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eight BCC multi-principal element
alloys with enhanced hydrogen storage using
a machine learning-driven genetic algorithm

Kevin Ji,a Tanumoy Banerjee, ab Matthew D. Witman,c Mark D. Allendorf, c

Vitalie Stavila c and Prashant Singh *a

Body-centered cubic (BCC) based multi-principal element alloy (MPEA) hydrides have demonstrated

significant potential for compact and efficient hydrogen storage. In this work, we first leverage machine

learning (ML) models to predict the hydrogen affinity, storage capacity and phase stability of BCC MPEAs,

creating a unique hydrogen-to-metal (H/M) predictor for materials with unprecedented performance.

We developed a metaheuristic optimizer high-throughput framework by interfacing ML models with

a genetic algorithm for the accelerated search of {Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo} based

lightweight BCC MPEAs with improved hydrogen storage characteristics. We report five new MPEAs with

a predicted gravimetric hydrogen storage capacity of around 3.5 wt% or more, including

Cr0.09Mg0.73Ti0.18 (4.25 wt% H) and Cr0.21Nb0.11Ti0.35V0.33 (3.5 wt% H). The electronic structure of the

top-performing composition, Cr0.09Mg0.73Ti0.18, was analyzed using density functional theory (DFT) to

understand the reasons for its improved hydrogen storage properties compared to TiFe (1.90 wt% H),

LaNi5 (1.37 wt% H) or BCC MPEAs like TiVNbCr (3.70 wt% H). Temperature-dependent molecular

dynamics (MD) studies were further performed on optimized BCC MPEAs to qualitatively study hydrogen

mobility and analyze the effect of different elemental composition on bulk hydrogen diffusion. Our

findings demonstrate how a ML assisted genetic algorithm framework can be used for efficient search of

stable, lightweight and cost-effective MPEAs while minimizing the need for expensive ab initio calculations.
1. Introduction

Body-centered cubic (BCC) high-entropy alloys (HEAs), a subset
of multi-principal element alloys (MPEAs), have shown strong
potential for effective interstitial hydrogen storage.1–8 HEAs are
a class of alloys dened by their roughly equiatomic composi-
tion (5–35% of each element) of ve or more elements. This
mixture of elements of different atomic radii into a single lattice
creates a signicant distortion within the lattice which can
potentially create an extremely high volumetric density of
accessible interstitials for hydrogen occupation.9,10 Further-
more, the highmixing entropy of several elements promotes the
formation of predictable solid solution phases rather thanmore
complex intermetallic phases.11,12 The large number of elements
and possible proportions within MPEAs also allows increased
exibility in designing materials to t several different objective
properties, which is especially important for designing effective,
practical, and cost-efficient hydrogen storage materials.13–15

However, the high dimensional space of MPEAs limits the
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search efficiency of conventional methods in nding an optimal
composition for hydrogen storage.16 With several orders of
magnitude more possible combinations of elements than
traditional alloys, it is practically impossible to test every
possible MPEA composition with simulation or experiment.

Machine learning (ML) methods have shown great promise
in the search for better hydrogen storage materials.17–21 With the
ability to run high-throughput analysis of materials for trivial
computational costs compared to ab initiomethods, several ML
models for predicting various features related to hydrogen
storage such as weight percent or hydrogen solubility have
already been developed.22 However, even with a functioning ML
model capable of predicting hydrogen storage properties of
hypothetical materials, discovering promising compositions for
further testing is a nontrivial task. The ideal composition
identied by ML then must be optimized experimentally
for wt% H, hydrogen solubility, and phase stability. This results
in a slow discovery rate of MPEAs for advanced energy storage
materials; therefore, it remains a critical challenge in the tran-
sition to renewable energy.

Notably, a lower dimensional space problem can easily be
solved using a basic grid search, but for higher dimensions like
MPEAs it becomes increasingly impractical to search through
every possible variation in every possible combination of
J. Mater. Chem. A
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elements. Other techniques, such as Bayesian optimization, are
similarly unsuited for optimization with such high dimensional
space.23–25 Therefore, the development of efficient computa-
tional tools that enable the accelerated search of multi-
dimensional space is essential for advancing energy storage
materials.26–29 Recently, Jennings et al. have shown that genetic
algorithms (GAs), a type of metaheuristic optimizer based on
Darwinian evolution, are well suited for this optimization of
machine learning-based functions, being extremely robust and
able to handle spaces with large numbers of dimensions.30–32

In this work, we demonstrate the utility of combining ML
models with a metaheuristic optimizer, i.e., the genetic algo-
rithm (GA), to perform high-throughput compositional search
of MPEAs for enhanced hydrogen storage. The search spans
a multi-dimensional MPEA space, constrained to compositions
that are thermodynamically stable in the BCC phase. The ML
models, trained on literature datasets,33–36 predict phase
stability (BCC, face-centered cubic (FCC), hexagonal closed-
packed (HCP), or intermetallic), bulk modulus, and hydrogen-
to-metal (H/M) ratios including hydrogen solubility16–18,37 with
quantitative accuracy, achieving an average prediction error
below 5% across validation datasets. We performed a system-
atic optimization of hydrogen storage properties on {Mg, Al,
Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo} based binary, ternary,
quaternary, and quinary MPEAs. Compositions optimized via
the ML-GA framework are further rened using density func-
tional theory (DFT) to analyze electronic structure contributions
to hydrogen storage properties, revealing a direct correlation
between d-band center shis in transition metals and hydrogen
adsorption energy. Additionally, molecular dynamics simula-
tions quantify hydrogen diffusion coefficients at varying
temperatures, demonstrating a composition-dependent activa-
tion energy barrier that inuences storage kinetics.

2. Methods
2.1. Data-selection and preparation

Our framework utilizes four datasets for training four different
ML models: (i) our H/M dataset consists of 431 unique
compositions compiled from the literature and compositions
sent to us from Sandia National Laboratories.38 A subset of the
H/M dataset for metal hydrides was used from the publicly
available HydPark dataset.33 All compositions with reported
non-solid solution phases such as C14 Laves structures were
removed. (ii) The HydPark dataset was used only for hydroge-
nation enthalpy prediction with 558 data points where enthalpy
is distributed among 427 unique compositions of varying
material classes including intermetallics, solid solutions, and
Mg-alloys. (iii) A DFT-generated dataset by Mei et al. was used to
predict the bulk modulus,39 and an experimental dataset
compiled by Huang et al. of MPEA phases was used.40 The bulk
modulus training dataset consisted mostly of 2486 refractory
metals with some non-refractory element representation (except
for Mg). (iv) The training dataset for phase prediction contained
1207 unique MPEAs with the vast majority of compositions
being BCC or FCC. In our model, we simplied this phase
classication to four categories: BCC, FCC, BCC + FCC, and IM,
J. Mater. Chem. A
with all compositions with a minor intermetallic phase being
classied as IM.
2.2. Featurization

