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Recent advances in MXene-based self-powered
electrochemical sensors
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Self-powered electrochemical sensors (SPECSs) offer a transformative alternative by integrating energy
harvesting directly with analyte detection, enabling autonomous operation without external power
sources. This review focuses on the merits of employing MXenes in the construction and performance of
SPECSs by evaluating how MXenes are employed as active components and how they enhance the
performance of various SPECS platforms. We broadly classified MXene-based SPECSs as enzymatic
biofuel cell-based sensors, microbial- and biophotoelectrochemical-based sensors, and other SPECSs.
The key attributes of MXenes, including high conductivity and tunable surface chemistry, are ideal for
immobilizing active species in the SPECS. The significant capacitance and catalytic potential of MXenes
are explored towards enhancing charge transport in SPECSs. This enables robust interfaces, facilitating
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signal amplification, and forming advanced functional composites within these self-powered devices. By
utilizing these unique properties of MXenes, the development of highly sensitive, stable, and potentially

miniaturized autonomous sensors is becoming increasingly feasible, paving the way for next-generation

sensing solutions.

1. Introduction

Electrochemical sensors are essential tools, playing a pivotal
role across diverse fields, including environmental monitoring,
healthcare, food industry, agriculture, safety and security, and
biotechnology research. A key operational requirement for
conventional electrochemical sensors, despite their widespread
utility, is their reliance on external power sources like batteries
(for portable devices) or mains electricity (for stationary
systems). This fundamental dependency on external power
introduces significant limitations concerning device self-
sufficiency, overall sustainability, system resilience, mainte-
nance logistics, and environmental impact. To overcome these
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challenges, self-powered electrochemical sensors (SPECSs)
represent a transformative approach and a significant evolution
in sensor technology."> These SPECSs operate by generating the
electrical energy autonomously. This energy generation occurs
through a process where the power output is directly controlled
by the presence and concentration of the target analyte.®* This
integration of in situ power generation with sensing represents
a paradigm shift towards more sustainable, autonomous, and
simplified sensing platforms, which leads to the development
of next-generation devices.

The autonomous generation of power in SPECSs directly
addresses the significant sustainability challenges posed by
conventional sensors. By eliminating the need for external
power sources like batteries or solar cells, SPECSs drastically
reduce the overall material usage involved in sensor construc-
tion. This not only conserves resources but also frees up valu-
able materials, including precious metals and rare earth
elements used in batteries, for other critical applications.
Furthermore, many SPECSs, particularly those based on biofuel
cells, utilize biomaterials like enzymes and microbes that are
more abundant and less environmentally intensive to produce
than the components of traditional power sources.* This
reduction in the reliance on resource-intensive, non-renewable
materials directly results in a smaller carbon footprint and
a more sustainable, self-sufficient sensing platform. This shift
marks a move toward a circular economy model for sensors,
where the device's operational power is seamlessly integrated
with its sensing function, minimizing waste and environmental
impact from cradle to grave.
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This paradigm shift towards SPEC systems needs to have
innovative device designs that are capable of harvesting energy
directly from their surroundings or from the electrochemical
sensing reaction happening in the system itself. This can be
realized by introducing diverse energy conversion strategies
integrated directly within the sensor design. The key
approaches include (1) harnessing biomechanical energy by
using piezoelectric or triboelectric effects to convert vibrations
or pressure changes,” (2) exploiting biochemical reactions
similar to enzymatic biofuel cells, where analyte consumption
generates current,? (3) utilizing thermal gradients via thermo-
electric generators, (4) capturing ambient light through
photovoltaic components,” and (5) converting chemical poten-
tial directly into electricity.® The crucial aspects of design,
operation, and potential applications of the sensor are entirely
dependent on the selection of the energy harvesting mechanism
used in the sensor system. For example, a wearable sensor can
utilize the body movement via triboelectric nanogenerators,
while an environmental sensor can utilize a biofuel cell powered
by pollutants.” Hence, the sensor design should focus on ana-
lyte detection and efficient power generation units in addition
to the integration of sensing elements with miniaturized, and
operational demands of the sensor.

There are mainly two different approaches such as biofuel
cells (BFCs) and photoelectrochemical (PEC) reactions, gener-
ally utilized in self-powered electrochemical sensing systems.
These systems align with biological and environmental moni-
toring needs in a way that they generate power directly from
metabolites readily available in physiological fluids (like
glucose or lactate) in the case of BFCs, or by converting the light
energy into PEC systems. A BFC-based self-powered system
involves designing a fuel cell electrode with a primary bi-
ocatalyst for power generation, and a bioreceptor element that
undergoes bioreceptor-analyte interaction, which influences
the rate of the power-generating reaction. This can be either
enzymatic biofuel cells (EBFCs), which can generate electrical
power through highly specific biochemical reactions catalyzed
by enzymes immobilized on electrode surfaces or microbial fuel
cells (MFCs), which utilize the metabolic activity of electrogenic
microorganisms to convert the chemical energy stored in
organic matter directly into electricity. These EBFCs show high
specificity originating from the enzymatic reactions, making
them attractive for detecting particular biomarkers or metabo-
lites.” In MFCs, changes in the MFC's power output can
correlate with fluctuations in the concentration of the microbial
substrate (e.g., measuring biochemical oxygen demand in
wastewater) or the presence of substances that inhibit or stim-
ulate microbial activity (e.g., toxins)."*

For sensors leveraging mechanical (piezoelectric or tribo-
electric) or thermal energy, the operating principle involves the
analyte typically controlling a physical energy conversion
process indirectly. In contrast, photoelectrochemical (PEC)
systems utilize semiconductor materials (photoelectrodes) that
absorb light to generate electron-hole pairs; these charge
carriers then drive electrochemical reactions, leading to elec-
tricity generation.*”* The produced photocurrent or photovoltage
will be highly sensitive to the intensity of incident light.
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Interactions between the target analyte and the photoelectrode
surface can alter PEC reactions, and this can be used for light-
controlled sensing or detection based on analyte-induced
changes in the photo-response. Bio-photoelectrochemical cells
(BPECs) are specialized systems consisting of both bi-
oelectrocatalytic and photoelectrocatalytic components for
converting light and chemical energy into electricity simulta-
neously.” In addition, BPECs hold the advantages of biocom-
patibility of EBFCs and robustness of PECs.**

In both BFC- and PEC-based SPECSs, the analyte interaction
is linked to the core energy generation mechanism, and the
sensing information can be extracted by monitoring the output
power of the devices with relatively simple instrumentation.
Hence, the processes at the transducer stage can be designed to
integrate both the power production and sensing elements
closely together to simplify the manufacturing process. Fig. 1
shows the illustration of enzymatic biofuel cells (EBFCs),
microbial fuel cells (MFCs) and bio-photoelectrochemical fuel
cells (BPFCs).

