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Solid-state electrolytes are essential in the development of all-solid-state batteries. While density functional
theory (DFT)-based nudged elastic band (NEB) and ab initio molecular dynamics (AIMD) methods provide
fundamental insights on lithium-ion migration barriers and ionic conductivity, their computational costs
make large-scale materials exploration challenging. In this study, we developed a high-throughput NEB
computational framework integrated with the fine-tuned universal machine learning interatomic
potentials (UMLIPs), enabling accelerated prediction of migration barriers based on transition state theory
for the efficient discovery of fast-ion conductors. This framework automates the construction of initial/
final states and migration paths, reducing inaccuracies in barrier prediction in pre-trained potentials
caused by the insufficient training data on high-energy states. We employed the fine-tuned CHGNet
model in NEB/MD calculations and the dual CHGNet-NEB/MD achieved a balance between
computational speed and accuracy, as validated in NASICON-type Liy Al Ti>_(PO4)s (LATP) structures.
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Accepted 6th September 2025 Through high-throughput screening, we identified orthorhombic Pnma-group structures (LiMgPOy,,
LiTiPOs, etc.) which can serve as promising frameworks for fast ion conductors. Their aliovalent-doped
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1. Introduction

The integration of inorganic solid-state electrolytes (SSEs) in all-
solid-state lithium-ion batteries provides a promising solution
to enhance the safety performance compared to liquid
electrolytes.’ Moreover, SSEs allow the use of lithium metal
anodes, which have an extremely high specific capacity and low
electrochemical potential,* beneficial for improving the energy
density of batteries.

In developing SSEs with high ionic conductivity, high-
throughput screening plays a vital role in materials exploration
and design.® Computationally, the Nudged Elastic Band (NEB)°®
and ab initio molecular dynamics (AIMD) methods are widely used
to calculate the energy barrier of Li-ion migration and extrapolated
ionic conductivity in SSEs. However, the significant computational
cost of the density functional theory (DFT)-based NEB and AIMD
renders them unsuitable for large-scale screening. Our previous
work’” used machine-learning models to learn barrier values from
a large number of materials to effectively accelerate the screening
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possess high ionic conductivities of 0.20 mS cm ™t and 0.022 mS cm™?, respectively.

of fast ion conductors; however, this strategy exhibits limited
accuracy and subsequent DFT-NEB calculations for candidates are
still necessary. Some methods have been proposed to accelerate
the DFT-NEB calculations by estimating the minimum energy path
(MEP), such as R-NEB,* GP-NEB,®> ApproxNEB," etc., which facili-
tate the DFT-NEB process by employing algorithms to speed up the
convergence of each path. However, due to the structure-
dependent nature of ion migration paths, a universal scheme for
selecting initial and final states across different structures is still
lacking, preventing high-throughput NEB implementation. The
AIMD simulations describe the self-diffusion of lithium ions and
involve long-time simulations to derive ionic conductivity statisti-
cally. To extrapolate the precise ionic conductivity at room
temperature, MD simulations of hundreds of picoseconds are
essential to obtain converged mean squared displacement (MSD)
curves." Zhu et al.** designed a screening procedure for superionic
lithium conductors through short AIMD runs (50 ps) at 800 K and
1200 K (MSDg0 x > 5 A and MSD500 x/MSDgqo « < 7), reducing to
some extent the computational demand of lengthy AIMD runs for
fast ion conductor discovery. To address these limitations, this
work establishes an automated high-throughput NEB screening
workflow which systematically explores the inequivalent migration
paths and integrates the machine learning interatomic potentials
(MLIPs) to accelerate both the NEB and MD calculations while
maintaining high accuracy.