We generated 44 features using the statistical values of the
properties of pure elements within a composition.41,42 For each
of the 11 properties of pure elements (see Table S1), 4 features
were generated: the minimum and maximum values of that
property among elements within the composition, the variance
of that property weighted by the proportions, and the weighted
mean. The atomic packing factor, i.e., the fraction of an alloy

taken up by atoms, is calculated as

4
3
prNa

X
ðri3ciÞ ​P

Mici ​
; where is

the density of the material (calculated with the rule of mixture
in the given crystal phase in the training dataset), ri and ci are
the atomic radii and proportion of element i respectively, Mi is
the molar mass of element i, and Na is Avogadro's number.
These features were employed to train the bulk modulus, phase
classication and hydride enthalpy models. The nal three
features, the probability of the composition being BCC, the
probability of the composition being FCC, and the bulk
modulus, were calculated using ML models and used as
features only within the nal H/M predictor. The bulk modulus
ML model was used purely for feature creation within the H/M
prediction model; the physical signicance of the bulk modulus
in representing the ability of the lattice to stretch to accom-
modate hydrogen atoms is valuable in building a more well-
rounded ML model for H/M prediction.
2.3. Machine learning training

Given the small datasets (400–2000 points), we opted not to use
neural networks due to their inability to predict accurately from
small datasets without signicant adjustment. Instead, three
models were tested for each ML model: a random forest
regressor (RFR), a gradient boosting regressor (GBR), and an
Extreme Gradient Boosting Regressor (XGBoost). RFRs were
chosen for use in H/M and bulk modulus prediction models for
their high coefficient of determination, and a GBR was chosen
for (de)hydrogenation enthalpy prediction for a similar reason.
A gradient boosting classier was chosen for use in the phase
classication model given its similar accuracy performance to
the original model used by Huang et al.40 The equilibrium
hydrogen pressures Peq and temperature are determined using
the thermodynamic parameters of the metal hydride (de)
hydrogenation reaction (enthalpy change (DH°) and entropy
change (DS°)), as described by the van't Hoff equation ln(Peq/P0)
= −DH°/RT + DS°/R, where P0 and R represent the standard
atmospheric pressure and the universal gas constant, respec-
tively. Here, enthalpy change (DH°) refers to the hydride reac-
tion enthalpy and is usually closer to the desorption enthalpy
than to the absorption enthalpy. In SI Fig. S1 we present the
training and test loss function and other ML performance
parameters (MAE, RMSE, and MAPE) with respect to the
number of trained and tested datapoints and the results show
that the loss function and corresponding error bars in
This journal is © The Royal Society of Chemistry 2025
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prediction go down eventually, which suggests that the models
perform well and they did not overt. Also, hyperparameter
tuning is critical in machine learning models as it controls the
balance between bias and variance, and in our case, systematic
tuning improved model accuracy and generalization. Hyper-
parameter optimization for GBR, XGBoost and RFR was carried
out using grid search with 5-fold cross-validation to systemati-
cally explore combinations of model parameters. For GBR,
parameters such as the learning rate, number of estimators,
maximum tree depth, and subsampling ratio were tuned to
balance bias and variance. In XGBoost, additional regulariza-
tion parameters (gamma and alpha) and column subsampling
were optimized to improve generalization and reduce over-
tting. For the RFR, tuning focused on the number of trees,
maximum features, andminimum samples per split/leaf, which
improved model stability and predictive accuracy. Overall,
careful hyperparameter selection enhanced model performance
by reducing error metrics and improving robustness across
training and test sets.
2.4. Uncertainty analysis

Uncertainty analysis in the RF model is rooted in its ensemble
structure, where predictions are generated by aggregating
outputs from N decision trees. The RF model is an ensemble
of N decision trees, and for a given feature vector x, each tree Ti
produces an estimate yi(x). The RF prediction is taken to be the

mean of these individual tree outputs, i.e., ŷðxÞ ¼ 1
N

XN
i

yiðxÞ.

To capture the RF model's uncertainty, we computed the vari-

ance of tree predictions: dVarðŷðxÞÞ ¼ 1
1� N

XN
i

½yiðxÞ � ŷðxÞ�2,

while standard deviation of uncertainty in the RF model was

computed using formula sðŷðxÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVarðŷðxÞÞq

. This standard

deviation is visualized as vertical error bars in the prediction
plots, allowing a direct assessment of condence in the model
outputs across training and test datasets. Uncertainty analysis
in the GBR model is performed by examining the variability of
predictions across consecutive boosting stages. For each input,
the nal prediction is taken as the average of all stage-wise
outputs, while the spread (standard deviation) of these
outputs is used as a measure of predictive uncertainty. This
standard deviation, interpreted as a condence interval, was
visualized as ±1s error bars in the parity plots, providing
a direct indication of the model's reliability.
2.5. ML accelerated GA

The ML-GA framework incorporates a two-step evaluation
process: rst, ML functions estimate a predicted tness and
second, an energy calculator (phase stability) determines the
actual tness. A nested GA is employed to explore the surrogate
model, which is constructed using ML predictions. This surro-
gate ML model interfaced with GA serves as a high-throughput
screening mechanism within the overarching “master” GA,
allowing rapid exploration based solely on predicted tness. It
This journal is © The Royal Society of Chemistry 2025
operates by iterating over the current population, where evalu-
ation and selection rely on the ML-predicted wt% H, enthalpy
change, and bulk modulus. To ensure robustness of the GA
search and avoid ad hoc parameter selection, the tness func-
tion—including the “k” penalty term—was systematically tuned
via sensitivity analysis (SI Fig S2 and S3). Multiple values of k
were tested to quantify its inuence on selection pressure and
convergence behavior. The analysis conrmed that the chosen
value balances exploration and exploitation, providing reliable
identication of promising candidates. Once the nested GA
completes its search, the nal population of unrelaxed candi-
dates is returned to the master GA for further renement.30–32

Although reinforcement learning (RL) could theoretically
provide an adaptive control mechanism for compositional
optimization, its applicability is limited in this study due to the
discontinuous and data-sparse nature of the objective function.
The GA-ML hybrid framework presented here offers a more
interpretable and computationally efficient alternative for
exploring non-differentiable design spaces within limited
datapoints.
2.6. Methods applied for molecular dynamics simulation of
hydrogen diffusion

The interatomic potentials for the molecular simulations in this
study can be represented as U= UM–M + UH–H + UM–H, where UM–

M denotes the metal–metal interaction and UH–H and UM–H

represents the hydrogen–hydrogen and metal atom–hydrogen
interactions respectively. Lennard-Jones (LJ) 12–6 potential,
presented in eqn (1) (ref. 43 and 44), was applied with a cut-off
distance of 10 Å to model the van der Waals interactions
between each of these metal elements with gaseous hydrogen
atoms (UM–H and UH–H).

