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Efficient near-infrared (NIR) photopolymerization is promising for applications such as hydrogel bioprinting,
composite manufacturing, and other technologies that benefit from deep light penetration and low-energy
activation. Yet, design principles for optimizing NIR photoinitiators, particularly those based on earth-
abundant or metal-free elements, remain limited. Here, a library of phthalocyanine (Pc) and
naphthalocyanine (Nc) derivatives was synthesized, characterized, and evaluated as photoredox catalysts
for NIR-induced radical polymerizations. Variations in metal center (Zn, Si, Pd), a-substitution (pentyl or
butoxy), and m-extension (Pc vs. Nc) enabled tuning of light absorption, excited-state energies and
lifetimes, and triplet excited state quantum yields. Polymerization kinetics were quantified using real-time
FTIR spectroscopy under LED irradiation (740-940 nm), with photon absorption normalized to allow
direct comparison of internal quantum yields. This work provides a framework for quantitative
benchmarking of NIR photoinitiators under controlled conditions. Among the catalysts studied, a Pd—Pc

complex showed the highest internal efficiency, while a Si—-Nc catalyst outperformed a leading
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Accepted 11th August 2025 commercial cyanine initiator, highlighting the potential of silicon as a sustainable alternative to precious
metals. These results establish clear structure—property relationships and offer guiding principles for the

DO 10.1035/d5ta05756f design of next-generation NIR photoinitiators suited for biomedical and advanced manufacturing
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Introduction

Phthalocyanine (Pc), naphthalocyanine (Nc), and their meta-
lated analogs are macrocyclic compounds structurally related to
naturally occurring porphyrins. These electron-rich, aromatic
molecules - featuring a conjugated 187 core electron system
with pyrrolic units fused to benzene rings — have long attracted
attention due to their exceptional thermal and chemical
stability. Discovered serendipitously during the industrial
synthesis of phthalimide, iron Pec initially drew interest as
a pigment," prompting decades of research into metal
complexes® and m-extended species.® This prolific development
led to applications in areas such as photovoltaics,** chemical
sensors,*” non-linear optics,® liquid crystals,”'® and photody-
namic therapy, supported by the formation of the International
Society of Porphyrins and Phthalocyanines in 2000.**

More recently, Pcs and Necs have emerged as promising
candidates for photoredox catalysis, including (controlled)
radical polymerizations."*™* Their strong visible and near-
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infrared (NIR) absorption, high extinction coefficients, and
synthetic tunability make them attractive scaffolds for photo-
catalyst design. However, despite these favorable properties,
their use in low-energy (long-wavelength) photopolymerization
remains limited. The absence of systematic structure-reactivity
studies has hindered the development of design rules for
maximizing photopolymerization efficiency across different
metal centers, substituents, and dye architectures.

This gap is particularly significant given the growing
demand for photopolymerizations that operate under long-
wavelength light. Such conditions improve light penetration
through UV-opaque or scattering media - such as biological
tissues and nanocomposite materials - due to the inverse
fourth-power dependence of Rayleigh scattering on wave-
length.'® As a result, efficient far-red to NIR photoinitiators are
needed to advance emergent photocurable technologies, such
as additive manufacturing. Many such systems rely on triplet
sensitization to enable bimolecular electron transfer, as the
longer lifetimes of triplet excited states relative to singlets
increase the probability of productive redox events per photon
absorbed. However, most known triplet sensitizers depend on
precious metals (e.g., Pd, Ir), raising sustainability concerns and
motivating the development of alternatives based on earth-
abundant elements like Zn and Si.
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In this study, we address these challenges through the
synthesis and evaluation of a library of Pc and Nc derivatives
featuring varied metal centers, non-peripheral substituents,
and m-extension. Using a normalized photon absorption
approach, we systematically compare their photophysical
properties and catalytic performance in NIR-induced radical
polymerizations. These results establish critical structure—
property relationships and define new design principles for
sustainable, high-efficiency NIR photocatalysts.

