
Journal of
Materials Chemistry A

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 4
:5

8:
32

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
High-throughpu
aInstitute of Physics, Chinese Academy of S

rjxiao@iphy.ac.cn
bSchool of Physical Sciences, University o

100049, China
cCenter of Materials Science and Optoelectr

Academy of Sciences, Beijing 100049, China
dSchool of Materials Science and Engineerin

and Performance (Ministry of Education), B

Cite this: J. Mater. Chem. A, 2025, 13,
34918

Received 2nd July 2025
Accepted 6th September 2025

DOI: 10.1039/d5ta05355b

rsc.li/materials-a

34918 | J. Mater. Chem. A, 2025, 13,
t NEB for Li-ion conductor
discovery via fine-tuned CHGNet potential

Jingchen Lian, ab Xiao Fu, ac Xuhe Gong,ad Ruijuan Xiao *ab and Hong Li ac

Solid-state electrolytes are essential in the development of all-solid-state batteries. While density functional

theory (DFT)-based nudged elastic band (NEB) and ab initio molecular dynamics (AIMD) methods provide

fundamental insights on lithium-ion migration barriers and ionic conductivity, their computational costs

make large-scale materials exploration challenging. In this study, we developed a high-throughput NEB

computational framework integrated with the fine-tuned universal machine learning interatomic

potentials (uMLIPs), enabling accelerated prediction of migration barriers based on transition state theory

for the efficient discovery of fast-ion conductors. This framework automates the construction of initial/

final states and migration paths, reducing inaccuracies in barrier prediction in pre-trained potentials

caused by the insufficient training data on high-energy states. We employed the fine-tuned CHGNet

model in NEB/MD calculations and the dual CHGNet-NEB/MD achieved a balance between

computational speed and accuracy, as validated in NASICON-type Li1+xAlxTi2−x(PO4)3 (LATP) structures.

Through high-throughput screening, we identified orthorhombic Pnma-group structures (LiMgPO4,

LiTiPO5, etc.) which can serve as promising frameworks for fast ion conductors. Their aliovalent-doped

variants, Li0.5Mg0.5Al0.5PO4 and Li0.5TiPO4.5F0.5, showing low activation energies, were predicted to

possess high ionic conductivities of 0.20 mS cm−1 and 0.022 mS cm−1, respectively.
1. Introduction

The integration of inorganic solid-state electrolytes (SSEs) in all-
solid-state lithium-ion batteries provides a promising solution
to enhance the safety performance compared to liquid
electrolytes.1–3 Moreover, SSEs allow the use of lithium metal
anodes, which have an extremely high specic capacity and low
electrochemical potential,4 benecial for improving the energy
density of batteries.

In developing SSEs with high ionic conductivity, high-
throughput screening plays a vital role in materials exploration
and design.5 Computationally, the Nudged Elastic Band (NEB)6

and ab initiomolecular dynamics (AIMD) methods are widely used
to calculate the energy barrier of Li-ionmigration and extrapolated
ionic conductivity in SSEs. However, the signicant computational
cost of the density functional theory (DFT)-based NEB and AIMD
renders them unsuitable for large-scale screening. Our previous
work7 used machine-learning models to learn barrier values from
a large number of materials to effectively accelerate the screening
ciences, Beijing 100190, China. E-mail:

f Chinese Academy of Sciences, Beijing

onics Engineering, University of Chinese
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of fast ion conductors; however, this strategy exhibits limited
accuracy and subsequent DFT-NEB calculations for candidates are
still necessary. Some methods have been proposed to accelerate
the DFT-NEB calculations by estimating theminimum energy path
(MEP), such as R-NEB,8 GP-NEB,9 ApproxNEB,10 etc., which facili-
tate the DFT-NEB process by employing algorithms to speed up the
convergence of each path. However, due to the structure-
dependent nature of ion migration paths, a universal scheme for
selecting initial and nal states across different structures is still
lacking, preventing high-throughput NEB implementation. The
AIMD simulations describe the self-diffusion of lithium ions and
involve long-time simulations to derive ionic conductivity statisti-
cally. To extrapolate the precise ionic conductivity at room
temperature, MD simulations of hundreds of picoseconds are
essential to obtain converged mean squared displacement (MSD)
curves.11 Zhu et al.12 designed a screening procedure for superionic
lithium conductors through short AIMD runs (50 ps) at 800 K and
1200 K (MSD800 K > 5 Å2 and MSD1200 K/MSD800 K < 7), reducing to
some extent the computational demand of lengthy AIMD runs for
fast ion conductor discovery. To address these limitations, this
work establishes an automated high-throughput NEB screening
workow which systematically explores the inequivalent migration
paths and integrates the machine learning interatomic potentials
(MLIPs) to accelerate both the NEB and MD calculations while
maintaining high accuracy.