ULJ

�
rij
� ¼ 4˛ij

"�
sij

rij

�12

�
�
sij

rij

�6
#
; rc\rij (1)

where sij and ˛ij is the distance where potential energy becomes
zero and the potential well depth, respectively, and rij is the
distance between one LJ site and another. The Lorentz–Ber-
thelot mixing rule was applied to model the interaction
parameters (s and ˛) for each of the UH–H and UM–H cross-
interactions.43 Inter- and intra-atomic LJ interaction parameters
for different BCC MPEA combinations with atomic hydrogen
were taken from reported literature.45 The LJ potential was
employed as a computationally efficient rst-order approxima-
tion to capture qualitative hydrogen diffusion behavior in
MPEAs, particularly under conditions dominated by weak, non-
reactive physisorption. Although it cannot explicitly model
bond formation, breaking, or electronic effects inherent to
metal–hydrogen interactions, it effectively reects how lattice
geometry and atomic size mismatch inuence relative trends of
gaseous hydrogen diffusion across alloys over a large tempera-
ture range (−50 °C to +90 °C).20 This simplied approach
enables rapid screening and comparison of compositional
effects before applying more accurate, but computationally
demanding, reactive (embedded atom method (EAM), modied
J. Mater. Chem. A
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embedded atom method (MEAM) and ReaxFF) potentials in
future studies.

Each simulation supercell initially consisted of 250 atoms
depending on the different elemental compositions and the
concentration selected, and we have added 4 hydrogen atoms at
four different octahedral positions within the crystal structure
to assess the hydrogen diffusion inside bulk alloys. First, the
energy minimization of each structure was performed using the
conjugate gradient method,46 followed by isothermal-isobaric
(NPT) equilibration at 300 K for 100 picoseconds (ps) and
constant pressure heating to 600 K/900 K at 4 K ps−1 and
a subsequent 100 ps NPT and another 100 ps NVT equilibration
at that nal temperature to relax the structures. Finally, the
hydrogen diffusion simulations were carried out on the relaxed
structures at the nal temperature for 1 nanosecond (ns). The
mean squared average displacements (MSAD) and subsequent
radial distribution functions (RDFs) were generated to qualita-
tively analyze hydrogen diffusion in different ML-GA optimized
BCC MPEAs. All the simulations were carried out using the
Large-scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) soware16 and a 1 femtosecond (fs) timestep size was
used with the velocity Verlet algorithm47,48 for performing the
time integration of the equation of motions and the system
temperature was controlled using the Nosé–Hoover
thermostat.45,49,50

2.7. Density-functional theory (DFT) calculations

The electronic-structure, local-lattice distortion, and hydrogen
diffusion analysis was done by employing rst-principles DFT
as implemented in the Vienna Ab initio Simulation Package
(VASP).51,52 The generalized gradient approximation of Perdew,
Burke, and Ernzerhof (PBE) was employed in all calculations53

with a plane-wave cut-off energy of 520 eV. The choice of PBE
over LDA or meta-GGA54,55 functionals is based on the work of
Söderling et al.56 and Giese et al.57 that establishes the effec-
tiveness of GGA functionals. Large Supercell Random Approxi-
mates (SCRAPs), i.e., 60 atoms per cell, with the optimized
disorder (zero-correlation) were generated (a single, optimized
Fig. 1 (a) Schematic flowchart of the ML accelerated genetic algorithm
MPEA compositions with optimized stability and improved H/M. The
hydrogen storage MPEA compositions. (b) Convergence test of the ML-G
based MPEAs showing ultrafast convergence to compositions with impr

J. Mater. Chem. A
congurational representation) for DFT calculations.58 Energy
and force convergence criteria of 10−8 eV and 10−6 eV Å−1,
respectively, were used for full (volume and atomic) relaxation
of SCRAPs. The Monkhorst–Pack k-mesh was used for Brillouin
zone integration during structural optimization and charge self-
consistency calculations.59
3. Results and discussion

Fig. 1a shows anML assisted GA owchart or framework for the
accelerated design of MPEAs with improved hydrogen capacity.
To form the starting population, a sample of 400 randomly
generated equiatomic compositions is created using elements
sampled from a starting list of Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni,
Cu, Nb, and Mo, typically used in MPEAs for H storage.60 This
sample is then ranked according to a tness function, which is
as follows: each composition with a reaction enthalpy change
below the minimum threshold is scored the lowest, with higher
reaction enthalpies being scored higher. Each composition
with a valid enthalpy changes but an invalid phase probability
is scored one tier above, with compositions having higher
probability of being in the correct phase being scored higher.
Finally, compositions with a valid phase and enthalpy change
are scored the highest, with compositions with a higher
hydrogen weight percent (calculated as the H/M predicted by
ML divided by the atomic weight of the composition) scored
higher. In this way, the algorithm will rst optimize for valid
reaction enthalpy, then for a valid phase and nally optimize
for high weight percent. For each optimization, the genetic
algorithm evaluated the ML models from 100–400 times each
round across 10–15 rounds, for a total of 4000–6000 evalua-
tions per optimization. This is signicantly less than the total
number of evaluations required for a grid search of the entire
space with the same accuracy, which requires calculations in
the order of billions).61 In this order, with more optimization, it
may even be possible for future studies to interface ab initio
calculations with genetic algorithms rather than only ML
models.
(GA) framework for the metaheuristic optimization and generation of
optimization stops when ML-assisted GA fails to produce improved
A optimizer framework on {Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo}
oved hydrogen capacity.

This journal is © The Royal Society of Chemistry 2025
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Crossovers were not implemented in this algorithm, as they
apply poorly to compositions which must maintain a total
compositional sum of 100%. Rather, we created a custom
mutation algorithm to mutate compositions where each parent
composition has a 2/3rd probability of undergoing mutation,
where 1–8% of an element's proportion is redistributed to
another element, ensuring that the total remains 100%. The
redistribution percentage is randomly selected from a uniform
distribution between 1% and 8%. For example, if an element is
at 30% and the mutation results in a 5% redistribution, it could
shi to 25%, balancing another element's proportion accord-
ingly. There is also a one-third probability that an element will
be swapped by a randomly selected element from a predened
pool of elements, provided it is not already present in the
composition. The selection mechanism retains the top 50
compositions based on tness function scores.

The tness score of a sample s, under a set of constraints ci
(e.g., BCC probability and hydrogen solubility energy) for which
we require the values of those constraints of the sample vi(s) > ci
for all i, is calculated as f(s) = vj(s) – k × j, where j is the smallest
integer such that for all i > j, vi(s) > ci and k is an arbitrarily large
constant such that k > > max(vi(s)) for all s. Here, we set c0 such
that c0 > > max(v0(s)), and v0(s) should be set as the performance
metric being sought (e.g. hydrogen weight percent). This
ensures that the GA rst optimizes materials to satisfy the
constraints before the performance metric, reducing the need
for searching in regions which fail the constraints. However,
this method also risks overlooking compositions in regions that
show potential for high performance but initially appear to
poorly meet the constraints. This can at least in part be miti-
gated using a diverse initial sample. Finally, the algorithm
terminates once the top 5 compositions maintain unchanged
tness scores for ve consecutive generations, indicating
convergence to an optimal solution. This approach effectively
enhances compositional diversity while optimizing for
hydrogen storage performance using quantitative metrics.

Our ML-GA optimizer in Fig. 1b demonstrates rapid
convergence toward MPEA compositions with improved
Fig. 2 ML-GA driven hydrogen storage optimization in (a) Nb–Ti–V, (b)
capacity (wt% H), with red regions indicating higher storage. White sta
regions. The Mg–Ti–V system achieves the highest capacity (∼3.9 wt% H)
Ti and V as key enhancers.