For the successful realization of BFC- and PEC-based
SPECSs, it is essential to consider the use of advanced mate-
rials with the capability for rapid electron transfer towards the
sensor signal readout. In addition, these advanced materials
can support both energy conversion and sensing processes
through analyte recognition/interaction mechanisms. Various
traditional materials like noble metals," carbon nanotubes,®
graphene,"” and conducting polymers'® have been explored for
achieving optimal synergy between power generation and
sensing performance. However, the stability and biocompati-
bility of these materials remain significant challenges, which
introduce the necessity for novel materials with unique
attributes."

Among the emerging candidates, MXenes, a new family of
two-dimensional (2D) transition metal carbides, nitrides, and
carbonitrides with unique properties, have garnered substantial
interest for electrochemical applications including self-powered
sensing applications.”* MXenes are synthesized from their
precursor MAX phases via selective etching with hydrofluoric
acid or alternative etchants. MXenes possess a characteristic
combination of unique properties that make them exceptional
candidates for developing integrated sensing and power
generation platforms.> MXenes are represented by the general
formula M,,;,X,,T, (Where M is an early transition metal like
Ti, V, Mo, etc.; X is C or N; n = 1-4; and T, denotes surface
functional groups like -F, -O, and -OH).** They also exhibit
excellent metallic conductivity, which ensures efficient charge
transport comparable to or exceeding other traditional elec-
trode materials for electrochemical applications in terms of
minimizing internal resistance and maximizing power output.*
Also, the field of MXenes has been moving towards employing
more environmentally friendly chemicals and methods for their
synthesis. The application of diluted fluoride-based etchants,**
electrochemical etching,® vapour deposition-based synthetic
techniques,*® and use of waste streams as precursors will help
towards making the MXene a sustainable option.””

Additionally, the surface functionalization of MXenes
renders them hydrophilic and provides numerous anchor
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Fig. 1

Illustration of enzymatic biofuel cells (EBFCs), microbial fuel cells (MFCs) and bio-photoelectrochemical fuel cells (BPECs). These systems

utilize biological components (enzymes and microbes) and photosynthetic systems to catalyze redox reactions at the anode/bioanode and
cathode/biocathode, generating an electrical signal (power), which is typically proportional or inversely proportional to the concentration of

a target analyte. The authors have drawn this image.

points for immobilizing enzymes, aptamers, antibodies, or
other biorecognition elements, which are essential for highly
selective sensing in BFCs.”® Furthermore, the high specific
surface area possessed by these materials enables high catalyst
loading, thus enhancing the interaction with the surrounding
medium (e.g., electrolyte or biological fluid). Some MXenes also
exhibit intrinsic electrocatalytic or co-catalytic activity that can
be used to replace other expensive catalysts or enhance effi-
ciency in photoelectrochemical systems.?® The tunable surface
chemistry along with the possibility of diverse elemental
compositions and their ability to form advanced hybrid nano-
composites with other materials open new avenues for modi-
fying their electrocatalytic activity towards specific reactions for
energy generation involved in BFCs (like oxygen reduction or
fuel oxidation) or PECs.*® The tunable surface chemistry and the
presence of hydrophilic groups on MXenes also make these
materials friendly for large scale manufacturing because these
materials have the ability to be formulated into inks. Formu-
lations of MXenes with biomaterials like enzymes, microbes,
and photosynthetic organelles offer attractive opportunities for
manufacturing of SPECs.*"*

Xu et al. employed density functional theory (DFT) to unravel
the interfacial electronic structure and energetics of MXene/
transition-metal oxide (TMO) heterostructures, using -OH, -
O-, -F, and mixed-terminated Ti,.+;C, Ty MXenes coupled with
anatase TiO,.** Their results reveal that the magnitude of
interfacial charge transfer is highly dependent on MXene
surface chemistry. Among the various terminations, OH-
functionalized MXenes exhibited the largest work-function
disparity (~1.6 eV for MXene versus 6.4 eV for TiO,), driving

J. Mater. Chem. A

substantial electron migration (~0.9 e nm™?) from the MXene
layer into the TiO, interface. This strong charge redistribution
not only lowers the interfacial electronic barrier but also
enhances adhesion through hydrogen bonding, thereby estab-
lishing an electronically coupled and structurally robust junc-
tion. Conversely, O- or F-terminated MXenes exhibited minimal
charge transfer and weaker interfacial binding, underscoring
the critical role of surface terminations in governing interfacial
electronic communication.

While MXene-TMO heterostructures primarily leverage
interfacial electron transfer through strong work-function
disparities and surface chemistry-driven adhesion, MXene/N-
doped graphene hybrids offer a complementary pathway to
enhance interfacial kinetics by integrating a highly conductive
2D carbon framework. MXene/N-doped graphene hetero-
structures exhibit remarkable electrocatalytic efficiency arising
from their strong interfacial coupling and accelerated charge-
transfer pathways. The DFT calculations also reveal that
metallic conductivity of MXenes, combined with the defect-rich,
heteroatom-doped graphene network, establishes a seamless
electronic interface that minimizes contact resistance and
enhances interfacial electron mobility. Nitrogen dopants in
graphene introduce localized electronic states near the Fermi
level, which act as additional charge reservoirs and facilitate
efficient electron tunneling across the heterojunction. Charge
density difference maps further confirm pronounced interfacial
electron redistribution, indicating strong electronic coupling
between MXene and N-doped graphene. This interfacial polar-
ization not only aligns the energy levels between the two
components but also optimizes the adsorption energetics of

