Journal of Materials Chemistry A

CORRECTION

View Article Online
View Journal | View Issue

Cite this: J. Mater. Chem. A, 2025, 13, 9566

Correction: Enhanced utilization of light through polystyrene microspheres for boosting photoelectrochemical hydrogen production in MoS₂/Si heterostructures

Jing Yu, ^{ab} Yingying Wang, *b Qixiao Gai, ^c Chaoyang Hou, ^a Zhiyong Luan, ^d Yao Liang, ^d Wenjun Liu^b and Xiaofeng Fan^e

DOI: 10.1039/d5ta90053k

rsc.li/materials-a

Correction for 'Enhanced utilization of light through polystyrene microspheres for boosting photoelectrochemical hydrogen production in MoS_2/Si heterostructures' by Jing Yu et al., J. Mater. Chem. A, 2025, https://doi.org/10.1039/D4TA08336A.

The authors regret that Fig. 1c of the original article featured an incorrect atomic force microscopy (AFM) image. The original figure incorrectly presented results obtained from Re-doped MoS₂. The corrected version of Fig. 1 is as displayed herein – the authors confirm that no results or conclusions are impacted by this replacement. The original figure caption remains unchanged.

^aDepartment of Physics, Harbin Institute of Technology, Harbin 150001, China

^bDepartment of Optoelectronic Science, Harbin Institute of Technology at Weihai, Weihai 264209, China. E-mail: yywang@hitwh.edu.cn

The College of Basic Department, Information Engineering University, Zhengzhou 450000, China

^dSchool of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China

^{&#}x27;Key Laboratory of Automobile Materials and Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130012, China

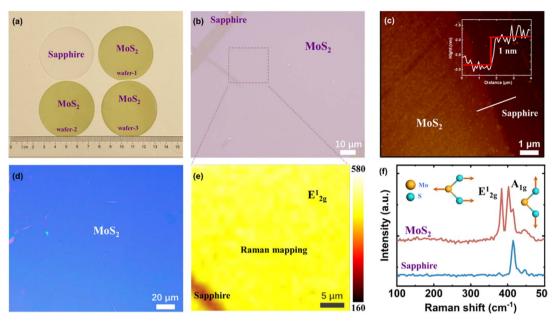


Fig. 1 (a) Photographic image of a bare sapphire substrate and a monolayer MoS₂ directly grown on it. (b) Optical image of a monolayer MoS₂ grown on a sapphire substrate. (c) AFM image of a monolayer MoS₂ on a sapphire substrate, with the inset displaying the height profile. (d) Optical image of a monolayer MoS₂ transferred onto a SiO₂/Si substrate using the PMMA-assisted wet transfer method. (e) Raman mapping of the E_{2q}^{1} peak intensity for a monolayer MoS₂ supported by the sapphire substrate. (f) Raman spectra of monolayer MoS₂ and sapphire substrate, extracted from (e).

A small amendment has also been made to affiliation e.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.