MLIPs can predict energies and forces with near-DFT accu-
racy while achieving orders-of-magnitude speed improvement
This journal is © The Royal Society of Chemistry 2025
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compared to DFT.13 Notable examples include NequIP,14 Deep
Potential,15 and TensorMol.16 However, most MLIPs are limited
to specic systems and elements. The development of universal
machine learning interatomic potentials (uMLIPs), based on
large materials databases like the Materials Project17 (MP)
containing 89 elements, begins to address this challenge. Well-
known uMLIPs, like CHGNet,18 M3GNet,19 and MACE-MP-0,20

are trained on the DFT-relaxed trajectories from MP data.
However, a critical challenge identied by Deng et al.21 is the
soening phenomenon of the potential energy surface (PES) in
uMLIPs, which arises from the insufficient high-energy cong-
urations in the training set. This issue becomes particularly
pronounced when modeling transition states and other non-
equilibrium congurations, underscoring the need to
construct a comprehensive materials dataset.

In this work, we developed an automated NEB calculation
workow capable of exhaustively sampling all inequivalent
hopping pathways in crystal structures. By integrating the ne-
tuned CHGNet potential incorporating transition-state DFT
training data, we achieved high-throughput and high-accuracy
simulations of ionic migration barriers in crystals. The
detailed workow is illustrated in Fig. 1. Firstly, the transition-
state congurations were obtained by the pre-trained CHGNet-
based high-throughput NEB (HT-NEB) calculations, and
a training set of these transition states was assembled using
Fig. 1 Schematic of the automated workflow in this study.

This journal is © The Royal Society of Chemistry 2025
DFT calculations to ne-tune the CHGNet potential. The ne-
tuned model was then applied in HT-NEB calculations and
MD simulations to obtain the barrier values with high accuracy.
The HT-NEB workow enables us to efficiently obtain precise
energy barriers for migration paths in crystal materials. As
validated, we performed NEB calculations and MD simulations
on the well-known fast ion conductor material Li1+xAlxTi2−x(-
PO4)3 (LATP).22 Compared to DFT reference values, the ne-
tuned model signicantly outperformed the pre-trained model
in calculating NEB barriers, MD-derived activation energies,
and extrapolated room-temperature ionic conductivity. Addi-
tionally, it achieved a substantial speed-up over DFT calcula-
tions. We further applied the ne-tuned model to the discovery
of fast Li-ion conductors and identied several Pnma space
group structures as promising frameworks for fast ion
conductors. Notably, the candidate materials exhibited
a remarkable increase in ionic conductivity aer aliovalent ion
doping.
2. Results and discussion
2.1 Automated high-throughput NEB workow

In standard NEB analysis of electrolyte materials, we need to
construct supercells to minimize image defect interactions and
set initial and nal states for ion migration. Subsequently,
J. Mater. Chem. A, 2025, 13, 34918–34926 | 34919
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linear interpolation is applied to generate an initial guess of the
minimum energy path (MEP). The climbing-image NEB (CI-
NEB) algorithm23 is then employed in the rigorous conver-
gence calculations to obtain the MEP and energy barrier.