This journal is © The Royal Society of Chemistry 2025
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electroactive species, thereby reducing the kinetic barriers for
redox reactions. Collectively, the DFT-derived insights highlight
how the synergistic interplay of electronic coupling, defect
engineering, and interfacial charge polarization in MXene/N-
doped graphene heterostructures provides a robust platform
for fast electron-transfer kinetics and stable performance in
self-powered electrochemical sensors.**

In addition, MXene-polymer interfaces provide another
promising strategy to improve the charge-transfer efficiency and
interfacial kinetics in SPECSs. As reported using DFT calcula-
tions, Ti;C,T, MXene coupled with polyaniline (PANI) demon-
strate pronounced interfacial charge redistribution, with
electrons transferring from PANI to MXene due to a favorable
Fermi-level alignment. This electron transfer generates an
intrinsic interfacial electric field, which facilitates the direc-
tional charge flow and significantly reduces the charge-transfer
resistance. Partial density of states (PDOS) analysis further
reveals the formation of hybridized electronic states at the
interface, which act as efficient charge-transport channels.
Additionally, this interfacial coupling enhances the adsorption
energetics of electroactive species, thereby accelerating redox
kinetics crucial for self-powered signal transduction. Looking
forward, the rational design of MXene-polymer interfaces,
guided by DFT-driven insights, will be critical to overcoming
persistent challenges such as interfacial instability, energy loss,
and limited operational lifetime, thereby enabling the next
generation of highly efficient, durable, and autonomous SPECS
platforms.*

These inherent advantages of MXenes, which can overcome
the limitations of conventional materials in terms of sensitivity,
stability, and miniaturization can be utilized in developing
powerful  building blocks for next-generation, high-
performance SPECSs. Indeed, many conventional materials
struggle with insufficient signal response to low analyte
concentrations (sensitivity), tend to degrade or lose accuracy
over extended use or under harsh conditions (stability), and
present considerable fabrication challenges for creating
compact, portable devices (miniaturization). The following
sections in the review explore how these unique properties of
MXenes are utilized in the design and fabrication of MXene-
based SPECSs. To provide a clear understanding, the review
will specifically discuss systems where MXenes serve as active
components, including a detailed comparison of key perfor-
mance characteristics—such as sensitivity, stability, and oper-
ational range—when integrated into EBFC-based, MFC-based,
and BPEC-based sensors.

2. MXenes in enzymatic biofuel cell
(EBFC)-based self-powered sensors

The use of enzymes in EBFCs entails some drawbacks like the
stability of enzymes and issues with proper immobilization,
resulting in lesser power production. To overcome these limi-
tations, Ji et al. introduced an innovative biofuel cell-based self-
powered sensor design for the detection of lead ions.*® They
utilized two-dimensional lamellar gold nanoparticles-Ti;C,T,

This journal is © The Royal Society of Chemistry 2025
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(AuNPs-Ti;C,T,) heterostructures for the anode, in which the
AuNPs provided glucose oxidase-like catalytic activity, and this
can be used to replace the potentially unstable enzymes. In
addition, the Ti;C,T, MXene provides signal amplification
owing to their excellent charge storage capacity, which can solve
the potential issues of low current production. In the sensor
design, they used doped carbon-based nanosheets as the
cathode with promising oxygen reduction reaction catalytic
activity. Together with these anode and cathode modifications,
the developed enzyme-free biofuel cell was able to detect lead
ions in the range of 0.01-7500 nM with a limit of detection
(LOD) of 0.43 pM along with realization of practical applications
using human plasma samples.

Even though SPECs show great potential, they are often
limited in practical applications due to low energy conversion
efficiency and limited selectivity, especially in complex samples.
As an approach to mitigate these limitations, Sun et al. reported
a novel self-powered biosensor employing EBFCs, specifically
for ultrasensitive CD44 detection.”” CD44 is a cell-surface
molecule involved in many cellular processes and acts as
a key biomarker and therapeutic target, especially in cancer
metastasis. Hence, the sensitive and specific detection of CD44
is highly essential for diagnostic applications which require
advanced sensor platforms. They have synthesized an MXene-
AuNP composite, as shown in Fig. 2(a). The developed biosensor
consisted of a Au-MXene modified bioanode conjugated with
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Fig. 2 (a) Schematics showing the synthesis of a Au—-MXene
composite; (b) the schematic illustration of fabrication of the EBFC
self-powered sensor with a bioanode and a biocathode and changes in
the OCV upon binding with the CD44 protein and the immobilized
aptamer. Reproduced with permission from ref. 37, copyright© 2024
Elsevier B.V.
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glucose oxidase (GOD) and an aptamer and a bilirubin oxidase
(BOx) conjugated Au-MXene modified biocathode, as shown in
Fig. 2(b). Initially, the aptamer with high insulation on the bi-
oanode hindered the electron transfer and produced a low open
circuit voltage (OCV). When the target CD44 protein was
captured by the aptamer at the bioanode, it produced structural
changes at the electrode surface, which led to the transfer of
electrons and increased the OCV in proportion to the analyte
concentration. This clever sensor design achieved a promising
LOD of 0.052 ng mL™", excellent selectivity and stability,
proving effective for sensing in real blood samples without any
special pre-treatment and highlighting its potential for early
cancer diagnosis.

Ji et al. developed a novel enzyme-free intra-capacitive bi-
ofuel cell (ICBFC)-based self-powered sensor for the electro-
chemical detection of endocrine-disrupting phthalates like di(2-
ethylhexyl)phthalate (DEHP).*® The sensor design included the
integration of a ternary heterostructure capacitive anode and
a sensing-interface cathode within a single chamber. The anode
was made of Ti;C,T, MXene, ultra-small AuNPs, and polypyrrole
(PPy) NPs in which AuNPs enabled efficient enzyme-free glucose
oxidation, while the synergistic combination of MZXene's
double-layer capacitance and pseudocapacitance of PPy
enhanced the charge storage. This sophisticated ICBFC-based
self-powered sensor demonstrated a promising LOD of 9.51 pg
L~ for DEHP over a wide linear range, highlighting its potential
for rapid, on-site environmental monitoring and public health
protection.