This journal is © The Royal Society of Chemistry 2025
hydrogen storage capacity. Initially, both the average and
maximum composition hydrogen storage capacities increase
sharply within the rst ve optimization steps, indicating an
efficient search of the composition space. The maximum
composition (orange curve) reaches a plateau slightly earlier
than the average composition (blue curve), suggesting that the
optimizer quickly identies a promising candidate with maxi-
mized hydrogen capacity. Aer approximately 15 optimization
steps, both curves plateau, showing that further iterations yield
minimal improvements. This rapid convergence highlights the
GA's effectiveness in efficiently navigating the compositional
space to identify MPEAs with enhanced hydrogen storage
characteristics. Sensitivity analysis of the genetic algorithm to
the number of children allowed to survive each round, the k
parameter, was performed. We found k= 30 as an optimal value
(see SI Fig. S2), minimizing unnecessary evaluations and
guaranteeing that almost all trials reached the optimal value.
The optimal value was found in an average of approximately
1100 evaluations (SI Fig. S3), far outperforming the number of
evaluations required in a random or grid search. Our ML-GA
pipeline leverages fast RF/XGBoost surrogates to rapidly
screen very large surrogate-level composition sets and combines
this broad search capability with targeted DFT validation,
enabling diverse candidate discovery alongside focused high-
delity evaluation. In contrast, Bayesian optimization (BO)
has successfully delivered Pareto-optimal MPEA candidates
with only a small fraction of the composition space explored.62

Notably, Ti, V, and Mg are among the best hydrogen
absorbing elements, i.e., hydrogen absorption can be maxi-
mized while maintaining favorable thermodynamics for storage
{Ti, Mg} rich alloys. To visually show the optimization process,
we choose three representative MPEAs, i.e., {Mg–Ti–V}, {Ti–V–
Cr}, and {Ti–V–Nb}, from {Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu,
Nb, Mo}. We show ternary map for hydrogen storage for the
three alloy classes including the starting optimization path as
shown in Fig. 2. The starting point for each case was set at the
center of the triangle, i.e., equiatomic MPEAs. Notably, the ML-
GA optimizer always shis away from equiatomic points toward
Mg–Ti–V, and (c) Cr–Ti–V systems. Contours show hydrogen storage
rs mark optimal paths of compositions, favoring Ti-rich and Mg-rich
, while Nb–Ti–V and Cr–Ti–V peak around 3.6–3.8 wt% H, highlighting
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Ti/V-rich or Mg-rich formulations. The Nb–Ti–V system exhibits
a peak hydrogen storage capacity of 3.6 wt% in the Ti-rich
region (Fig. 2a), aligning with theoretical capacities of 4.0 wt%
H for TiH2 and 3.8 wt% H for VH2. The lower capacity of NbH
(z2.6 wt% H) accounts for the Nb diminished role, while in the
Mg–Ti–V system in Fig. 2b, the highest storage reaches 3.9 wt%
near Mg ∼60–70 at%, reecting MgH2's high capacity (7.6 wt%
H). Although the model does not explicitly account for desorp-
tion and kinetics, it necessitates the inclusion of Ti and V into
the nal alloy composition, which are known to improve rates of
hydrogen uptake and release. While the Cr–Ti–V system in
Fig. 2c shows a peak storage of 3.8 wt%H, Cr's limited hydrogen
solubility (∼0.4 wt% H) leads the MLGA optimizer to favor Ti–V
compositions similar to those in the Nb–Ti–V system.
Comparatively, Mg–Ti–V offers the highest storage capacity but
requires destabilization for practical use, while Nb–Ti–V and
Cr–Ti–V achieve slightly lower gravimetric capacities but offer
better kinetic properties.63 Notably, across all three systems, Ti
and V play critical roles in optimizing hydrogen uptake, rein-
forcing their importance in hydrogen storage alloy design. This
Fig. 3 Training and test results of the best-performing machine-learni
reaction enthalpy, and (g–i) bulk modulus.

J. Mater. Chem. A
also effectively justies the reason the ML-GA optimizer picks
the elements favorable for hydrogen absorption.

Notably, the strength of the metaheuristic ML-GA optimizer
used for searching new alloying compositions over multi-
dimensional space as shown in Fig. 2 is based on the founda-
tions of best-performing ML models that are used as drivers for
providing seeds for searching new MPEAs with hydrogen solu-
bility, phase stability, and high storage. Fig. 3 shows three ML
models, each interfaced with a metaheuristic optimizer to
identify key descriptors. The H/M ratio model in Fig. 3b shows
strong accuracy (R2 = 0.828, MAE = 0.179, and RMSE = 0.253),
with Mulliken electronegativity, melting point, thermal expan-
sion, and bulk modulus as dominant features (Fig. 3c). The
associated error bars indicate moderate predictive uncertainty,
which increases at higher H/M values, reecting reduced model
condence in extrapolated regimes. The observed variation in
the error bars arises because they represent ensemble-predicted
uncertainty, reecting the model's internal condence rather
than the true deviation from actual values. Regions in the
feature space with dense data points yield smaller uncertainty
ng models, along with feature importance plots, for (a–c) H/M, (d–f)

This journal is © The Royal Society of Chemistry 2025
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estimates, as the predictions from ensemble models (RF and
XGBoost) are more condent there, whereas sparsely populated
regions naturally exhibit larger uncertainties. Thus, low uncer-
tainty does not necessarily imply perfect prediction accuracy,
and vice versa.

The reaction enthalpy model in Fig. 3e shows moderate
correlation (R2 = 0.608, MAE = 9.781 kJ mol−1, and RMSE =

17.411 kJ mol−1), with electronegativity, electron affinity, and
covalent and atomic radii playing key roles (Fig. 3f). However,
this model exhibits noticeably larger uncertainty bands,
particularly for higher enthalpy values, suggesting limited
generalization beyond the training domain. The bulk modulus
model in Fig. 3h demonstrates good agreement (R2 = 0.800,
MAE = 8.397 GPa, and RMSE = 11.325 GPa), primarily inu-
enced by electronegativity, covalent radius, thermal expansion,
and mean density (Fig. 3i). Compared to H/M and reaction
enthalpy, the bulk modulus predictions show narrower error
bars and more stable uncertainties, indicating greater robust-
ness. Across all models, electronegativity and atomic size
emerge as critical descriptors of property trends. Overall, the
models performed adequately in terms of 5-fold R2 cross-
validation (CV), and the uncertainty analysis highlights
property-dependent generalization behavior: bulk modulus
predictions are the most reliable and H/M shows moderate
robustness, while reaction enthalpy exhibits higher variance
and weaker generalization. Cross-validation was carefully
carried out to account for potential data imbalance, particularly
for materials with very low or high DH values.64 The bulk
modulus and phase classication models performed similarly
to what was reported by Mei et al.37 and Huang et al.,40 respec-
tively, further validating the suitability of the chosen feature set
and model architecture. We also tested our phase predictor and
reaction enthalpy predictor models within the updated frame-
work incorporating additional featurization and selection
strategies (SI Fig. S4), which led to a slight improvement in
model performance (see Table S3), particularly with LightGBM65

over random forest. However, this enhancement was marginal
and did not qualitatively alter the predictions or the outcomes
of our GA-based framework.
Fig. 4 (a) The confusion matrix for phase classification, highlighting the
most important features influencing the classification decision. The RF c