Results and discussion

Material scope & optical characterization

A series of metalated Pc and Nc derivatives were selected based
on precedent for efficient singlet oxygen sensitization via triplet
energy transfer.’®'® Given the longer lifetimes of triplet (~us)
versus singlet (~ns) excited states, and our prior findings,
extended triplet lifetimes were expected to enhance bimolecular
electron transfer and enable Type II photoinitiation.'>*®
Building on this premise, three macrocyclic scaffolds were
synthesized (Scheme S1) covering peak absorption values from
the far-red (~700-780 nm) into the near-infrared (NIR, ~780-
870 nm), enabling a systematic evaluation of how absorption
wavelength impacts photocatalytic performance. Bathochromic
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Fig. 1 Molecular structures and optical properties of phthalocyanine (Pc) and naphthalocyanine (Nc) derivatives investigated in this study. (A)
General molecular structure highlighting positions of metal coordination (M), a.-substitution (R), and benzoannulation (Nc vs. Pc), with corre-
sponding shorthand notation. (B—D) UV-vis absorption spectra (solid lines) of each photosensitizer in iBoA overlaid with normalized LED
emission profiles (shaded curves) used for photopolymerization at 740, 780, 850, and 940 nm. (B) Pentyl-substituted Pc derivatives; (C) n-
butoxy-substituted Pc derivatives; (D) n-butoxy-substituted Nc derivatives. Inset photographs show representative Pc and Nc solutions in iBoA

(0.48 mM).
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shifts in absorption were achieved through: (1) extension of -
conjugation via benzoannulation (Pc to Nc), which narrows the
Sy — S energy gap;>** (2) introduction of electron-donating
alkoxy groups at the o-position to destabilize the HOMO
energy, which raises the ground-state energy (So);**** and (3)
coordination of electron-deficient metals to stabilize the LUMO
energy, which lowers the first excited singlet state energy
(51)>** In addition to shifting absorption to longer wave-
lengths, a-substitution improved solubility, while metalation
was employed to enhance intersystem crossing and triplet yield.

Metal complexes of Zn, Si, and Pd were prepared from the
corresponding free-base Pc and Nc derivatives (Fig. 1A). Addi-
tionally, Al metal complexes were initially prepared but found to
be unstable under the reaction conditions, and were therefore
excluded from the main text (see SI for details). In contrast to
unsubstituted ZnPc, which shows poor solubility in organic
solvents and absorbs maximally at ~675 nm, our functionalized
derivatives - Zn(Pe)Pc, Zn(OBu)Pc, and Zn(OBu)Nc - exhibited
excellent solubility in toluene and A,.x values of 706, 739, and
848 nm, respectively (Fig. 1B-D). Extinction coefficients were
measured using the Beer-Lambert Law in both dilute solution
(~uM) and in concentrated thin films (~mM) formulated in
isobornyl acrylate (iBoA), the monomer used in subsequent
photopolymerization studies. Under both conditions, Pc deriv-
atives showed strong absorptivity, with peak molar extinction
coefficients of ~140 000-220 000 M~" em ™" in the 700-740 nm
range. Nc derivatives exhibited even higher values of ~220 000~
340000 M~' em™' near 850 nm (Fig. S1-S11). Due to poor
solubility in the monomer, iBoA, Pd(Pe)Pc and Pd(OBu)Nc were
excluded from further study. Overall, the strong absorptivity of
these metalated Pc and Nec dyes across the far-red and NIR
spectrum suggested excellent compatibility with 740, 780, 850,
and 940 nm LED light sources for low-energy photo-
polymerizations (Fig. S12).