In this work, an automated high-throughput NEB screening
workow is designed to systematically explore all the inequi-
valent migration paths in each crystal structure. The CIFs ob-
tained from the Materials Project were converted to POSCAR
les using Python scripts. To mitigate spurious interactions
between migration paths induced by periodic boundary condi-
tions, a supercell with lattice parameters of ∼10 Å was con-
structed for each structure. Site symmetry multiplicities N of Li
atoms were directly extracted from CIFs and subsequently
employed in the systematic path enumeration process. When
the crystal structures exhibit high symmetry with all Li atoms
occupying equivalent positions (N= 1), only one migration path
requires computation. However, complex congurations con-
taining multiple distinct Li sites (designated as site 1, site 2,.,
site N) necessitate consideration of multiple non-equivalent
migration channels. An automated vacancy construction
method was implemented for generating the initial and nal
states of migration events. The workow systematically
enumerates all inequivalent migration paths by considering
each symmetrically distinct Li+ position as an initial state and
calculating its hop to the nearest neighbor site for every ineq-
uivalent Li type. For instance, if the initial Li+ resides at a crys-
tallographic site Lii (where i ˛ [1, N]), the process evaluates its
migration barriers to all nearest-neighbor sites (Li1, Li2,., LiN)
associated with other inequivalent Li positions. Consequently,
for a structure containing N inequivalent Li sites, the algorithm
computes N2 distinct migration pathways. To account for
potential energy barrier asymmetry, both forward and reverse
hops are explicitly evaluated. This method exhaustively maps all
possible Li+ migration channels (denoted as Lii / Lij, where i, j
˛ [1, N]) through combinatorial path enumeration, ensuring
complete coverage of inequivalent hops.

An initial guess of the migration path between the initial and
nal states was rst approximated using the Image Dependent
Pair Potential (IDPP) method,24 which generates physically
realistic atomic trajectories by minimizing interatomic repul-
sions. Subsequently, NEB calculations were carried out through
the Atomic Simulation Environment (ASE)25 based on the
CHGNet calculator. The default number of intermediate images
in NEB calculations was set to 7 (including endpoints). If the
distance between adjacent images exceeds 1 Å, additional
intermediate images were automatically inserted to maintain
proper connectivity between neighboring states. Using the NEB
tool in ASE, we efficiently obtain converged MEP pathways with
MLIPs through automated computation.

Take the layered compound Li2MnO3 as an example. As
shown in Fig. 2, the lattice contains three distinct Li sites, in
which Li1 and Li2 are located in the lithium layer while Li3 stays
in the transition-metal layer. Previous DFT calculations have
revealed relatively low intralayer migration barriers between Li1
and Li2, and slightly higher interlayer migration barriers.26 The
CHGNet-based NEB calculations, listed in Table 1, mapped all
possible migration paths and correctly reproduced the relative
34920 | J. Mater. Chem. A, 2025, 13, 34918–34926
ease of Li migration within the Li plane (between 4h and 2c)
versus the higher-barrier hops between neighboring Li and
LiMn2 layers (between 2b and others).
2.2 Fine-tuned CHGNet potential

2.2.1 Dataset selection. We systematically constructed the
dataset for solid electrolyte discovery based on multiple criteria
from the Materials Project17 database. Candidate selection
proceeded according to the following four key criteria: (1) we
chose Li-containing quaternary compounds, where quaternary
systems were prioritized to encompass polyanionic frameworks
andmixed-anion systems, both critical for Li conduction. (2) We
focused on compounds containing only elements commonly
found in lithium battery materials as illustrated in Fig. 3(a). (3)
Enforcing maximum oxidation states ensured all candidates are
intrinsically stable against further oxidation. (4) We ltered out
low-symmetry structures with distinct Li sites larger than 3 and
number of atoms in the supercell larger than 300 to decrease
the total computational cost of DFT. These structures were
processed by the HT-NEB workow introduced in the last
section, which was performed with the pre-trained CHGNet
potential for these candidates and effectively created transition
states for all the inequivalent pathways in each structure.

A dataset containing 3115 transition-state congurations
was generated. DFT static calculations were performed on each
conguration to obtain the energies, forces, and stresses
required for ne-tuning the CHGNet potential. Fig. 3(b) illus-
trates the elemental distribution in the dataset, where the x-axis
lists elements and the y-axis represents the percentage of
materials containing each element. From this dataset, 2784
congurations were randomly selected as the training set,
which was partitioned into training (80%), validation (10%),
and test (10%) subsets for ne-tuning the CHGNet potential.
The remaining 331 congurations constituted a separate test
set.

2.2.2 Fine-tuned potential. The ne-tuning of CHGNet
potential is performed with the DFT transition state datasets
mentioned in subsection 2.2.1. The specic parameters used for
the ne-tuning process are described in the methods part in
detail. The ne-tuned CHGNet potential achieved much better
performance with the mean absolute errors (MAE) of 2 meV/
atom for energy, 13 meV Å−1 for force, and 13 mGPa for
stress. The comparison between the pre-trained and ne-tuned
model is illustrated in Fig. S1.