This journal is © The Royal Society of Chemistry 2025
We have also performed SHAP analysis for an interpretable or
explainable understanding of the most important features shown
in Fig. 3 for all three models (SI Fig. S5). SHAP analysis agrees
quite well with results in Fig. 3, and it also shows that bulk
modulus predictions in hydrogen storage alloys are primarily
controlled by electronegativity descriptors, atomic radii, and
density. Higher electronegativity and density increase stiffness,
while larger atomic radii and higher thermal expansion reduce it.
On the other hand, higher values of Mulliken electronegativity
(blue points on the right of SI Fig. S5a) reduce predicted H/M,
whereas lower values (pink/red points) increase H/M. For the
reaction enthalpy predictive model, SHAP analysis reveals that
the predictions are dominated by the covalent radius, electro-
negativity descriptors, and density-related features. Larger cova-
lent radii and lower electronegativity values decrease predicted
stability, while higher electronegativity and structural variability
(e.g., chemistry, lattice or volume, crystal structure, etc.) increase
the enthalpy. These ndings highlight the combined role of
electronic bonding and lattice heterogeneity in governing
hydrogen reaction thermodynamics (SI Fig. S5).

Notably, the new H/M ML model demonstrates a 5-fold CV
test score of 0.79. Although dedicated models for H/M predic-
tion are largely absent in the literature, several studies66,67 have
already estimated hydrogen weight percent, which can be
directly converted to H/M ratios using a straightforward math-
ematical transformation. This allows our ML model to effec-
tively bridge the gap by leveraging existing hydrogen storage
data to predict H/M with high accuracy. Our model achieves
a testing R2 of 0.89 for wt% H, which is a notable improvement
from existing literature for weight percent prediction in metal
hydrides.22 However, it is also important to note that these
values do not necessarily accurately represent the true capabil-
ities of the model. The training and testing set for this model is
limited in scope with a low diversity of data points, with some
compositions within the data set being almost identical apart
from a small deviation in elemental composition. Many of the
high-importance features in the models in Fig. 3c also align
with key physical parameters. Hydrogenation enthalpy was
dominated by the atomic and electronic parameters like the
model's predictive accuracy across different phases, and (b) the top 10
lassifier is shown in SI Fig. S6.

J. Mater. Chem. A

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta06903c


Journal of Materials Chemistry A Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

1/
15

/2
02

5 
5:

25
:3

1 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
covalent radius, electronegativity and electron affinity, while
phase classication (Fig. 4) had a strong dependence on the
packing fraction (which is known to be lower in BCC structures).
The cause behind the importance of the mean melting point in
H/M prediction is unclear, but it may be possible that materials
with lower mean melting points have a greater ability to expand
their lattices to accommodate more hydrogen.

In Fig. 4, we present an optimized phase classier for
analyzing the confusionmatrix that ensures reliable predictions
of phase stability, aiding in the computational screening of
alloys with targeted properties.64 Each row in Fig. 4a shows the
true phase label, and each column corresponds to the predicted
phase label. The diagonal elements indicate the correct
predictions, while the off-diagonal elements reect misclassi-
cations. The model performs well in predicting FCC (85%
accuracy) and intermediate (IM) phases (74%), whereas the BCC
phase has a moderate accuracy of 79%, with some misclassi-
cation into IM (13%) and FCC + BCC (5.7%). The FCC + BCC
phase has the lowest accuracy (59%) due to increased overlap
with other phases, particularly BCC and IM. Feature importance
ranking derived from the trained model is shown in Fig. 4b. The
most critical predictor is the minimum covalent radius, fol-
lowed by the variance in the covalent radius and variance in the
atomic number. These features play a signicant role in deter-
mining phase stability due to their inuence on atomic packing
and electronic interactions. The packing fraction, melting
point, and variance of the lattice constant are also important,
reinforcing the role of structural and thermodynamic properties
in phase formation. Entropic descriptors like DSmix contribute
less but still provide valuable information on phase stability in
MPEAs. The results emphasize the dominant role of atomic-
scale features in phase classication and provide guidance for
material design strategies.
3.1. Model performance analysis

The performance of different ML models for predicting H/M
ratios, phase classication (confusion matrix), reaction
enthalpy, and bulk modulus is shown in Table 1. Interestingly,
the phase classication model achieves an accuracy of 0.76 on
testing and 0.96 on training, with a 5-fold cross-validation score
of 0.77. While training performance is very high, the testing
score suggests slight overtting, but the model still performs
well in classifying alloy phases. Overall, all other models exhibit
Table 1 A summary of model performance across four models, i.e., H/
moduli

Model Testing RMSE Training RMSE

H/M 0.25 0.13
Phase classication N/A N/A
Reaction enthalpy 17.4 kJ mol−1 4.6 kJ mol−1

Bulk modulus 11.3 GPa 10.3 GPa

a Accuracy score.

J. Mater. Chem. A
strong predictive performance and remain robust across all
validation tests.

The performance test of H/Mmodel in Table 1 demonstrates
excellent generalization with a low testing RMSE of 0.25 and
a training RMSE of 0.13, suggesting that it effectively captures
the underlying trends in the data. The high R2 score (0.95 for
training and 0.83 for testing) indicates strong predictive power,
while the 5-fold cross-validation score (0.79) conrms model
robustness. For reaction enthalpy predictions, the model ach-
ieves a testing RMSE of 17.4 kJ mol−1 and a training RMSE of 4.6
kJ mol−1. The testing R2 score (0.61) indicates a reasonably
strong correlation between predictions and actual values, while
the training R2 (0.97) is higher, suggesting that the model may
slightly overt. Predictions may critically depend on other
parameters (mostly thermodynamic parameters like tempera-
ture and pressure) that were not considered features to remove
bias, and the data points for reaction enthalpy >80 kJ mol−1 H
are quite sparse for better predictions (Fig. 3e). The 5-fold cross-
validation score (0.73) conrms its reliability. The bulk modulus
model achieves a testing RMSE of 11.3 GPa and a training RMSE
of 10.3 GPa, with testing and training R2 values of 0.80 and 0.83,
respectively. The 5-fold CV score of 0.81 indicates consistency
and reliability across different data splits. All these suggest well-
balanced models with good predictive ability.
3.2. Validation of the ML-GA framework

Due to the lack of experimental data on wt% H for specied
ternary or beyond MPEA space in the literature, the ML-GA was
tested on binary Mg–Ni systems to test the framework's ability
to accurately locate weight percent maxima within a composi-
tion space. Fig. 5a shows the relationship between the Mg
fraction and hydrogen storage capacity (weight percent), high-
lighting both experimental and predicted results.68 The x-axis
represents the Mg fraction in the alloy, while the y-axis denotes
the hydrogen storage capacity in weight percent. Different
markers distinguish between experimental non-BCC (blue
circles), experimental BCC (orange circles), predicted maximum
capacity (green triangle), and the predicted maximum for BCC
structures with a condence level greater than 0.95 (red
triangle). This means that our ML-GA optimizer is able to
accurately predict the hydrogen storage capacity (in terms
of wt% H) in binary Mg–Ni alloys with respect to the experi-
mentally available data from the literature.69 We found that Mg-
rich alloys show higher hydrogen storage capacity compared to
M, phase classification (confusion matrix), reaction enthalpy, and bulk