Photopolymerization

Building on the strong absorptivity of the Pc and Nc derivatives
across the far-red to NIR range, we evaluated their performance
as photoredox catalysts (PRCs) in a model three-component
Type II photoinitiation system in iBoA. This formulation
included a donor co-initiator, 2-(butyryloxy)-N,N,N-
trimethylethan-1-aminium butyltriphenylborate (Borate V, 2.4
mM), an acceptor co-initiator, 4-(octyloxy)phenyliodonium
hexafluoroantimonate (H-Nu 254, 24 mM), and a Pc or Nc
derivative as the PRC (2.4 mM). The monomer, iBoA, was
selected for its biobased origin, low volatility, and ability to
solubilize the photosystem (Fig. S13). Photopolymerization
kinetics were monitored in situ using real-time Fourier trans-
form infrared (RT-FTIR) spectroscopy in attenuated total
reflectance (ATR) mode (Fig. 2 and S14). Monomer-to-polymer
conversion (p) was quantified by integrating the vinylic
C=C-H bending between 770-830 cm " (Fig. $15). Conversion
of iBoA typically plateaued around 80%, consistent with vitrifi-
cation due to the high glass transition temperature of the
resulting homopolymer (T, = 94 °C).*® To eliminate oxygen
inhibition, samples were degassed with argon for 10 minutes

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Real-time photopolymerization kinetics for Pc and Nc deriva-
tives monitored by RT-FTIR under LED irradiation. (A) Pentyl-
substituted phthalocyanine (PePc) derivatives activated by a 740 nm
LED. (B) Butoxy-substituted phthalocyanine (OBuPc) derivatives under
a 740 nm LED. (C) Butoxy-substituted naphthalocyanine (OBuNc)
derivatives under an 850 nm LED, compared with commercial
cyanine-based photocatalyst, HNu-815. LED activation occurred at t =
10 s (indicated by vertical dashed line and "LED ON"). Irradiation
intensities (/o) were adjusted to equalize the initial photon absorption
rate across all photocatalysts. Monomer conversion (%) was monitored
as a function of time, with initial polymerization rates (r 20%) extracted
from the linear region up to 20% conversion. *Rate calculated from
slope between 40 and 120 s.

and run under continuous argon flow within a glass chamber
during irradiation. To facilitate comparisons across Pc and Ne¢
derivatives, the initial photon absorption rate for each system
was calculated by integrating the spectral overlap between the
dye's molar extinction coefficient and the emission spectrum of
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the selected LED (Fig. 1B-D). From this data, irradiation
intensities were adjusted to normalize the photon absorption
rate across all conditions (1 x 10" photons cm™> s~ '), enabling
direct quantification of photopolymerization quantum yields.

Photopolymerization studies began with the Pc derivatives
using far-red (740 nm) LED irradiation at intensities ranging from
7.0 to 20.6 mW cm > Irradiation was initiated 10 seconds into
each run to confirm temporal control (Fig. 2A, B, S16-S22 and
Table S1). The initial polymerization rate (r,) was calculated up to
20% monomer conversion (p), where the kinetics remained linear
(see SI Section S2.3 for details). In all cases, metalation signifi-
cantly enhanced r;, 509, compared to the corresponding free-base
Pc derivatives. This enhancement was especially pronounced in
the pentyl-substituted series (Fig. 2A). The free-base compound
H,(Pe)Pc exhibited very slow conversion, failing to reach 20%
within 2 minutes of irradiation and yielding r, = 3.1 & 0.1 mM
s ', In contrast, metalated analogs Zn(Pe)Pc and Si(Pe)Pc ach-
ieved dramatically higher rates of 170 & 18 mM s~ and 360 =+
26 mM s, respectively — over 50-fold higher than H,(Pe)Pc.

In the butoxy-substituted Pc series (Fig. 2B), despite
receiving the highest LED intensity (8.7 mW cm %) to normalize
photon absorption, the free-base derivative H,(OBu)Pc again
displayed the lowest activity (rp 200 = 26 £ 2 mM s '). Meta-
lation with Zn, Si, and Pd led to significantly faster rates of 220
+26,200 + 11, and 460 + 10 mM s ', respectively. Interestingly,
both Zn and Si derivatives showed a noticeable decline in
polymerization rate beyond the initial period, hypothesized to
result from photocatalyst degradation, as evidenced by visible
color change. This was subsequently investigated using in situ
UV-vis absorption (see photodegradation section).