Besides the improvement of the model accuracy, the ne-
tuned model also demonstrates enhanced precision in energy
barrier predictions. Fig. 4(a) and (b) compare the migration
barriers predicted by both pre-trained and ne-tuned CHGNet
models against DFT reference values for the training and
separate test sets. Due to the computational cost of DFT-based
NEB calculations, the DFT barrier references were constructed
by computing single point energies at CHGNet-predicted tran-
sition states, shown as the x-axis, and the y-axis shows the
barriers predicted by NEB calculations with the two CHGNet
models respectively. The ne-tuned model reduced the MAE of
barrier prediction from 0.24 eV to 0.07 eV on the training set
This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Different views of Li sites and all enumerated migration paths in Li2MnO3 (mp-18988). Predicted migration barriers by the pre-trained
CHGNet potential are visualized via colored arrows (red hues denote lower barriers). A low-barrier conduction network exists along Li1 / Li2 /
Li1. While the barriers from Li1/Li2 to Li3 are relatively low, the migration from Li3 to other Li ions is hard, due to the lower site energy of Li3.

Table 1 Systematic barrier predictions through the NEBmethod for all
the inequivalent Li migration paths in Li2MnO3 (mp-18988) by pre-
trained and fine-tuned CHGNet potential. Barriers from the initial state
(IS) to the final state (FS) are listed. For comparison, the DFT-calculated
values from ref. 26 are included

IS / FS

Methods

Pre-trained Fine-tuned DFT values26

Li1 (4h) / Li1 (4h) 0.50 0.70 0.74
Li1 (4h) / Li2 (2c) 0.41 0.57 0.54
Li1 (4h) / Li3 (2b) 0.38 0.56 0.59
Li2 (2c) / Li1 (4h) 0.42 0.58 0.61
Li2 (2c) / Li2 (2c) 1.86 2.53 —
Li2 (2c) / Li3 (2b) 0.39 0.55 0.51
Li3 (2b) / Li1 (4h) 0.49 0.67 0.80
Li3 (2b) / Li2 (2c) 0.48 0.64 0.73
Li3 (2b) / Li3 (2b) 6.31 6.40 —
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and from 0.23 eV to 0.09 eV on the test set. Compared to the pre-
trained model, the ne-tuned model improved the R2 value
from 0.97 to 0.99 on the training set and from 0.94 to 0.98 on the
test set. These results demonstrate that the ne-tuned model
achieves signicantly better agreement with DFT predictions
across both datasets.

To further demonstrate the general improvement of the ne-
tuned model in mitigating potential energy surface soening,
we analyzed the migration paths with 7 images selected from
both the training and test sets. The energy error for each image
was statistically represented using a violin plot, as shown in
Fig. 4(c) and (d). Here, image 0 corresponds to the initial state,
where the DFT and CHGNet energies are aligned, while image 7
represents the nal state aer lithium migration. We observed
that as the image index approaches the midpoint where Li is
near the energy maximum, both CHGNet models tend to
underestimate the energy barriers relative to DFT values.
However, the ne-tuned model exhibits lower median energy
errors, reduced interquartile range (IQR), and smaller extrema
(details shown in Tables S1 and S2). These improvements
indicate that the ne-tuned model signicantly mitigates the
soening effect of the potential energy surface, making it more
This journal is © The Royal Society of Chemistry 2025
suitable for accurately describing high energy-state structures
in NEB and MD simulations.
2.3 High-throughput MD workow