In another recent work, Xiao et al. reported a flexible, self-
powered biosensor for lactate detection based on carbon cloth
electrodes immobilized with lactate oxidase (LOx) and BOx on
reduced graphene oxide (rGO).*® Here, MXene was incorporated
into a polypyrrole/polyurethane hydrogel and wused as
a substrate for sensor assembly for placing the electrodes. This
integration of MXene hydrogel enhanced the current output by
15-fold due to improved electron mobility and ionic conduc-
tivity of MXenes. The developed sensor produced a maximum
power density of ~3 pW cm ™2 at 100 mM lactate and showed
a linear current response in the physiological window of lactate.
This can be used as a biocompatible and scalable route for
future wearable applications, enabling accurate, continuous,
and self-powered sensing of lactate in physiological
environments.

3. MXenes in
biophotoelectrochemical (BPEC)-
based self-powered electrochemical
sensors

Self-powered photocatalytic fuel cell-based sensors integrating
bioelement recognition with fuel concentration-dependent
output power can be used for electrochemical analysis. The
problems with existing self-powered photocatalytic fuel cell-
based sensors are poor energy conversion efficiency and
unsuitability for routine use. To address these problems, Qiu
et al. designed a multi-functional self-powered photocatalytic
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fuel cell platform for the detection of ochratoxin A, which is
a toxic and potentially carcinogenic mycotoxin produced by
certain molds.*® Here, the photoanode of the sensor was con-
structed with a Ti;C,T, MXene-TiO, composite, and the
cathode was modified with Prussian blue (PB), enabling a visual
checking capability through color change along with electrical
signals. For realizing the sensing mechanism, mesoporous
silica nanoparticles (MSNs) were used as nanocontainers
loaded with glucose and aptamers specific to ochratoxin A. The
schematics of the sensor fabrication and how the bioresponsive
controllable glucose release helps in the detection of ochratoxin
A are given in Fig. 3. When the analyte reacts with the aptamer,
the glucose is released from mesoporous silica nanoparticles,
which powers the photocatalytic fuel cell. The released glucose
is photo-oxidized by the Ti;C,T, MXene-TiO, composite under
visible light illumination, and the produced electron can reduce
PB, which results in a high output power of 23.516 uW cm ™ ?; the
developed sensor showed promising analytical performance
towards ochratoxin A in the range of 0.2-20 ppb with an LOD of
0.0587 ppb.

In another work, Jin et al. reported a novel self-powered
biosensor by uniquely integrating a photocatalytic fuel cell
with a molecular imprinting polymer (MIP) for the detection of
aflatoxin B1, which is a highly potent carcinogenic mycotoxin.*
Here, the issue of energy conversion efficiency is tackled by
using a MoS,-Ti;C,T, MXene heterojunction on indium tin
oxide (ITO) as a photoanode within the photocatalytic fuel cell
which can harness light energy more effectively. The cathode
was made by a combination of hemin and graphene to catalyze
the reduction of hydrogen peroxide, as shown in Fig. 4. Simul-
taneously, the selectivity issue is directly addressed by incor-
porating the MIP, which is designed to specifically capture the
target analyte aflatoxin B1 (AFB,) even in the presence of
interfering agents. In the absence of AFB,, the photogenerated
holes of photoanodes could promote the oxidation of ascorbic
acid (AA) and produces an OCV. When AFB; binds to the cavities
of MIP, it affects the OCV of the system, and this change can be
used for the specific and sensitive detection of AFB; with an
LOD of 0.73 pg mL™', as illustrated in Fig. 4. The developed
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Fig. 3 Schematic illustration of the mechanism of self-powered
photocatalytic fuel cell (PFC)-based sensors using a TisC,T, MXene—
TiO, composite as the photoanode and Prussian blue (PB) as the
cathode for the detection of ochratoxin A. Reprinted with permission
from ref. 40. Copyright© 2023, published by Elsevier B.V.
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sensor uses this dual approach of MIP for specific target
recognition and MXene for efficient light-driven signal conver-
sion for the photocatalytic fuel cell.

Ultrasensitive detection of potent toxins like microcystin-RR
(MC-RR) is highly critical for environmental safety evaluation
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Fig. 5 The schematic showing the fabrication of a dual-power-peak
photofuel cell (PFC)-based self-powered sensor for the detection of
chloramphenicol. (a) Fabrication of the photoanode. (b) Fabrication of
the photocathode. (c) Construction of the dual-power-peak PSPS
combining the photoanode and photocathode. (d) Schematic illus-
tration showing the dual-power-peak detection configuration in the
presence of K,S,Og. Reprinted with permission from ref. 43. Copy-
right© 2023, Elsevier B.V. All rights reserved.
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and need to fabricate advanced portable and real time sensors
with efficient signal amplification for sensitive detection.
Towards this aspect, Sun et al. constructed a photo-driven self-
powered BPEC aptasensor for MC-RR using the Ti;C,T,/ZnIn,S,
heterojunction as the photoanode and Cu,O as the photo-
cathode.*” The Ti;C,T, MXene in the system enhances charge
separation in addition to providing a large surface area for
immobilization of the MC-RR specific aptamer. When MC-RR
binds to the aptamer, it causes a ‘signal-off’ mechanism due
to steric hindrance, which reduces the photocurrent. In addi-
tion, they integrated a matching capacitor, boosting the sensi-
tivity by 22-fold and proposed a USB-sized micro-workstation
for capturing instantaneous signals to make the system
portable. Under optimal conditions, this multi-amplification
system achieved the photocurrent in a linear relation with the
concentration of MC-RR with an extremely low LOD of 0.033 pM
and demonstrated the practical applicability of the system in
fish samples.

In a different approach, a novel dual-power-peak photofuel
cell (PFC)-based self-powered sensor has been developed for the
detection of chloramphenicol by introducing dual peak output
signals for enhancing the detection accuracy.** They have
utilized persulfate as an initiator for getting a dual peak
response in the PFC system, which can enhance charge sepa-
ration and generate a second power peak in the output signal.
The photoanode was made of fluorine-doped tin oxide (FTO)
modified with BiVO, and V,C MXene, followed by modification
with an aptamer, as seen in Fig. 5(a). The incorporation of V,C
MXene accelerates electron transfer, boosting photoelectric
conversion efficiency, while the aptamer provides specific
recognition of chloramphenicol. FTO modified with molybdate
hexacyanoferrate (MoHCF) was used as a photocathode, as
shown in Fig. 5(b). The construction of the dual-power-peak
photocatalytic fuel cell-based self-powered sensor is given in
Fig. 5(c). When chloramphenicol binds to the aptamer on the
photoanode, the output signal of the sensor, including two
power peaks, changed linearly with the concentrations of
chloramphenicol (Fig. 5(d)). The quantification of chloram-
phenicol based on these dual power peaks allowed sensitive
detection with an LOD of 0.17 pM over a linear range of 0.5 pM
to 3 nM, demonstrating a promising strategy for developing
highly sensitive and specific multi-signal self-powered sensors.