The Nc derivatives were next evaluated using an 850 nm NIR
LED (Fig. 2C, S23-526 and Table S1). Here, the Si derivative
Si(OBu)Nc exhibited a markedly faster polymerization rate
(rp,200 = 160 £ 21 mM s ') than its Zn analog Zn(OBu)Nc (21 +

2_an

1 mM s~ ') under a low intensity irradiation of 4.4 mW cm™
approximately 8-fold increase. To benchmark performance,
Si(OBu)Nc was directly compared to a leading commercial NIR
photoinitiator, HNu-815, under equivalent photon absorption
conditions using the calculated intensities (4.4 and 5.1 mW
cm?, respectively). Since HNu-815 comprises a cationic cyanine
dye paired with Borate V as the counteranion, only HNu-254 (24
mM) was added to iBoA formulations to ensure equimolar co-
initiator concentrations. Under these matched conditions,
Si(OBu)Nc consistently outperformed HNu-815, with an average
Ip20% Of 128 £ 9 mM s~ !, approximately 1.2x higher than the
commercial benchmark. The high extinction coefficient and
red-shifted absorption of Si(OBu)Nc relative to the commercial
photoinitiator facilitated photopolymerizations with a 940 nm
LED using an equivalent photon absorption rate (Fig. S27-S28)
These results indicate that Si(OBu)Nc exhibits a modest
increase in internal quantum efficiency relative to the cyanine-
based standard (discussed further below).

Energy landscape & quantum yield

To elucidate the origin of differences in photopolymerization
efficiency, we characterized the excited-state energetics and
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dynamics of the photocatalysts and quantified their corre-
sponding polymerization quantum yields. Excited-state energy
levels were determined using a combination of cyclic voltam-
metry, optical absorption and emission spectroscopy (Fig. 3A,
$29-S31 and Table S2). Singlet excited state energies (Es;) were
determined from fluorescence emission maxima (Fig. S32-S43),
which followed a similar trend to that observed for the HOMO-
LUMO energy gap (AE) from cyclic voltammetry, following the
order Pd > Si = Zn for the metalated derivatives (Table S2).
Triplet excited-state energies (Er;) were estimated from phos-
phorescence emission at 77 K, with literature values substituted
for Si(OBu)Pc and Si(OBu)Nc due to their weak emissivity.>>*°
Among the catalysts, Pd-containing derivatives consistently
exhibited the highest triplet energies, favoring electron transfer
to the acceptor co-initiator. Singlet oxygen phosphorescence at
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Fig. 3 Excited-state energy landscape and photopolymerization
efficiency of Pc and Nc derivatives. (A) Energy diagram illustrating the
excited-state properties relative to the ground state (Sp, baseline) for
each metalated dye. Singlet excited-state energies (53, blue bars) were
calculated from the fluorescence emission maximum in toluene.
Triplet excited-state energies (T;, yellow bars) were estimated from
phosphorescence spectra, with values for Si(OBu)Pc and Si(OBu)Nc
(red bars) taken from literature due to weak emission. The dashed wavy
line represents the triplet quantum yield (@4). Dashed straight lines
indicate triplet lifetimes (z7), from nanosecond transient absorption
spectroscopy. (B) Polymerization quantum yield plotted as a function
of photopolymerization rate. External efficiency (bottom, dark
symbols) was calculated as the polymerization rate (rp 20%) normalized
by incident photon flux; internal efficiency (top, light symbols) was
determined by normalizing to the actual photon absorption rate.
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1270 nm was used as a proxy for triplet quantum yield (&r) for
the Pc series (Fig. S44-S45), whereas photosensitization with
TIPS-pentacene was used with the Ne series for triplet energy
matching (Fig. S46-S49 and Table S3). The triplet quantum yield
followed the trend of Pd > Zn > Si and except for Si(OBu)Nc, all
derivatives exhibited appreciable @ values exceeding ~35%
(Table S4). Notably, Pd derivatives showed the highest @ values
(70-90%) and correspondingly the highest 7,09, indicating
a strong correlation between triplet yield and photo-
polymerization performance.