To determine the activation energies (Ea) and the room-
temperature ionic conductivity within the high-throughput
framework, the CHGNet based-MD workow was also estab-
lished. For comparison, AIMD simulations with identical
ensemble, timestep, and simulation time parameters were
performed as reference. Due to substantial statistical variations
between independent MD runs,11 it is necessary to perform
multiple long-duration MD simulations. Therefore, for each
temperature, we typically conducted three MD simulations,
each lasting 200 ps. To improve statistical convergence, we
divided these long trajectories into 12 non-overlapping 50 ps
segments. We then averaged the resulting MSD curves and
determined the diffusion coefficient at each temperature from
their slopes. To mitigate nonlinear artifacts at the endpoints of
Dt, we restricted the linear ts in the 20–80% range of Dt.
Furthermore, to address potential changes of activation energy
at high temperatures due to phase transitions or alterations in
migration mechanisms,27 our approach involves tting the data
points at lower temperatures (meanwhile ensuring the linearity
of MSD curves by extending the simulation time) while
assuming constant Ea, allowing us to extrapolate the room
temperature conductivity using the Nernst–Einstein equation:

sðTÞ ¼ ne2z2

kBT
DðTÞ (1)

where n and z represent the volume density (cm−3) and the
charge of diffusing species (+1 for lithium ions), and D(T)
represents the diffusion coefficients at a given temperature.

While AIMD is limited by its high computational cost, the
efficiency of CHGNet potentials enables long-timescale MD
simulations, particularly crucial for systems with rare migration
events at low temperatures, to achieve well-converged diffusion
statistics. Meanwhile, when extrapolating the room tempera-
ture conductivity by the diffusion coefficients at multiple
temperatures, CHGNet-based MD can offer more reliable D(T)
data points to enhance the accuracy of Arrhenius tting.
J. Mater. Chem. A, 2025, 13, 34918–34926 | 34921
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Fig. 3 (a) Target elements filtered through the screening workflow. (b) Cationic and anionic elements and related percentages to the whole
number of target compounds in the dataset.
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Moreover, for most studied systems, CHGNet-based MD can
directly simulate ionic conductivity at target temperatures,
thereby eliminating the need for extrapolation procedures.
2.4 Validation for the ne-tuned CHGNet

In this section, we take specic examples to verify the accuracy
of the ne-tuned CHGNet model in both NEB calculations and
MD simulations. The energy barriers for all the inequivalent Li
migration paths for Li2MnO3 have been listed in Table 1. The
energy barriers predicted by the pre-trainedmodel are obviously
lower than DFT values calculated by previous work,26 with an
MAE of 0.21 eV. Although Mn element is not included in the
ne-tuning training set, the more accurate description of Li–O
interactions in the ne-tuned model improves the barriers
prediction with a lower MAE of 0.056 eV.

Besides the layered Li2MnO3, we also examine the two
models on LiTi2(PO4)3 (LTP), along with its widely adopted
derivative LATP solid electrolyte. DFT-based NEB calculations
have revealed that Li ions migrate following a vacancy mecha-
nism with a barrier of about 0.41 eV in pure LiTi2(PO4)3, while
the interstitial mechanism with a lower calculated barrier of
0.19 eV occurs in the LATP structure.28 For a precisely propor-
tioned Li1.5Al0.5Ti1.5(PO4)3, Wang et al.29 reported 0.23 eV Li
diffusion by the AIMD method. Experimental measurements
34922 | J. Mater. Chem. A, 2025, 13, 34918–34926
indicated that a high ionic conductivity of about 1 mS cm−1 and
low activation energy of about 0.28 eV can be achieved in LATP
samples synthesized by the melt quenching method,30