4. MXenes in other self-powered
electrochemical sensors

Recently, zinc-air battery (ZAB)-driven self-powered biosensors
have shown great potential for the detection of trace analytes,
demonstrating high output potential and excellent stability and
sensitivity.** Most ZABs can generate high output voltage and
energy density and can be used in biosensing applications. The
major concern in the fabrication of superior ZAB-assisted PFC
biosensors is to develop an efficient photocatalyst with high
photocatalytic ability, fast electron transfer and high bioaffinity
towards bioprobes.* In this context, MXenes are considered as
promising candidates in comparison with other 2D materials,
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considering high electrical conductivity, hydrophilicity and easy
surface functionalization.*®

Various other self-powered sensors have been developed by
using MXenes as one of their components. In this aspect, Liu
et al. developed a novel dual-modal zinc-air battery (ZAB) driven
self-powered electrochemical aptasensor based on the hetero-
junction of V,CT, MXene and bimetallic CoNi-layered double
hydroxide (CoNi-MLDH) for the detection of cortisol.** They
utilized V,CT, nanosheets as scaffolds for the in situ growth and
subsequent formation of CoNi-MLDH nanosheets. The V,CT,
MXene in the CoNi-MLDH composite enhances the electro-
chemical activity, while the CoNi-LDH enhances the surface
area, functionality, oxygen reduction activity, and aptamer
affinity of the composite. By utilizing these advantages, the
developed ZAB driven self-powered aptasensor was able to
achieve a very low LOD of 0.17 fg mL ™" for cortisol.

In another work, a similar ZAB-based self-powered apta-
sensor was proposed by Liu et al. for the detection of penicillin
G by using a Zn plate photoanode and a heterojunction made
of cadmium-doped MoS, nanosheets grown on Ti;C,T, MXene
(Cd-MoS,@Ti3C,T,) as the photocathode.”” Fig. 6 shows the
schematics of the fabrication of a photo-assisted ZAB-driven
self-powered aptasensor and detection process by binding
the aptamer with penicillin G. The enhanced light absorption,
high photoelectric conversion efficiency, and more catalytic
active sites of this heterojunction boost the ZAB output
voltage to 1.43 V under UV-vis light irradiation. The resulting
self-powered aptasensor displayed an ultralow LOD of
0.06 fg mL~" for penicillin G, with promising specificity and
stability, offering a promising portable sensor for the detec-
tion of antibiotics.

J. Mater. Chem. A

5. Critical bottlenecks in self-
powered electrochemical sensors
(SPECSs): views from MXene and
broader platforms

Self-powered electrochemical sensors encounter notable
energy-related limitations due to the characteristics of their
energy harvesters, namely triboelectric nanogenerators. These
devices are adept at generating high voltages, but their output
currents are often quite modest. This disparity can restrict
sensor effectiveness, especially for applications that need
robust electrochemical activity or fast responses. Attempts to
boost energy output through microstructuring surfaces provide
some improvements, but they also introduce challenges related
to material degradation and loss of performance stability over
time. Issues like fatigue or detachment at electrodes and
interfaces can further undermine the reliability of the sensor,
underscoring the necessity for wear-resistant materials and
stable surface engineering.

The path to functional integration of energy harvesters with
sensing circuits is also complicated by the variable and pulsed
nature of the generated electrical signals. These fluctuations
can make accurate signal measurement difficult and may lead
to unwanted phenomena at the electrode, such as the build-up
of polarization or secondary chemical reactions that are not part
of the intended sensing process. When several energy harvest-
ing elements are combined, phase mismatches can occur,
leading to irregular signal shapes and increased risk of sensor
aging due to surface passivation. While using alternative
current generation regimes can sometimes help mitigate these
effects, it adds to the complexity of sensor design and the need

This journal is © The Royal Society of Chemistry 2025
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for precise electrical matching. These SPECSs inherently face
the challenge of limited energy conversion efficiency due to
constrained power harvesting, inefficient interfacial coupling,
and low signal transduction rates.*®

Another central challenge lies in the properties and robust-
ness of the electrode materials themselves. While MXene elec-
trodes offer high electrical conductivity and rich surface
terminations, practical issues such as restacking of nanosheets
and agglomeration significantly reduce the accessible surface
area and block redox-active sites, resulting in lower energy
output and diminished sensor sensitivity. Even beyond MX-
enes, non-MXene materials like carbon nanotubes and metal
oxides also hit similar efficiency barriers, such as poor wetta-
bility, sluggish electron-ion transport, and weak electrode-
solution coupling, hampering comprehensive energy-to-signal
conversion in autonomous sensing configurations.*

In addition to efficiency, operational instability poses a critical
limitation to SPECS lifespan, particularly in wearable or biological
environments. MXene materials are prone to oxidation, especially
under exposure to humidity or oxidative conditions, leading to
conductivity degradation and signal drift over time. Biological
deployment further introduces biofouling, molecular adsorption,
and environmental interference, all of which can obstruct elec-
trode surfaces and disrupt consistent sensing performance. Simi-
larly, non-MXene systems such as conductive polymers or metal
oxide sensors face structural deformation, polymer degradation, or
loss of receptor function limitations that shorten device lifetimes
and affect repeatability.*

Finally, scalability, reproducibility, and sensor specificity
remain formidable obstacles to commercialization. MXene
fabrication often depends on harsh etching techniques, leading
to variability in surface termination (-O, -OH, and -F), flake
size, and defect density—factors that directly affect electro-
chemical performance and batch-to-batch consistency. On the
non-MXene side, heterogeneous hybrids of organic and inor-
ganic elements often struggle with inconsistent receptor
attachment, limited analyte specificity, and low selectivity,
reducing the accuracy in real-world deployments. Addressing
these challenges will require green, standardized
manufacturing processes, robust surface chemistries, and
integrated receptor design to ensure a reproducible, selective,
and commercially viable SPECS platform.***

In sum, advancing self-powered electrochemical sensors to
practical, widespread use will demand solutions that improve
both energy harvesting and material stability while also
enabling reliable mass production. Progress toward more
sustainable production, better integrated circuit management,
and the development of robust, durable interfaces will be key
steps. Only by tackling these challenges in concert will the
promise of self-powered sensing technologies be fully realized.