MLIPs can predict energies and forces with near-DFT accu-
racy while achieving orders-of-magnitude speed improvement

This journal is © The Royal Society of Chemistry 2025
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compared to DFT." Notable examples include NequlIP," Deep
Potential," and TensorMol.** However, most MLIPs are limited
to specific systems and elements. The development of universal
machine learning interatomic potentials (uMLIPs), based on
large materials databases like the Materials Project'” (MP)
containing 89 elements, begins to address this challenge. Well-
known uMLIPs, like CHGNet,”®* M3GNet," and MACE-MP-0,*°
are trained on the DFT-relaxed trajectories from MP data.
However, a critical challenge identified by Deng et al.* is the
softening phenomenon of the potential energy surface (PES) in
uMLIPs, which arises from the insufficient high-energy config-
urations in the training set. This issue becomes particularly
pronounced when modeling transition states and other non-
equilibrium configurations, underscoring the need to
construct a comprehensive materials dataset.

In this work, we developed an automated NEB calculation
workflow capable of exhaustively sampling all inequivalent
hopping pathways in crystal structures. By integrating the fine-
tuned CHGNet potential incorporating transition-state DFT
training data, we achieved high-throughput and high-accuracy
simulations of ionic migration barriers in crystals. The
detailed workflow is illustrated in Fig. 1. Firstly, the transition-
state configurations were obtained by the pre-trained CHGNet-
based high-throughput NEB (HT-NEB) calculations, and
a training set of these transition states was assembled using
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DFT calculations to fine-tune the CHGNet potential. The fine-
tuned model was then applied in HT-NEB calculations and
MD simulations to obtain the barrier values with high accuracy.
The HT-NEB workflow enables us to efficiently obtain precise
energy barriers for migration paths in crystal materials. As
validated, we performed NEB calculations and MD simulations
on the well-known fast ion conductor material Li;;, Al Ti, (-
PO,); (LATP).>> Compared to DFT reference values, the fine-
tuned model significantly outperformed the pre-trained model
in calculating NEB barriers, MD-derived activation energies,
and extrapolated room-temperature ionic conductivity. Addi-
tionally, it achieved a substantial speed-up over DFT calcula-
tions. We further applied the fine-tuned model to the discovery
of fast Li-ion conductors and identified several Pnma space
group structures as promising frameworks for fast ion
conductors. Notably, the candidate materials exhibited
a remarkable increase in ionic conductivity after aliovalent ion
doping.

2. Results and discussion
2.1 Automated high-throughput NEB workflow

In standard NEB analysis of electrolyte materials, we need to
construct supercells to minimize image defect interactions and
set initial and final states for ion migration. Subsequently,
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Fig. 1 Schematic of the automated workflow in this study.
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linear interpolation is applied to generate an initial guess of the
minimum energy path (MEP). The climbing-image NEB (CI-
NEB) algorithm® is then employed in the rigorous conver-
gence calculations to obtain the MEP and energy barrier.

In this work, an automated high-throughput NEB screening
workflow is designed to systematically explore all the inequi-
valent migration paths in each crystal structure. The CIFs ob-
tained from the Materials Project were converted to POSCAR
files using Python scripts. To mitigate spurious interactions
between migration paths induced by periodic boundary condi-
tions, a supercell with lattice parameters of ~10 A was con-
structed for each structure. Site symmetry multiplicities N of Li
atoms were directly extracted from CIFs and subsequently
employed in the systematic path enumeration process. When
the crystal structures exhibit high symmetry with all Li atoms
occupying equivalent positions (N = 1), only one migration path
requires computation. However, complex configurations con-
taining multiple distinct Li sites (designated as site 1, site 2, ...,
site N) necessitate consideration of multiple non-equivalent
migration channels. An automated vacancy construction
method was implemented for generating the initial and final
states of migration events. The workflow systematically
enumerates all inequivalent migration paths by considering
each symmetrically distinct Li" position as an initial state and
calculating its hop to the nearest neighbor site for every ineq-
uivalent Li type. For instance, if the initial Li" resides at a crys-
tallographic site Li; (where i € [1, N]), the process evaluates its
migration barriers to all nearest-neighbor sites (Liy, Liy, ..., Liy)
associated with other inequivalent Li positions. Consequently,
for a structure containing N inequivalent Li sites, the algorithm
computes N distinct migration pathways. To account for
potential energy barrier asymmetry, both forward and reverse
hops are explicitly evaluated. This method exhaustively maps all
possible Li" migration channels (denoted as Li; — Li;, where i,
€ [1, N]) through combinatorial path enumeration, ensuring
complete coverage of inequivalent hops.