While these findings highlight the importance of triplet
yield, transient absorption spectroscopy revealed an important
trade-off. Pd derivatives, despite their high &1 and Er4, exhibi-
ted triplet lifetimes (t,) at least 10-fold shorter than Zn analogs,
which in turn were ~1.5-4x shorter than those of Si derivatives
(Fig. S50-S61). These extended triplet lifetimes, especially in the
Si-based photocatalysts, are expected to enhance the probability
of bimolecular redox events, particularly at lower photocatalyst
concentrations. Together, these results suggest that triplet
yield, energy, and lifetime contribute distinctly to overall pho-
tocatalytic performance: while high triplet yield and energy
favor rapid initiation, long triplet lifetimes support radical
generation under diffusion-limited conditions.

To quantify overall photopolymerization -efficiency, we
calculated both external and internal quantum yields. External
efficiency was defined as the polymerization rate (mM s ')
normalized by the incident photon flux, while internal effi-
ciency accounted for the actual photon absorption rate (Fig. 3B
and Table S5; see SI Section S2.5 for details). Thus, a quantum
yield of one implies that each absorbed photon results in the
consumption of one monomer molecule. However, since each
initiating radical leads to chain-growth polymerization, this can
exceed unity. A future refinement would be to assess the
number of initiating radicals generated per absorbed photon to
decouple initiation from propagation events. Despite this
complexity, the relative quantum yields under standardized
conditions provided a meaningful comparison across the series.
Pd(OBu)Pc exhibited the highest external and internal quantum
yields, reinforcing the role of high triplet yield and energy in
driving efficient polymerization. Interestingly, the next-highest
internal quantum yield was observed for Si(Pe)Pc, which was
nearly two-fold greater than the remaining Si and Zn derivatives
and 2.8-fold higher than the commercial benchmark, HNu-815.
The strong performance seen for Pd(OBu)Pc suggests that
under the current conditions, enhancing triplet yield and/or
energy has a greater impact on efficiency than triplet lifetime
alone, although, each are important for optimizing photo-
initiator design.

Photodegradation

To investigate the origin of photocatalyst degradation - visibly
observed as a color change during irradiation - we monitored
the optical stability of thin films (20 pm) for the butoxy-
substituted Pe series using in situ optical absorption spectros-
copy (Fig. 4A, S62-S66 and Table S6). Catalyst concentration was
estimated from the average absorbance during a 10-second dark

This journal is © The Royal Society of Chemistry 2025
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Fig. 4 In situ monitoring of photocatalyst degradation during pho-
topolymerization. (A) Optical absorbance spectra of Zn(OBu)Pc in the
complete iBoA resin formulation during continuous 740 nm LED

irradiation (photon flux = 1 x 10 photons cm™2 s7%), collected every

second over a 2-minute period. Insets: photographs of Zn(OBu)Pc
resin before and after irradiation, showing visible discoloration. (B)
Photoredox catalyst concentration ([PRC]) profiles of butoxy-
substituted phthalocyanine derivatives (Zn, Si, Pd, and H,) during
740 nm irradiation at equal initial absorbed photon rates. Catalyst
concentration was calculated from absorbance values in the pre-
irradiation region (t < 10 s) and fit to second-order decay kinetics (red
lines).

period using the Beer-Lambert law and then tracked during two
minutes of continuous 740 nm irradiation. All butoxy-Pc
derivatives exhibited a decrease in Q-band absorbance, indica-
tive of photobleaching, with the most pronounced degradation
observed for Zn(OBu)Pc (Fig. 4B).

