cytotoxicity 192
CuS NPs, 77.89 nm 24 h Cytotoxic effect at low concentration, caused developmental neurotoxicity 193 and
194
NiO NPs, 50 nm 24 h Altered the fibrillation kinetics of a-syn, enhanced ROS production due to the alleviated 195
defensive pathways and the enhanced inflammatory mediators’ expression
Long ZnO nanorods 24-144 h post High doses stimulated the ROD production, sequestered the motor ability and neurons 184

fertilization

(hpf)

(I-ZnO NRs), diameter:
159.3 + 17.9 nm and
length: 1.1 £+ 0.15 pm

resembling manifestations

muscles and nerves (Fig. 10)."®®> Table 3 summarizes some PD-
related toxicities associated with MNM exposure.

7. Challenges and future perspectives

The limitation of clinical improvement in the management of
PD, from detection to treatment, is attributed to several gaps,
including long-time of asymptomatic period, the absence of
sharply definitive biomarkers, the heterogeneous nature of the
disease, dearth of effective treatments and the resistance devel-
opment. The use of MNMs represents a promising but complex
avenue for addressing these issues. While NPs have shown
potential in enhancing detection through sensitive biosensors
and improving therapeutic delivery, challenges persist. These
include ensuring biocompatibility and stability in biological
systems, achieving precise targeting to diseased cells, and avoid-
ing off-target effects.”® The encapsulation of the MNMs into
emulsions would provide prolonged drug release. Moreover, the
design of the carrier medium to be NIR-responsive would confer
more specific release in the target cells/sites.'™" The incorpora-
tion of the MNMs into biocompatible nanoshells'*® or porous
nanocarriers would add a protective shield from pre-mature
in vivo degradation. Moreover, the surface modification of the
MNMs with targeting ligands would enhance the on-site neuron-
specific drug release.*®'®” The exploiting of specific BBB-
transporters would also enhance the cerebral drug delivery sur-
face modification of the MNMs by ligands specific to these
receptor, reviewed by Mhaske et al.'®® Furthermore, scaling up
from laboratory success to clinical application involves over-
coming significant hurdles in manufacturing and regulatory
approval. Concerning the MNMs, the design of a formulation
for PD therapy or in vivo detection as imaging would require
prolonged testing to ensure safety during the use and subse-
quent complete clearance from the body. Additionally, chal-
lenges, such as the limitations of animal model reciprocation,
ethical issues surrounding human samples, and the ambiguity
in providing clear mechanistic molecular pathways of aging and
neurodegenerative diseases, particularly PD, are all insistent

3822 | J Mater. Chem. B, 2025, 13, 3806-3830

development, disruption of dopaminergic neurons and cerebral apoptosis leading to PD-

issues that need to be addressed."®*** Future research should
focus on refining nanoparticle technologies to enhance their
specificity, reduce potential toxicity, and improve targeting
mechanisms. Advancements in AI and ML could further aid in
analyzing data from nanoparticle-based detection and therapies,
leading to more personalized and effective treatment strategies.
Addressing these challenges through innovative approaches in
biomarker discovery, model development, and therapeutic appli-
cations will be crucial for advancing clinical outcomes and
improving the quality of life for individuals with PD.
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