An initial guess of the migration path between the initial and
final states was first approximated using the Image Dependent
Pair Potential (IDPP) method,* which generates physically
realistic atomic trajectories by minimizing interatomic repul-
sions. Subsequently, NEB calculations were carried out through
the Atomic Simulation Environment (ASE)*® based on the
CHGNet calculator. The default number of intermediate images
in NEB calculations was set to 7 (including endpoints). If the
distance between adjacent images exceeds 1 A, additional
intermediate images were automatically inserted to maintain
proper connectivity between neighboring states. Using the NEB
tool in ASE, we efficiently obtain converged MEP pathways with
MLIPs through automated computation.

Take the layered compound Li,MnO; as an example. As
shown in Fig. 2, the lattice contains three distinct Li sites, in
which Li; and Li, are located in the lithium layer while Li; stays
in the transition-metal layer. Previous DFT calculations have
revealed relatively low intralayer migration barriers between Li;
and Li,, and slightly higher interlayer migration barriers.>® The
CHGNet-based NEB calculations, listed in Table 1, mapped all
possible migration paths and correctly reproduced the relative
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ease of Li migration within the Li plane (between 4h and 2c)
versus the higher-barrier hops between neighboring Li and
LiMn, layers (between 2b and others).

2.2 Fine-tuned CHGNet potential

2.2.1 Dataset selection. We systematically constructed the
dataset for solid electrolyte discovery based on multiple criteria
from the Materials Project'” database. Candidate selection
proceeded according to the following four key criteria: (1) we
chose Li-containing quaternary compounds, where quaternary
systems were prioritized to encompass polyanionic frameworks
and mixed-anion systems, both critical for Li conduction. (2) We
focused on compounds containing only elements commonly
found in lithium battery materials as illustrated in Fig. 3(a). (3)
Enforcing maximum oxidation states ensured all candidates are
intrinsically stable against further oxidation. (4) We filtered out
low-symmetry structures with distinct Li sites larger than 3 and
number of atoms in the supercell larger than 300 to decrease
the total computational cost of DFT. These structures were
processed by the HT-NEB workflow introduced in the last
section, which was performed with the pre-trained CHGNet
potential for these candidates and effectively created transition
states for all the inequivalent pathways in each structure.

A dataset containing 3115 transition-state configurations
was generated. DFT static calculations were performed on each
configuration to obtain the energies, forces, and stresses
required for fine-tuning the CHGNet potential. Fig. 3(b) illus-
trates the elemental distribution in the dataset, where the x-axis
lists elements and the y-axis represents the percentage of
materials containing each element. From this dataset, 2784
configurations were randomly selected as the training set,
which was partitioned into training (80%), validation (10%),
and test (10%) subsets for fine-tuning the CHGNet potential.
The remaining 331 configurations constituted a separate test
set.

2.2.2 Fine-tuned potential. The fine-tuning of CHGNet
potential is performed with the DFT transition state datasets
mentioned in subsection 2.2.1. The specific parameters used for
the fine-tuning process are described in the methods part in
detail. The fine-tuned CHGNet potential achieved much better
performance with the mean absolute errors (MAE) of 2 meV/
atom for energy, 13 meV A~ for force, and 13 mGPa for
stress. The comparison between the pre-trained and fine-tuned
model is illustrated in Fig. S1.