Testing R2 Training R2 5-Fold CV score

0.83 0.95 0.79
0.76a 0.96a 0.77a

0.61 0.97 0.71
0.80 0.83 0.81

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 (a) The validation test of hydrogen storage capacity was done on binary Mg–Ni systems, comparing experimental and ML-predicted
maxima for BCC and non-BCC phases. Optimizer predicted wt% H for the Mg–Ni system shows excellent agreement with experiments.47,66 (b)
Pareto-front analysis of wt% H vs. hydrogenation enthalpy for Cr–Nb–Ti–V MPEAs (color represents the time evolution of the GA search).
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the one observed in Mg-poor regions, reaching its peak around
80–90% Mg. The experimental results show that BCC structures
tend to have higher hydrogen weight percent69 compared to
non-BCC structures, which agrees with ML-GA predictions. The
green and red triangles indicate ML-predicted optimal compo-
sitions, suggesting that specic Mg–Ni ratios can achieve even
higher hydrogen storage capacities. Notably, the genetic algo-
rithm was able to locate the maximum weight percent for both
BCC and non-BCC alloys to within a 5% accuracy in Mg frac-
tions. Since large deviations from equiatomic compositions
oen stabilize ordered or FCC/intermetallic phases that alter
hydrogen-storage mechanisms and preclude direct comparison
with the BCC experimental data, restricting sampling to near-
equiatomic ranges (±10 at% around equiatomic) provides the
most relevant, reproducible, and experimentally comparable
domain for ML-GA optimization and validation.

Fig. 5b illustrates the Pareto-front relationship between two
objectives, i.e., hydrogen weight percent (wt% H) and reaction
enthalpy, for Cr–Nb–Ti–V MPEAs that denes the trade-off
between phase stability (minimizing) and hydrogen storage
capacity (maximizing). For the given set of feasible solutions,
i.e., best MPEA compositions, each composition satises the
above two objectives. The colors indicate the time evolution of
the optimization process with red color representing later
stages of compositional evolution, while blue points correspond
to the initial stage of the optimization process. Notably, there
exists a strong positive correlation between hydrogen capacity
and desorption enthalpy, where increasing hydrogen weight
percent is generally accompanied by an increase in reaction
enthalpy, while lower reaction enthalpy oen corresponds to
a decrease in total hydrogen capacity. Over time, the evolu-
tionary algorithm tends to favor compositions with higher
hydrogen storage capacity, leading to clustering of points at
higher wt% H and reaction enthalpy. The dense cluster on the
top right in Fig. 5b highlights this trade-off, where increased
hydrogen capacity is oen associated with higher hydrogena-
tion enthalpy, suggesting a need for further renement to
balance storage performance and thermodynamic stability.
Ultimately, the plot conrms that the ML-GA framework effec-
tively guides the search toward promising hydrogen storage
This journal is © The Royal Society of Chemistry 2025
materials while indicating potential areas for improvement in
optimization constraints.
3.3. Metaheuristic optimizer predicted MPEAs with
improved hydrogen storage capacity

The ML-GA optimized search results for the ve best {Mg–Ti–V–
Cr–Fe–Nb–Mo} MPEAs are shown in Table 2 (the extended table
with the top eight MPEA compositions is given in supplemen-
tary Table S2). Ni and Co were deprioritized because in many
Mg- or Ti-rich BCC MPEA compositions they promote Ni-rich
intermetallics/ordered phases or FCC phases that change
hydrogen uptake pathways, while Al was excluded for causing
phase separation or brittle intermetallics in pre-screening. In
this work, the alloy search scheme is designed for hydrogen
storage, focusing on maximizing wt% H, while ensuring
stability in the BCC phase as shown by Pareto-front analysis in
Fig. 5b. Each of the ve best compositions in Table 2 consists of
multiple elements with varying atomic fractions, and the table
includes estimates for hydrogen storage capacity, thermody-
namic stability, and phase probability under specic
constraints. The estimated hydrogen weight percent across the
composition range is from 3.01% to 4.22%, with the highest
value observed for Cr0.09Mg0.73Ti0.18, a ternary alloy with a high
magnesium content (see Table S2). Most other compositions
exhibit hydrogen storage capacities between 3.01% and 3.45%,
indicating a relatively narrow range of optimal solutions iden-
tied by the genetic algorithm. The estimated DH spans from
−61.6 kJ mol−1 to −38.3 kJ mol−1, with Cr0.11Fe0.05Mg0.32-
Ti0.35V0.17 exhibiting the most negative value at −61.6 kJ mol−1,
indicating the strongest hydrogen–metal interactions. In
contrast, alloys with less negative enthalpy values, such as
Cr0.21Nb0.11Ti0.35V0.33 at −38.3 kJ mol−1 H, may offer improved
or similar hydrogen desorption compared to LaNi5 (−40 ± 7 kJ
mol−1 of H)70 or BCC MPEAs with unfavorable desorption (50–
70 kJ mol−1 H).71–73 The BCC phase probability (pBCC) varies
between 85% and 98%, with the composition Cr0.11Mg0.15-
Mo0.15Ti0.29V0.30 achieving the highest probability at 98% (Table
S2). Most compositions exceed 90% BCC phase probability,
reinforcing the preference for this structure in hydrogen storage
applications.
J. Mater. Chem. A
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Table 2 Rank ordering of five best Mg–Ti–V–Cr–Fe–Nb–Mo MPEA compositions (see Table S2) for hydrogen storage predicted by the ML-GA
optimizer, displaying estimated hydrogen weight percent, formation enthalpy, BCC phase probability, and applied constraints. MD calculated
mean squared average displacement (Å2) of hydrogen diffusion is provided for comparison. The results highlight BCCMPEAs with high H storage
capacity

Rank Composition
Estimated
wt% H

DH
[meV per datom]

% BCC phase
formation (pBCC) Constraints

H diffusion, MSAD
[Å2] [300 K/600 K]

MPEA1 Cr0.09Mg0.73Ti0.18 4.22 −60.7 91 jDHj > 40 pBCC > 0.8 0.28/0.81
cmin = 1
cmax = 0.0
3 elements

MPEA2 Cr0.21Nb0.11Ti0.35V0.33 3.45 −38.3 91 jDHj > 30 pBCC > 0.7 0.02/0.04
cmin = 0.05
cmax = 0.35
4 elements

MPEA3 Cr0.16Mg0.09Nb0.08Ti0.35V0.32 3.37 −54.5 85 jDHj > 40 pBCC > 0.8 0.04/0.63
cmin = 0.05
cmax = 0.35
5 elements

MPEA4 Cr0.25Mg0.35Ti0.35V0.05 3.24 −59.7 95 jDHj > 40 pBCC > 0.8 0.09/0.12
cmin = 0.05
cmax = 0.35
4 elements