Kinetic analysis of early-time absorbance loss revealed
apparent second-order decay behavior. The photodegradation
rate constant (kq) for Zn(OBu)Pc was 0.141 mM ™' s~ ', approxi-
mately 13-fold and 28-fold greater than that of Si(OBu)Pc (0.011
mM ' s7') and Pd(OBu)Pc (0.005 mM ' s~ '), respectively.
Notably, the free-base analogue H,(OBu)Pc showed the second-
highest kq (0.023 mM ™" s7'), suggesting that metalation -
particularly with Pd or Si - improves photostability. Potential
mechanisms of degradation include protonation of meso-
nitrogen sites by Lewis acids generated from iodonium salt
decomposition,*** as well as reactions with carbon-centered
radicals and singlet oxygen species, where the latter has been
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shown to degrade phthalocyanines into open-chain pyrrolic
fragments.**** In cyclic voltammetry, Zn derivatives show
a negative shift in the first oxidation potential (Eo ) relative to
the free-base, consistent with destabilization of the HOMO
energy making them more susceptible toward oxidative degra-
dation (Table S2 and Fig. S29-S31).

To further probe degradation pathways, we conducted
systematic component testing with Zn(OBu)Pc as the model
photocatalyst (Fig. S67-S68 and Table S7). Photopolymerization
and photobleaching rates were evaluated in resins containing:
(i) Zn(OBu)Pc only, (ii) Zn(OBu)Pc + HNu-254, (iii) Borate V +
HNu-254, and (iv) the full three-component photosystem.
Notably, Borate V was not miscible in iBoA on its own, sug-
gesting the formation of a donor-acceptor complex with HNu-
254 that has enhanced solubility. As expected, no polymeriza-
tion was observed upon 740 nm irradiation in formulations
lacking either the Pc or both co-initiators. Interestingly, the
Zn(OBu)Pc + HNu-254 combination led to slow polymerization
kinetics (r, = 3.3 mM s~ ') only reaching a maximum conversion
of 13% after 2 minutes, but showed a high rate of photo-
degradation (kq = 0.049 mM ' s~ '), indicating that inclusion of
an electron donor is crucial for polymerization, and that the
electron acceptor leads to considerable catalyst decomposition.
While further mechanistic studies are warranted, these results
reinforce the importance of a complete three-component Type
II photoinitiating system and offer a plausible explanation for
the observed decrease in polymerization rate after rapid initial
conversion in Zn-based systems.

Conclusions

Phthalocyanine (Pc) and naphthalocyanine (Nc) derivatives with
tunable absorption profiles from the far-red to near-infrared
(NIR) region enabled efficient photopolymerization under low-
intensity irradiation (<10 mW cm™?). Metalation with Zn, Si,
or Pd significantly increased triplet yields and enhanced
performance as Type II photoredox catalysts. By normalizing
photon absorption across wavelengths, we systematically
correlated triplet energy, yield, and lifetime with polymerization
efficiency. Pd(OBu)Pc exhibited the highest internal quantum
yield, while Si(OBu)Nc outperformed the commercial NIR
initiator HNu-815, attributed to its combination of strong
absorption and a long-lived triplet state. Importantly, Si-based
derivatives demonstrated greater photostability than their Zn
analogues and offer a compelling advantage over Pd as an earth-
abundant and non-toxic metal. Moreover, the octahedral coor-
dination geometry of Si provides a promising platform for
future axial functionalization to tailor solubility or enable
sensing, targeting, or therapeutic applications. These results
position Si-based phthalocyanines as sustainable, high-
performance alternatives to precious metal photocatalysts.
Looking ahead, the design principles established here offer
a foundation for developing next-generation NIR photo-
initiators tailored for advanced manufacturing, 3D printing,
and light-driven processes in opaque or UV-sensitive environ-
ments. More broadly, this study highlights the importance of

quantifying photopolymerization efficiency under well-

30156 | J Mater. Chem. A, 2025, 13, 30151-30157

View Article Online

Paper

controlled and clearly documented conditions, which will be
essential for enabling rigorous comparisons across distinct
photochemical systems moving forward.
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