mechanical activation method,31 and sol–gel method.32

Fig. 5(a) presents the NEB results for LiTi2(PO4)3. The ne-
tuned CHGNet model predicts a barrier of 0.40 eV, which is
close to the DFT-NEB result of 0.38 eV, representing an 80%
error reduction compared to the pre-trained model's prediction
(0.28 eV). For more complex doped systems, such as Li1+xAlx-
Ti2−x(PO4)3 (LATP), aluminum doping introduces interstitial Li
ions and the reduced crystal symmetry creates numerous
inequivalent migration pathways, making the HT-NEB method
impractical for mapping all the energy barriers completely. To
address this, MD simulations are more suitable for calculating
migration barriers in doped systems. The light-shaded regions
in Fig. 5(b) and (c) represent the dispersion of the MSD curves
simulated for LATP. The diffusion coefficient at a given
temperature was calculated from the slope of the averaged MSD
curve. At 1000 K, the ne-tuned CHGNet model yielded a diffu-
sion coefficient (5.70 × 10−5 cm2 s−1) closely aligned with AIMD
results (5.35 × 10−5 cm2 s−1). The agreement remains at 600 K
with a diffusion coefficient of 1.15 × 10−5 cm2 s−1 by the ne-
tuned model versus 8.17 × 10−6 cm2 s−1 by AIMD. By tting
the diffusion coefficients at various temperatures, themigration
This journal is © The Royal Society of Chemistry 2025
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Fig. 4 Systematic validation of CHGNet-based NEB barrier prediction accuracy. Comparing DFT static energy barriers (x-axis) and CHGNet-NEB
predictions (y-axis) for (a) the training set (MAE reduced from 0.24 eV to 0.07 eV, R2 improved from 0.97 to 0.99) and (b) test set (MAE reduced
from 0.23 eV to 0.09 eV, R2 improved from 0.94 to 0.98). Violin plots quantifying energy errors for 7-image pathways in (c) the training set (mean
error for energy decreases from 0.45 meV per atom to 0.25 meV per atom for configurations at image 3) and (d) test set (mean error for energy
decreases from 1.01 meV per atom to 0.49 meV per atom for configurations at image 3), with boxplots showing interquartile ranges (IQR).
Dashed lines indicate 0 meV error.
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barrier and room temperature conductivity can be determined
using the Arrhenius equation. The ne-tuned model predicts
a migration barrier of 0.21 eV, which is close to the AIMD result
of 0.22 eV. The predicted lithium-ion conductivity at 300 K is 9.7
mS cm−1, which is close to the AIMD result of 5.1 mS cm−1. In
comparison, the pre-trained model predicts a conductivity of 63
mS cm−1 at 300 K, which is an order of magnitude higher and
less accurate. Due to the high efficiency of MD simulations by
the ne-tuned CHGNet model, we conducted six separate MD
runs lasting 1 ns at 300 K. The resulting mean MSD curve
yielded a room-temperature conductivity of 5.4 mS cm−1

(Fig. S2), which aligns with the extrapolated value of the ne-
tuned model and AIMD. The ne-tuned CHGNet model not
only signicantly improves the accuracy of NEB and MD
calculations but also achieves a substantial speedup compared
to rst-principles calculations, as detailed in the SI.
2.5 Discovery of Li+ fast ion conductors

Although we ne-tuned the CHGNet model using only quater-
nary compounds, its application is not limited to these systems.
By accurately capturing the interaction behavior of Li ions and
other cations and anions, this ne-tuned CHGNet potential can
be extended to ternary, quinary, and other multicomponent
systems containing elements presented in the ne-tuning
dataset.
This journal is © The Royal Society of Chemistry 2025
Here we continue to use the quaternary structure dataset to
demonstrate the discovery of novel ionic conductors. 66
compounds were identied with Li-ion migration barriers lower
than 0.5 eV through ne-tuned CHGNet-NEB high-throughput
calculations. Table S3 shows their Materials Project identiers
(mp-id), thermodynamic stability (Ehull as energy above hull),
and migration barriers.

The screening results identify multiple orthorhombic Pnma
space group compounds, including LiMgPO4, LiMgAsO4,
LiTiPO5, LiTiAsO5, and LiSiPO5. The Mg-based and Ti-based
oxides exhibit a low energy above hull (<50 meV per atom)
and have been experimentally observed, while LiSiPO5 shows
a large energy above hull of 109 meV per atom. Further analysis
of formation energies reveals that while these congurations
exhibit low ionic migration barriers, their high Li-vacancy
formation energies intrinsically limit charge carrier forma-
tion. This is evidenced by the ne-tuned CHGNet-based MD
simulations for defect-free congurations, which yield much
higher energy barriers,1.9 eV and 1.54 eV for LiMgPO4 and
LiTiPO5 respectively, than NEB predictions. To utilize these low-
migration-barrier frameworks, we introduced some lithium
vacancies by aliovalent cation doping, including substituting
Mg2+ with Al3+ in LiMgPO4, and O2− with F− in LiTiPO5. This
doping strategy signicantly decreases the barriers, reducing
the activation energy to 0.30 eV and 0.36 eV for the two
respective congurations. Fitting the diffusion coefficients to
J. Mater. Chem. A, 2025, 13, 34918–34926 | 34923
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Fig. 5 Comparison of CHGNet with DFT calculations in NASICON-type electrolytes LiTi2(PO4)3 and Li1.5Al0.5Ti1.5(PO4)3: (a) energy barriers from
DFT-NEB and CHGNet-NEB calculations in LiTi2(PO4)3; (b) and (c) MSD profiles of Li1.5Al0.5Ti1.5(PO4)3 at (b) 1000 K and (c) 600 K, respectively,
comparing AIMD, fine-tuned CHGNet model, and pre-trained CHGNet results; (d) Arrhenius plot of LATP ionic conductivity showing improved
agreement between fine-tuned CHGNet and AIMD.