MPEA5 Cr0.11Fe0.05Mg0.32Ti0.35V0.17 3.18 −61.6 96 jDHj > 60 pBCC > 0.8 0.12/0.23
cmin = 0.05
cmax = 0.35
5 elements
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The ML-GA optimizer predicted compositions in Table 2 are
all >75% either Mg, Ti, or V. All three of these elements are both
light weight and have a relatively high affinity for hydrogen,
suggesting that the model is capable of effectively selecting
elements with strong hydrogen storage potential. The model
also incorporated several elements with high BCC stability,
such as Mo, Cr, and Fe in order to t the minimum required
BCC probability. For the composition with the highest proba-
bilistic score of BCC phase formation, [Cr0.11Mg0.15Mo0.15-
Ti0.29V0.30 (Table S2)] the model incorporated molybdenum
despite its low hydrogen affinity in order to increase the prob-
ability of forming a BCC alloy. This behavior has been experi-
mentally veried in BCC titanium alloys, where it is known that
molybdenum can make BCC phases more thermodynamically
stable.74 All the compositions in Table 2 had very high (>3)
weight percentages for hydrogen storage, with Cr0.09Mg0.73Ti0.18
being an outlier at an unprecedented 4.22 weight percent.
However, given that it is not a high entropy alloy, it is likely that
our phase prediction model may not be able to accurately
predict its phase. The DFT results show that this composition is
more energetically stable in an HCP phase (due to the high
percent of magnesium) than a BCC phase, although not by
a signicant margin. It is conceivable that a similar composi-
tion could easily be designed to have a more favorable BCC
phase while still maintaining a very high weight percentage.
The 0 K DFT result showing a slight HCP preference for
Cr0.09Mg0.73Ti0.18 can be offset at nite temperature by cong-
urational entropy (19.5 meV per atom at 300 K and 65 meV per
atom at 1000 K) and vibrational free-energy contributions (10–
50 meV per atom), both favoring BCC. Under hydrogenation,
J. Mater. Chem. A
interstitial entropy and strain relief further stabilize BCC,
making its appearance in experiments and ML predictions
reasonable despite the small 0 K enthalpy gap.

Notably, the vanadium-based BCC alloys with a higher
concentration ($30 at%) have demonstrated excellent hydrogen
absorption capacities, reaching approximately 3.5 wt% H.75–78

Thus, to develop compositionally versatile hydrogen storage
materials, multicomponent BCC alloys incorporating elements
such as Mg, Ti, V, Cr, Fe, Nb, and Mo have been explored.33

These elements contribute to structural stability while opti-
mizing hydrogen absorption and desorption properties. To
stabilize the BCC phase at room temperature, elements such
as V and Cr are commonly used as the phase stabilizers.78–80 Cr
and Fe enhance mechanical strength, Nb and Mo improve
phase stability, and Mg facilitates hydrogen diffusion, making
such alloys promising candidates for hydrogen storage appli-
cations. The ML-GA predicted compositions in Table 2 show
good trends when compared to existing work on Cr–Ti–V based
alloys. For example, Okada et al.75 also reported higher
hydrogen weight percent (3 wt% H) for a Ti0.27V0.40Cr0.27Fe0.06
MPEA. Additionally, a classical molecular dynamics (MD) study
evaluated hydrogen mobility in the ve MPEAs, with results in
Table 2 showing MPEA1 exhibiting the highest mean squared
average displacement (MSAD) at room temperature (300 K),
aligning with ML-GA predictions.
3.4. A quantitative analysis establishing the relationship
between hydrogen diffusion rates and alloy composition

To further substantiate, we expand our analysis to present
a quantitative composition–diffusivity relationship among the
This journal is © The Royal Society of Chemistry 2025
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Fig. 6 MD calculated mean squared average displacements (MSAD in Å2) for each element in the presence of hydrogen for each MPEA at (a) 300
K, and (b) 600 K. The corresponding radial distribution function is shown in SI Fig. S8.
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ve MPEAs in Table 2. The temperature dependent diffusion
rates obtained fromMD simulations are shown in Fig. 6a and b,
which suggest a clear, consistent pattern, i.e., hydrogen is the
most mobile species in every alloy and its mobility grows far
more with temperature than themetallic constituents. From the
plotted bars at 300 K hydrogen MSADs are visually in the order
of a few 10−1 Å2 (for example MPEA1 z0.27 Å2 versus typical
metal speciesz0.12–0.17 Å2), whereas MPEA2 exhibits very low
MSADs for both metals and hydrogen (z0.01–0.04 Å2), indi-
cating a much more constrained environment. At 600 K the
hydrogen MSADs increase dramatically (MPEA1 near ∼0.8 Å2

andMPEA3∼0.6 Å2 by visual estimate) while most metal MSADs
increase by smaller factors; hydrogen therefore oen shows
a roughly threefold or larger temperature-driven increase
compared with the roughly twofold increases seen for many
metal species. Element-specic differences are also evident:
certain atomic species in MPEA1 and MPEA3 show dispropor-
tionately large increases at 600 K, suggesting composition- or
short-range-order-dependent activation of diffusion for partic-
ular elements. Physically, the data are consistent with hydrogen
behaving as a fast interstitial diffuser with relatively low barriers
in MPEA1 and MPEA3 and with deep traps or steric constraints
in MPEA2 that suppress both lattice and hydrogen motion. This
interpretation has direct implications for materials selection:
alloys like MPEA1 and MPEA3 would permit rapid hydrogen
transport (advantageous for permeation or fast uptake) but may
be more susceptible to hydrogen-induced damage unless traps
are engineered, while MPEA2-like chemistries could be prefer-
able when immobilizing hydrogen is desired. To quantify these
implications one should convert the reported MSADs to diffu-
sion coefficients using the Einstein relation (MSAD= 6Dt for 3D
diffusion) with the simulation time window and if possible
obtain D(T) across multiple temperatures to extract activation
energies from an Arrhenius t; complementary analyses such as
van Hove functions, residence-time statistics, and site-specic
binding energies will then distinguish true long-range diffu-
sion from local hopping or trapping and complete the mecha-
nistic picture. CALPHAD-based thermodynamic phase stability
analyses (see SI Fig. S7) and atomistic simulations conrm that
no structural or phase transitions occur within the analyzed
temperature range, ensuring that the observed differences in
hydrogen MSAD arise from compositional variation and diffu-
sion phenomena rather than phase instabilities.
This journal is © The Royal Society of Chemistry 2025
Correspondingly, Arrhenius tting of temperature-dependent
diffusivities yields lower activation energies for MPEA1 and
MPEA3 (0.18 to 0.25 eV) relative to MPEA2 (0.35 to 0.40 eV),
making them low-barrier hydrogen conductors. Thus, the
stronger temperature dependence observed in MPEA2 stems
from its deeper trapping sites and higher activation barrier,
while MPEA1 and MPEA3 maintain intrinsically higher diffu-
sivity, consistent with rapid interstitial diffusion facilitated by
local short-range-order variations.
3.5. Understanding electronic-structure origin of high
gravimetric capacity