A solid foundation for the advancement of SPECs has been
laid by several key research efforts. Wang and coworkers were
pioneers in the field, establishing the concept of wearable self-
powered sensors and on-body power grids.”»** This work
created a crucial framework for integrating energy harvesting
with sensing technology. Building on this, Yin et al. demon-
strated the use of passive perspiration-based biofuel cells,

This journal is © The Royal Society of Chemistry 2025
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a concept that can be realized with great efficiency using MX-
enes due to their high conductivity, hydrophilicity, and ability
to preserve the function of power-generating biocomponents.**
This work provides a clear roadmap for harnessing the unique
properties of MXenes in practical applications. Furthermore,
a critical question regarding the biocompatibility of MXenes for
wearable applications was addressed by Gao and coworkers,
who successfully developed an MXene-based platform for
monitoring female hormones, thereby proving its viability for
direct human use.”

Based on the provided data, a direct quantitative comparison
between MXene-based SPECSs and conventional materials is
challenging due to the early stage of MXene research and diverse
device architectures. However, qualitative contrasts can be made in
this aspect. MXene-based devices often demonstrate comparable
or superior sensitivity and fast response times for specific analytes,
as shown by the pM-level detection limits for lead ions and the
dynamic ranges for other proteins. For instance, the Au-MXene
device for CD44 protein shows versatility with its wide dynamic
range. Additionally, MXenes show promising stability with
a 98.49% signal retention after 15 days for a cortisol sensor.*” This
is a significant finding as stability is often a major challenge for
nanomaterial-based devices (Table 1). Table 1 shows a comparative
analysis of SPECSs based on MXenes with other nanomaterials. An
analysis of Table 1 indicates that MXene- and non-MXene-based
SPECSs exhibit similar stability and performance metrics. In
addition, MXene-based modifications are expected to possess
better aqueous solution processibility than their pristine carbon
counterparts, which makes them more environmentally sustain-
able for use in SPECSs. However, the heterogeneity in reported
electrode construction—specifically the varying methodologies,
protocols, and modification layers—precludes a comparison of the
true stability performance across these reports. A proposed
benchmark for MXene-based SPECSs is the attainment of higher
stability metrics using smaller form factors.

The current lab-scale, beaker-based nature of these devices
suggests a low Technology Readiness Level (TRL), likely TRL 1 to
TRL 4. This means the primary focus is on establishing
fundamental principles and feasibility in a controlled environ-
ment. Real-world performance under various environmental
conditions like humidity and temperature is typically assessed
at higher TRLs (e.g., TRL 5 and 6). Therefore, further research is
necessary to move these technologies from the lab to a fabri-
cated device that can be systematically tested under real-world
conditions to address these concern and evaluate its resil-
ience to environmental stressors.

6. Stability of MXenes

The chemical and environmental vulnerability of MXenes when
exposed to air or water significantly restricts their deployment
in practical systems. Surface groups such as hydroxyl, oxygen
and fluorine form reactive sites that initiate oxidation.
Researchers therefore pursue two main approaches. One aims
to improve the intrinsic resilience of MXene by refining
synthesis and reducing defect density. The other focuses on

This journal is © The Royal Society of Chemistry 2025
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postsynthesis stabilization through controlled storage condi-
tions, antioxidant additives or protective coatings.

6.1. Thermodynamic stability of MXenes

MXenes exhibit significant thermodynamic instability due to
their high surface energy, which makes them prone to degra-
dation even under mild conditions. Surface terminations, such
as -OH, -O, or -F, commonly present in MXenes, further
aggravate this issue by increasing their reactivity with environ-
mental agents. For example, Ti;C,T, MXenes are particularly
prone to oxidation under ambient conditions, leading to the
formation of TiO, and a loss of electrical conductivity. Studies
have shown that even brief exposure to air can result in
measurable degradation, with oxidation rates heavily influ-
enced by the density and type of surface terminations. Elevated
temperatures accelerate these transformations, with thermal
decomposition often leading to the conversion of MXenes into
metal oxides completely, and this phenomenon is particularly
problematic for high-temperature applications. For instance,
Ti;C, T, MXenes, when subjected to temperatures above 400 °C,
decompose into anatase or rutile TiO,, as reported in thermal
stability studies.®

The degree of hydrophilicity observed in these materials was
found to depend heavily on both etching media, whether it is
a single acid like HF or a combination of acids such as H,SO, and
HF or HCl and HF. Interestingly, Ti;C,T, exhibited a greater
retention of structural water when fewer oxygen-based termina-
tions were present on the surface. Furthermore, employing milder
etching conditions or mixed acid systems led to improved thermal
robustness by minimizing defect sites during synthesis. The
thermal durability of MXenes is closely linked to their intrinsic
structure and elemental makeup. Among them, Ti;C,T, exhibits
superior heat resistance compared to Mo,CT, and Nb,CT,, both of
which possess fewer atomic layers. Between the latter two, M0,CT,
is thermally more robust than Nb,CT,.*

6.2. Key influences on the oxidative stability of MXenes

The stability of MXenes is strongly influenced by their intrinsic
chemical composition and microstructural features, particu-
larly the type of metal layers and the surface terminations.
Zhang et al. examined the oxidation response of Nb,C;T, MX-
enes in a CO, atmosphere at 850 °C and reported the develop-
ment of a multilayered structure decorated with uniformly
distributed Nb,O5 nanoparticles across the nanosheet surface.
Their study revealed that Nb,C;T, is considerably more resis-
tant to oxidation than Ti;C,T,, which undergoes oxidation at
much lower temperatures, around 500 °C, under CO, flow.*

Numerous research ideas have highlighted that the struc-
tural integrity of MXenes is governed by a combination of
external chemical conditions and inherent material properties,
such as atmospheric exposure, temperature, compositional
variations, microstructural features, and interactions with
aqueous environments. Furthermore, even MXenes sharing the
same chemical composition can display markedly different
oxidation behaviours, primarily due to variations in their
synthesis techniques and processing conditions.