Fig. 6 Arrhenius plot of LiMgPO4, LiTiPO5 and their doped structures
simulated by fine-tuned CHGNet-MD.
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the temperature using the Arrhenius relationship, we get room-
temperature conductivity of 0.20 mS cm−1 for Li0.5Mg0.5Al0.5PO4

and 0.022 mS cm−1 for Li0.5TiPO4.5F0.5. Both doped structures
maintained reasonable thermodynamic stability with energy
above hull values of 29.7 meV per atom and 0meV per atom. We
performed CHGNet-MD simulations on the two doped struc-
tures. Fig. S3 illustrates the unit cell structures of the two
materials and Li ion transport trajectories at 1000 K. Both
34924 | J. Mater. Chem. A, 2025, 13, 34918–34926
materials exhibit unidirectional transport channels within
planes. Fig. S4 presents energy barriers calculated by the
CHGNet-NEB method. Compared to pristine unit cells, doped
congurations show no signicant change in energy barriers
(∼0.3 eV). However, aliovalent doping introduces vacancies at
pristine lattice Li sites, thus decreasing the formation energies
of Li vacancy and increasing the carrier density, promoting
a signicant enhancement in ion transport performance
(Fig. 6).
3. Conclusions

In this work, we have developed an automated high-throughput
NEB screening workow integrated with a ne-tuned CHGNet
model which systematically explores all the inequivalent
migration paths in crystal structures and predicts the Li-ion
migration barriers with high accuracy. The CHGNet-based
NEB method demonstrates signicant improvements over
traditional approaches in three aspects:

(1) It automates the NEB calculation process including cell
expansion, initial/nal state construction, and IDPP interpola-
tion to generate the initial guess of the migration path.

(2) Using CHGNet as the energy and force calculator enables
rapid optimization of transition states in NEB calculations to
locate saddle points along the pathway. Compared to the pre-
trained potential, the ne-tuned CHGNet model clearly
reduces the potential energy surface soening and
This journal is © The Royal Society of Chemistry 2025
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demonstrates an 80% improvement in energy barrier prediction
accuracy.

(3) The high-throughput CHGNet-NEB framework enables
the efficient discovery of new superionic conductors. And the
CHGNet-MD method provides an efficient approach for
studying ionic conductivity in low-symmetry doped structures
even at low-temperatures with rare migration events. In
comparison to the traditional method, the ne-tuned CHGNet
HT-NEB/MD simulations achieve a balance between accuracy
and efficiency, making it suitable for large-scale screening of
low-barrier conductive materials.

Through the application of the workow, we identied 66
compounds with migration barriers below 0.5 eV, particularly
noting that those belonging to the Pnma space group displayed
low barriers and high stability, such as LiMgPO4 and LiTiPO5.
Based on this structural framework, the doped structures
Li0.5Mg0.5Al0.5PO4 and Li0.5TPO4.5F0.5 exhibiting high ionic
conductivity (0.20 mS cm−1 and 0.022 mS cm−1) were explored.
Reasonable thermodynamic stability (Ehull of 29.7 meV per atom
and 0 meV per atom, respectively) was maintained. This study
provides a new strategy for developing novel solid-state elec-
trolytes by using machine-learning interatomic potentials ne-
tuned by high-energy structures. This approach enables large-
scale conductivity predictions for complex doped structures,
facilitating the discovery of next-generation fast-ion conductors.