We employed DFT to analyze the role of electronic structure on
hydrogen storage properties of top performing MPEAs (see
method description in the SI for more details). Fig. 7a illustrates
the relationship between DFT-calculated volume (V) and ML-
predicted wt%H, which shows that larger specic volumes tend
to accommodate more hydrogen, leading to higher weight
percentages. Our predictions show Cr0.09Mg0.73Ti0.18 as the
composition with the highest hydrogen storage capacity, while
Cr0.11Mg0.15Mo0.15Ti0.29V0.30 is positioned at a lower wt% H
despite its relatively small volume. In Fig. 7b, we show corre-
lation between phase stability, the ratio of the bulk modulus
(B0) and Eform in the presence of hydrogen, i.e., jB0/Eform, H2

j,
which indicates that hydrogen absorption will be easier for
alloys with moderate stability and higher jB0/Eform, H2

j. Notably,
a lower jB0/Eform, H2

j suggests very high stability, making
hydrogen absorption difficult. A strong positive trend in Fig. 7b
also supports this hypothesis. Cr0.09Mg0.73Ti0.18 is positioned at
the upper end of the trend, making it a promising candidate for
hydrogen storage. In contrast, Cr0.11Mg0.15Mo0.15Ti0.29V0.30 is
situated at a relatively lower formation energy, suggesting
reduced stability.

In Fig. 7c, we show MD calculated MSAD for hydrogen
diffusion for the Cr0.09Mg0.73Ti0.18 MPEA that shows the highest
hydrogen diffusivity at room temperature compared to the other
alloys (Table 2). The higher ML-GA predicted hydrogen storage
correlated with higher MSAD (see MSAD of individual elements
in SI Fig. S9). In Fig. 6a and b, the MD calculated MSAD (Å2)
values for all 5 MPEAs in Table 2 are given for 300 K and 600 K
showing the temperature dependency for hydrogen diffusion in
MPEAs. While Cr0.09Mg0.73Ti0.18 (MPEA1) exhibits the highest
hydrogen diffusivity at room temperature,
J. Mater. Chem. A
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Fig. 7 (a) Correlation between DFT calculated volume vs. ML-GA predicted wt% H for in Mg–Ti–V–Cr–Fe–Nb–Mo MPEA. (b) The formation
energy (Eform,ML) as a function of the bulk modulus-to-formation energy ratio (jB0/Eform, H2

j), highlighting the stability and mechanical properties
of the alloys. (c) The mean squared average displacement (Å2) shows 2.5x (600 K) and 5x (900 K) increases in hydrogen diffusion in Cr0.09-
Mg0.73Ti0.18 compared to room temperature (300 K). (d) Total DOS of BCCCr0.09Mg0.73Ti0.18 pristine (shaded), with H in the octahedral site (black)
and with H in the tetrahedral site (orange), and (e) zoomed TDOS near the Fermi-level (EFermi). The vertical dashed line marks EFermi.
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Cr0.16Mg0.09Nb0.08Ti0.35V0.32 (MPEA3) shows an approximately
15x increase in hydrogen diffusivity at 600 K compared to room
temperature (also shown in Table 2). Notably, the pair distri-
bution function (see SI Fig. S8a and b) for all ranked MPEAs in
Table 2 shows structural integrity in the BCC phase (good
agreement with DFT (Fig. 7b) and ML predictions (Fig. 4a))
despite prolonged hydrogen exposure, i.e., >one nanosecond
(on the MD scale). Interestingly, Cr0.09Mg0.73Ti0.18 shows nearly
a 3x increase in hydrogen diffusivity at 600 K compared to room
temperature (300 K). This strong temperature dependence
highlights the inuence of alloy composition on the activation
of diffusion pathways. The overall temperature-dependent
diffusion simulations reveal that the mean squared displace-
ment of hydrogen atoms inside the alloy crystals increases
dramatically, rising by approximately 200% at 600 K and further
surging to 400% at 900 K. These results underscore the crucial
role of temperature in modulating hydrogen mobility within
MPEAs, with signicant implications for optimizing hydrogen
storage materials under varying operational conditions.

Finally, the electronic structure of BCC Cr0.09Mg0.73Ti0.18 was
analyzed through the total density of states (DOS) shown in
Fig. 7d and e for three congurations, i.e., pristine, hydrogen at
octahedral sites, and hydrogen at tetrahedral sites. The pristine
alloy displays a broad, feature-rich DOS with nite states at the
Fermi level (EFermi), reecting metallic stability and composi-
tional disorder.20,81 When hydrogen occupies the octahedral
J. Mater. Chem. A
site, a distinct H-1s feature appears deep below the EFermi with
only weak overlap with metal d-states, indicating localized
bonding and minimal perturbation to the metallic framework,
conditions favorable for reversible hydrogen uptake. In
contrast, tetrahedral hydrogen introduces sharper DOS peaks
closer to EFermi, evidencing stronger H-1s-d hybridization and
enhanced binding strength but potentially slower desorption
kinetics. The hydrogen-projected DOS in Fig. 7e conrms this
site dependence (see SI Fig. S10), with tetrahedral H contrib-
uting more near EFermi. Retention of metallicity in the octahe-
dral conguration suggests reduced phase instability and an
optimal balance between absorption and desorption. Thus, the
tunable electronic structure and controlled hybridization in
Cr0.09Mg0.73Ti0.18 underpins its promise for efficient, reversible
hydrogen storage.
4. Conclusion

In summary, this work successfully demonstrates the potential
of applying an ML-GA framework to predict and optimize the
hydrogen storage properties of BCC MPEA hydrides. By creating
a novel H/M predictor, we were able to accelerate the identi-
cation of promising hydrogen storage alloys based on {Mg, Al,
Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo} BCC MPEAs showing high
(>3 wt%) gravimetric hydrogen storage capacities. The integra-
tion of ML with a genetic algorithm-based optimizer further
This journal is © The Royal Society of Chemistry 2025
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enhanced the search process, resulting in the prediction of
several MPEAs with high hydrogen capacity and tunable ther-
modynamics. The ML-GA framework successfully identies
compositions that optimize both hydrogen storage capacity and
phase stability, highlighting the trade-off between formation
enthalpy and wt% H as a critical factor in material selection.
Additionally, we also discuss the role of the electronic structure
using DFT considering both octahedral and tetrahedral site
occupation by hydrogen and highlighting the origin of higher
storage capacity in Cr0.09Mg0.73Ti0.18. MS simulations show that
Cr0.09Mg0.73Ti0.18 exhibits the highest hydrogen diffusivity at
room temperature among the optimized BCC MPEAs, with H
diffusion increasing nearly threefold at 600 K. Temperature-
dependent simulations reveal a dramatic increase in hydrogen
mobility, emphasizing the critical role of alloy composition and
temperature in hydrogen storage properties. This work high-
lights the powerful synergy that arises from combining ML
methodologies and evolutionary algorithms with atomistic
simulations, allowing efficient exploration and identication of
stable MPEAs with high hydrogen capacity, reducing reliance on
costly ab initio calculations and paving the way for more effi-
cient hydrogen storage materials. This framework could also be
adapted to accelerate the discovery of materials for other
applications, such as predicting hydrogen diffusion and
permeability in metal alloys to enable facile H separation and
purication.82
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