J. Mater. Chem. A
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Extensive investigations have been carried out to understand
the thermal and chemical stability of MXenes under different
atmospheric conditions such as vacuum, inert, oxidizing, and
reducing environments. For instance, Ti;C, MXenes have been
reported to remain structurally stable in an argon atmosphere
even at elevated temperatures of up to 800 °C. In contrast, when
subjected to oxygen-rich conditions, oxidation begins at rela-
tively low temperatures (200 °C), leading to the uniform
formation of anatase across the surface. Upon heating to 1000 °
C, this anatase phase further transforms completely into
rutile.®®*®* A detailed evaluation of V,CT, MXenes was carried
out by Thakur et al., who examined their stability in air, CO,, H,,
and N, atmospheres at temperatures of up to 600 °C. They re-
ported that above 300 °C, V,CT, readily oxidized in air or CO,,
producing V,0s5 and other VO, phases, along with a complete
collapse of the layered architecture. Under a reducing H,
atmosphere, however, partial retention of the layered structure
was observed. Exposure to N, led to mild oxidation, attributed
to trace H,O molecules incorporated during the synthesis
process, which reacted with the surface groups of V,CT,.*

The oxidation of MXenes occurs more rapidly when they are
dispersed in aqueous media compared to their freestanding
form. Earlier studies attributed this instability mainly to di-
ssolved O, in water. However, more recent evidence suggests
that MXenes are inherently more reactive toward H,O mole-
cules than toward dissolved oxygen.*® Beyond neutral solutions,
investigations have been extended to alkaline and oxidizing
environments. Doo et al. demonstrated that pH plays a critical
role in dictating the oxidation pathway of aqueous Ti;C,
dispersions. They proposed a distinct mechanism in which the
terminal ~OH groups interact with either H' or OH™ ions,
generating different reaction intermediates depending on the
pH.*” Complementing this, Zhao et al. showed that alkaline
conditions accelerate MXene oxidation, where hydroxyl ions
significantly enhance the conversion of Ti species. This
conclusion was supported by X-ray photoelectron spectroscopy
(XPS) analysis, which revealed an increased proportion of Ti(wv)
species in basic media.®® The stability and performance of
MXenes depend on multiple factors, including the method of
synthesis, the nature of surface terminations, structural
stability, and particle size, all of which need to be carefully
optimized to ensure their effective use in a wide range of
applications.

6.3. Extending the lifetime of MXenes through oxidation
mitigation

The limited stability of MXenes in ambient air and aqueous
environments remains a key obstacle to their practical utiliza-
tion. To overcome this challenge, significant research has
focused on improving their resistance to degradation or alter-
natively designing systems that operate under non-aqueous
conditions. This need has stimulated intensive efforts to
suppress oxidation and structural breakdown, ultimately
broadening the technological potential of MXenes. Reported
approaches include strict regulation of storage environments
and complete isolation from oxygen and moisture. In addition,
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the incorporation of antioxidant agents such as polyphosphoric
anions and ascorbates has been shown to effectively slow down
oxidation processes.

Oxidation in MXenes is often initiated at reactive surface
terminations, particularly hydroxyl groups, which are highly
vulnerable to oxidative attack. One approach to suppress this
process involves the removal of surface terminations through
thermal annealing under vacuum or inert environments. Such
treatments enhance the inherent thermal stability of MXenes
and extend their applicability in high-temperature settings. For
instance, Wang et al. demonstrated that MXenes stripped of
surface terminations could withstand heating up to 1200 °C
under an argon atmosphere.* Similarly, Zhao et al. reported
that annealing Ti;C,T, in argon promoted the formation of
a thin, protective TiO, layer on the nanosheet surface. This
oxide barrier, particularly effective in densely stacked films,
restricted water penetration and preserved the internal struc-
ture. Compared to untreated Ti;C,T,, the annealed films
exhibited remarkable stability, maintaining their structure for
over ten months in aqueous environments, thereby significantly
expanding their potential in practical applications.”

In addition to thermal treatments, storage protocols play
a crucial role in maintaining the integrity of MXenes. Studies have
shown that both the temperature and atmospheric composition
directly affect their chemical stability. Zhang et al. recommended
extending the lifetime of MXene dispersions by storing concen-
trated nanosheet suspensions with large lateral sizes in sealed,
argon-filled containers at low temperatures.” Other studies further
highlighted that excluding dioxygen and refrigerating dispersions
help to minimize oxidative degradation. The solvent medium also
influences stability: Maleski et al. compared Ti;C,T, dispersions in
12 different solvents and found that polar organic solvents such as
N,N-dimethylformamide (DMF), N-methyl-2-pyrrolidone (NMP),
and propylene carbonate (PC), and ethanol significantly reduced
oxidation compared to water. Similarly, isolation of MXene
powders from aqueous suspensions via freeze-drying or vacuum
filtration was reported as an effective approach to prevent aqueous-
induced degradation. Collectively, these strategies demonstrate
that careful optimization of storage conditions is essential for
prolonging the MXene lifetime in both solution and solid states.”

Chemical modification and antioxidant incorporation
represent another major pathway for enhancing MXene
stability. Analogous to food preservation methods, antioxidants
such as sodium r-ascorbate (NaAsc) have been employed to
protect MXene dispersions. Zhao et al. showed that NaAsc forms
a stabilizing layer around Ti;C,T, nanosheets, effectively
inhibiting oxidation and maintaining their structure and
conductivity for up to three weeks at room temperature.”
Similarly, Natu et al. demonstrated that adding polyanionic
salts (polyphosphates, polyborates, and polysilicates) at low
concentrations can suppress oxidation initiated at nanosheet
edges by creating a protective electrostatic barrier.” Beyond
antioxidants, functionalization with silanes,” polymer coat-
ings” and biomolecules such as silk fibroin”” has been shown to
improve hydrophobicity, enhance interfacial interactions, and
provide protective encapsulation against oxidative attack.
Furthermore, nanoscale carbon coatings offer an effective route

This journal is © The Royal Society of Chemistry 2025


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta06598d

Open Access Article. Published on 11 November 2025. Downloaded on 11/29/2025 2:32:36 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

to stabilize MXenes during synthesis. Overall, surface func-
tionalization strategies including antioxidants, polymers,
proteins, and carbon coatings provide versatile and effective
means to suppress oxidation while retaining the functional
properties of MXenes, thereby extending their performance in
electrochemical and other applications.