Besides the improvement of the model accuracy, the fine-
tuned model also demonstrates enhanced precision in energy
barrier predictions. Fig. 4(a) and (b) compare the migration
barriers predicted by both pre-trained and fine-tuned CHGNet
models against DFT reference values for the training and
separate test sets. Due to the computational cost of DFT-based
NEB calculations, the DFT barrier references were constructed
by computing single point energies at CHGNet-predicted tran-
sition states, shown as the x-axis, and the y-axis shows the
barriers predicted by NEB calculations with the two CHGNet
models respectively. The fine-tuned model reduced the MAE of
barrier prediction from 0.24 eV to 0.07 eV on the training set

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Different views of Li sites and all enumerated migration paths in Li,MnOz (mp-18988). Predicted migration barriers by the pre-trained
CHGNet potential are visualized via colored arrows (red hues denote lower barriers). A low-barrier conduction network exists along Li; — Li, —
Li;. While the barriers from Li;/Li; to Lis are relatively low, the migration from Lis to other Li ions is hard, due to the lower site energy of Lis.

Table1l Systematic barrier predictions through the NEB method for all
the inequivalent Li migration paths in Li,MnOz (mp-18988) by pre-
trained and fine-tuned CHGNet potential. Barriers from the initial state
(IS) to the final state (FS) are listed. For comparison, the DFT-calculated
values from ref. 26 are included

Methods

IS — FS Pre-trained Fine-tuned DFT values®®
Li, (4h) — Li, (4h)  0.50 0.70 0.74
Li, (4h) — Li, (2¢) 0.41 0.57 0.54
Li, (4h) — Li; (2b)  0.38 0.56 0.59
Li, (2¢) — Li; (4h) 0.42 0.58 0.61
Li, (2¢) — Li, (2¢) 1.86 2.53 —
Li, (2¢) — Li; (2b) 0.39 0.55 0.51
Li; (2b) — Li, (¢h)  0.49 0.67 0.80
Li; (2b) — Li, (2¢) 0.48 0.64 0.73
Li, (2b) — Li; 2b)  6.31 6.40 —

and from 0.23 eV to 0.09 eV on the test set. Compared to the pre-
trained model, the fine-tuned model improved the R* value
from 0.97 to 0.99 on the training set and from 0.94 to 0.98 on the
test set. These results demonstrate that the fine-tuned model
achieves significantly better agreement with DFT predictions
across both datasets.

To further demonstrate the general improvement of the fine-
tuned model in mitigating potential energy surface softening,
we analyzed the migration paths with 7 images selected from
both the training and test sets. The energy error for each image
was statistically represented using a violin plot, as shown in
Fig. 4(c) and (d). Here, image 0 corresponds to the initial state,
where the DFT and CHGNet energies are aligned, while image 7
represents the final state after lithium migration. We observed
that as the image index approaches the midpoint where Li is
near the energy maximum, both CHGNet models tend to
underestimate the energy barriers relative to DFT values.
However, the fine-tuned model exhibits lower median energy
errors, reduced interquartile range (IQR), and smaller extrema
(details shown in Tables S1 and S2). These improvements
indicate that the fine-tuned model significantly mitigates the
softening effect of the potential energy surface, making it more

This journal is © The Royal Society of Chemistry 2025

suitable for accurately describing high energy-state structures
in NEB and MD simulations.

2.3 High-throughput MD workflow

To determine the activation energies (E,) and the room-
temperature ionic conductivity within the high-throughput
framework, the CHGNet based-MD workflow was also estab-
lished. For comparison, AIMD simulations with identical
ensemble, timestep, and simulation time parameters were
performed as reference. Due to substantial statistical variations
between independent MD runs," it is necessary to perform
multiple long-duration MD simulations. Therefore, for each
temperature, we typically conducted three MD simulations,
each lasting 200 ps. To improve statistical convergence, we
divided these long trajectories into 12 non-overlapping 50 ps
segments. We then averaged the resulting MSD curves and
determined the diffusion coefficient at each temperature from
their slopes. To mitigate nonlinear artifacts at the endpoints of
At, we restricted the linear fits in the 20-80% range of At.
Furthermore, to address potential changes of activation energy
at high temperatures due to phase transitions or alterations in
migration mechanisms,*” our approach involves fitting the data
points at lower temperatures (meanwhile ensuring the linearity
of MSD curves by extending the simulation time) while
assuming constant E,, allowing us to extrapolate the room
temperature conductivity using the Nernst-Einstein equation:

ne*z?
kgT

o(T) = D(T) 1)
where n and z represent the volume density (em>) and the
charge of diffusing species (+1 for lithium ions), and D(T)
represents the diffusion coefficients at a given temperature.
While AIMD is limited by its high computational cost, the
efficiency of CHGNet potentials enables long-timescale MD
simulations, particularly crucial for systems with rare migration
events at low temperatures, to achieve well-converged diffusion
statistics. Meanwhile, when extrapolating the room tempera-
ture conductivity by the diffusion coefficients at multiple
temperatures, CHGNet-based MD can offer more reliable D(T)
data points to enhance the accuracy of Arrhenius fitting.
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number of target compounds in the dataset.

Moreover, for most studied systems, CHGNet-based MD can
directly simulate ionic conductivity at target temperatures,
thereby eliminating the need for extrapolation procedures.

2.4 Validation for the fine-tuned CHGNet

In this section, we take specific examples to verify the accuracy
of the fine-tuned CHGNet model in both NEB calculations and
MD simulations. The energy barriers for all the inequivalent Li
migration paths for Li,MnO; have been listed in Table 1. The
energy barriers predicted by the pre-trained model are obviously
lower than DFT values calculated by previous work,*® with an
MAE of 0.21 eV. Although Mn element is not included in the
fine-tuning training set, the more accurate description of Li-O
interactions in the fine-tuned model improves the barriers
prediction with a lower MAE of 0.056 eV.

Besides the layered Li,MnO;, we also examine the two
models on LiTi,(PO4); (LTP), along with its widely adopted
derivative LATP solid electrolyte. DFT-based NEB calculations
have revealed that Li ions migrate following a vacancy mecha-
nism with a barrier of about 0.41 eV in pure LiTi,(PO,)s, while
the interstitial mechanism with a lower calculated barrier of
0.19 eV occurs in the LATP structure.?® For a precisely propor-
tioned Li; 5Aly 5Tiq 5(PO4)3, Wang et al.®® reported 0.23 eV Li
diffusion by the AIMD method. Experimental measurements

34922 | J Mater. Chem. A, 2025, 13, 34918-34926

(a) Target elements filtered through the screening workflow. (b) Cationic and anionic elements and related percentages to the whole

Land

indicated that a high ionic conductivity of about 1 mS cm™
low activation energy of about 0.28 eV can be achieved in LATP
samples synthesized by the melt quenching method,*
mechanical activation method,** and sol-gel method.*

Fig. 5(a) presents the NEB results for LiTi,(PO,);. The fine-
tuned CHGNet model predicts a barrier of 0.40 eV, which is
close to the DFT-NEB result of 0.38 eV, representing an 80%
error reduction compared to the pre-trained model's prediction
(0.28 eV). For more complex doped systems, such as Lij,Al-
Ti,_(PO,); (LATP), aluminum doping introduces interstitial Li
ions and the reduced crystal symmetry creates numerous
inequivalent migration pathways, making the HT-NEB method
impractical for mapping all the energy barriers completely. To
address this, MD simulations are more suitable for calculating
migration barriers in doped systems. The light-shaded regions
in Fig. 5(b) and (c) represent the dispersion of the MSD curves
simulated for LATP. The diffusion coefficient at a given
temperature was calculated from the slope of the averaged MSD
curve. At 1000 K, the fine-tuned CHGNet model yielded a diffu-
sion coefficient (5.70 x 107> em” s ') closely aligned with AIMD
results (5.35 x 10> ecm® s~ ). The agreement remains at 600 K
with a diffusion coefficient of 1.15 x 10~> cm?® s~ " by the fine-
tuned model versus 8.17 x 10”° cm® s~' by AIMD. By fitting
the diffusion coefficients at various temperatures, the migration