4. Methods

All DFT calculations were performed using the Vienna ab initio
Simulation Package (VASP)33 within the projector augmented
wave (PAW) approach with the Perdew–Burke–Ernzerhof (PBE)34

generalized gradient approximation. A uniform Monkhorst–
Pack k-point mesh was generated for each structure such that
the spacing between adjacent k-points in reciprocal space did
not exceed 0.05 Å−1, ensuring consistent sampling density
across different unit cell sizes. For AIMD simulations an NVT
ensemble of the Nose–Hoover thermostat35 and a timestep of 2
fs were used to accelerate the long-duration simulations.
CHGNet molecular dynamics were simulated with a pre-trained/
ne-tuned CHGNet model through an ASE python interface,
with an NVT ensemble and a timestep of 1 fs.

The training set containing DFT static energy calculations
for a total of 2784 structures was generated by the NEB method
using the pre-trained CHGNet model. All images were calcu-
lated by VASP using the projector-augmented wave (PAW)
method to obtain single point energy, atomic forces and lattice
stress as labels. The CHGNet model was ne-tuned by these
data with energy, force and stress labels with normalized loss
weights (energy: 1, forces: 1, stresses: 0.1) under the mean
squared error (MSE) optimization. The dataset was partitioned
into training (80%), validation (10%), and test (10%) subsets.
The RAdam optimizer and an initial learning rate of 0.001 were
used to train the model for 500 epochs. The optimized model
achieved a good performance with the MAE of 2 meV per atom
for energy, 13meV Å−1 for force and 13mGPa for stress (Fig. S5).
To further validate the accuracy of the ne-tuned model, we
prepared an additional test set comprising 331 congurations.
This journal is © The Royal Society of Chemistry 2025
This test set was then used to compare the model's performance
on the training set with that on the unseen compositions and
structures, allowing us to assess its generalization performance
beyond the training data.
Author contributions

R. X. designed this work and guided the completion of the
method. J. L. constructed the models. All the authors partici-
pated in the analysis of the data and discussions of the results,
as well as in preparing the paper.
Conflicts of interest

The authors declare no conict of interest.
Data availability

The data that support the ndings of this study are available
from the corresponding author upon reasonable request.

Speed test for CHGNet/DFT-based NEB and MD. The more
detailed errors comparison between pre-trained and ne-tuned
model. Detailed MD and NEB analysis for the LATP and the two
new doped structures. Potential fast ion conductors listed in
a table. See DOI: https://doi.org/10.1039/d5ta05355b.
Acknowledgements

This work was supported by funding from the Strategic Priority
Research Program of Chinese Academy of Sciences (grant no.
XDB1040302 and XDB0500200) and the National Natural
Science Foundation of China (grant no. 52172258). The
numerical calculations in this study were carried out both on
the ORISE Supercomputer and at the National Supercomputer
Center in Tianjin.
References

1 S. Zhang, S. Li and Y. Lu, Designing safer lithium-based
batteries with nonammable electrolytes: A review,
eScience, 2021, 1, 163–177.

2 H. Yang, Ionic conductivity and ion transport mechanisms
of solid-state lithium-ion battery electrolytes: A review,
Energy Sci. Eng., 2022, 1643–1671.

3 N. Xue, Inorganic lithium-ion conductors for fast-charging
lithium batteries: a review, J. Solid State Electrochem., 2024,
4133–4148.

4 D. Lin, Y. Liu and Y. Cui, Reviving the lithium metal anode
for high-energy batteries, Nat. Nanotechnol., 2017, 12, 194–
206.

5 A. Benayad, et al., High-Throughput Experimentation and
Computational Freeway Lanes for Accelerated Battery
Electrolyte and Interface Development Research, Adv.
Energy Mater., 2022, 12, 2102678.

6 G. Henkelman and H. Jónsson, Improved tangent estimate
in the nudged elastic band method for nding minimum
J. Mater. Chem. A, 2025, 13, 34918–34926 | 34925

https://doi.org/10.1039/d5ta05355b
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta05355b


Journal of Materials Chemistry A Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Se

pt
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 4
:5

8:
32

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
energy paths and saddle points, J. Chem. Phys., 2000, 113,
9978–9985.

7 Y. Wang, et al., Accelerated strategy for fast ion conductor
materials screening and optimal doping scheme
exploration, J. Materiomics, 2022, 8, 1038–1047.

8 N. R. Mathiesen, H. Jónsson, T. Vegge and J. M. G. Lastra,
Accelerated Nudged Elastic Band Calculations by Use of
Reection Symmetry, J. Chem. Theory Comput., 2019, 15,
3215–3222.
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