On combining these approaches, process enhancement,
solvent choice, antioxidant addition, thermal passivation and
encapsulation dramatically extend the lifespan of MXene
materials and help retain their electronic and structural prop-
erties. These advances pave the way for integration of MXenes
into real-world SPECS devices, enabling high efficiency, durable
self-powered sensing in applications ranging from environ-
mental monitoring to wearable diagnostics.

7. Conclusions

Self-powered electrochemical sensors (SPECSs) offer a trans-
formative solution by integrating energy generation with analyte
detection, in which the output energy is in direct relation with the
analyte concentrations, paving the way for next-generation devices.
The successful realization of high-performance SPECSs relies on
advanced materials which are capable of efficiently supporting in
both energy conversion and analyte recognition. Among the
emerging candidates, 2D MXenes have garnered substantial
attention and demonstrated remarkable potential for enabling
diverse and highly effective SPECS platforms. This review discusses
about the role of MXenes in various self-powered electrochemical
sensors such as EBFCs, MFCs and BPECs. The unique combina-
tion of properties inherent to MXenes such as metallic conductivity
and 2D structure can enhance the charge transfer kinetics and
charge separation efficiency, which are vital for maximizing the
output signal in self-powered sensors. In addition, the large
surface area and functionalized surface of MXenes make them
a superior scaffold for immobilizing a wide range of active
components including enzymes, aptamers, etc. Furthermore, the
surface of MXene can act as a template for the in situ growth of
other functional materials, which can create heterojunctions with
improved photocurrents and photoelectric conversion efficiencies.
The high electrochemical capacitance of certain MXenes can be
used to deliver large instantaneous currents for effectively ampli-
fying the sensitivity of self-powered electrochemical sensors.

The future trajectory for MXene-based SPECSs is exception-
ally bright, contingent upon addressing the current limitations.
The challenges of long-term operational stability and degrada-
tion (Section 5) can be overcome by focusing future research on
precise surface engineering and the rational design of novel
heterostructures (Section 7). To combat the issue of reproduc-
ible, scalable, and cost-effective synthesis (Section 5), future
efforts should be directed toward scalable micro-/
nanofabrication techniques miniaturization
(Section 7). Furthermore, the limited understanding of charge
transfer mechanisms and the integration of multiple compo-
nents into miniaturized, robust devices (Section 5) necessitate
a deeper fundamental investigation into these systems to
unlock the full potential of MXenes for creating transformative
autonomous sensing devices. By explicitly addressing these

for device
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limitations through concerted research and development
efforts, the field can transition from laboratory successes to
impactful real-world applications.

8. Limitations and future prospects

Despite the rapid progress and demonstrated potential, several
challenges impede the widespread practical application of
MXenes in self-powered electrochemical sensors. Ensuring
long-term operational stability of MXenes and resistance to
degradation or oxidation, particularly in complex biological or
environmental media will be a critical concern. The synthesis
procedures should be modified to get reproducible, scalable,
and cost-effective MXenes with precisely controlled properties,
which are highly needed for commercial viability. The ongoing
research should focus on precise surface engineering of MXenes
to tailor functional groups towards achieving specific recogni-
tion and on the rational design of novel heterostructures for
getting the maximum synergistic effects. To enable testing and
validation of MXene-based SPECSs at higher TRLs, future work
must focus on stabilising MXenes with antioxidants, polymers,
proteins, and carbon coatings. These strategies will help
suppress oxidation related degradation of the MXene layer, thus
helping long-term anchoring of bioreceptors and maintaining
the performance characteristics of the SPECSs. Another key
research direction in the same vein involves not only tailoring
MXenes with functional groups for biorecognition element
immobilisation but also developing methods to synthesize
MXene-molecularly imprinted polymer (MIP) composites. This
strategy will help bypass limitations associated with conven-
tional bioreceptors like aptamers and antibodies while exhib-
iting the same specificity. A synergy between enzyme driven
power production and MXene-MIP composite-based sensing is
a promising approach in this direction.

Towards improving energy conversion efficiencies, MXene
integrated energy storage systems with better power manage-
ment and exploring hybrid energy harvesting modes along with
advancing scalable micro-/nanofabrication techniques for
device miniaturization need to be considered. For rational
design optimization of MXene-based systems, a deeper funda-
mental understanding of charge transfer mechanisms and
synergistic effects in complex MXene-based systems should be
thoroughly investigated. Moreover, the effective energy
management solutions should be applied for certain high-
demand applications, and the significant engineering chal-
lenges in the integration of multiple components into minia-
turized, robust devices need to be solved.

Further exploration could involve MFCs, which have been
realized using diverse electrode materials and are being
considered for wearable and environmental sensing.”®*' Given
that MXenes have already demonstrated success in MFC device
realization, attributable to their high electrical conductivity,
large active surface area, inherent biocompatibility, and ability
to facilitate efficient extracellular electron transfer (EET), the
focused application of MXene-based MFCs for self-powered
wearable and environmental sensing presents a compelling,
yet relatively underexplored, research avenue.*** Future
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reports could specifically address this niche, bridging the gap in
leveraging these advanced MXene-MFC systems for such tar-
geted sensing applications. Similarly, a parallel research thrust
could explore applications of MXenes in self-powered devices
integrating photosynthetic systems. This could involve
employing isolated photosynthetic receptors (like thylakoids),*
or whole microorganisms,*® such as algae,*” phytoplankton,®
and potentially engineered yeast strains, thereby opening
further avenues for novel bio-hybrid sensor development—an
area also warranting deeper future investigation, including the
potential role of MXenes in enhancing such photosynthetic bio-
interfaces.

Nevertheless, the future trajectory for MXene-based SPECSs
is exceptionally bright for translating laboratory successes into
impactful real-world applications. By addressing the current
limitations through these concerted research and development
efforts, the field of MXene-based SPECSs can unlock the full
potential of MXenes to create truly transformative autonomous
sensing devises for diverse applications.
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