This journal is © The Royal Society of Chemistry 2025
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Fig.4 Systematic validation of CHGNet-based NEB barrier prediction accuracy. Comparing DFT static energy barriers (x-axis) and CHGNet-NEB
predictions (y-axis) for (a) the training set (MAE reduced from 0.24 eV to 0.07 eV, R? improved from 0.97 to 0.99) and (b) test set (MAE reduced
from 0.23 eV to 0.09 eV, R? improved from 0.94 to 0.98). Violin plots quantifying energy errors for 7-image pathways in (c) the training set (mean
error for energy decreases from 0.45 meV per atom to 0.25 meV per atom for configurations at image 3) and (d) test set (mean error for energy
decreases from 1.01 meV per atom to 0.49 meV per atom for configurations at image 3), with boxplots showing interquartile ranges (IQR).

Dashed lines indicate O meV error.

barrier and room temperature conductivity can be determined
using the Arrhenius equation. The fine-tuned model predicts
a migration barrier of 0.21 eV, which is close to the AIMD result
of 0.22 eV. The predicted lithium-ion conductivity at 300 K is 9.7
mS cm ™!, which is close to the AIMD result of 5.1 mS cm ™. In
comparison, the pre-trained model predicts a conductivity of 63
mS em ™" at 300 K, which is an order of magnitude higher and
less accurate. Due to the high efficiency of MD simulations by
the fine-tuned CHGNet model, we conducted six separate MD
runs lasting 1 ns at 300 K. The resulting mean MSD curve
yielded a room-temperature conductivity of 5.4 mS cm ™'
(Fig. S2), which aligns with the extrapolated value of the fine-
tuned model and AIMD. The fine-tuned CHGNet model not
only significantly improves the accuracy of NEB and MD
calculations but also achieves a substantial speedup compared
to first-principles calculations, as detailed in the SI.

2.5 Discovery of Li* fast ion conductors

Although we fine-tuned the CHGNet model using only quater-
nary compounds, its application is not limited to these systems.
By accurately capturing the interaction behavior of Li ions and
other cations and anions, this fine-tuned CHGNet potential can
be extended to ternary, quinary, and other multicomponent
systems containing elements presented in the fine-tuning
dataset.

This journal is © The Royal Society of Chemistry 2025

Here we continue to use the quaternary structure dataset to
demonstrate the discovery of novel ionic conductors. 66
compounds were identified with Li-ion migration barriers lower
than 0.5 eV through fine-tuned CHGNet-NEB high-throughput
calculations. Table S3 shows their Materials Project identifiers
(mp-id), thermodynamic stability (Ep,; as energy above hull),
and migration barriers.

The screening results identify multiple orthorhombic Pnma
space group compounds, including LiMgPO,, LiMgAsO,,
LiTiPOs, LiTiAsOs and LiSiPOs. The Mg-based and Ti-based
oxides exhibit a low energy above hull (<50 meV per atom)
and have been experimentally observed, while LiSiPOs shows
a large energy above hull of 109 meV per atom. Further analysis
of formation energies reveals that while these configurations
exhibit low ionic migration barriers, their high Li-vacancy
formation energies intrinsically limit charge carrier forma-
tion. This is evidenced by the fine-tuned CHGNet-based MD
simulations for defect-free configurations, which yield much
higher energy barriers,1.9 eV and 1.54 eV for LiMgPO, and
LiTiPOs respectively, than NEB predictions. To utilize these low-
migration-barrier frameworks, we introduced some lithium
vacancies by aliovalent cation doping, including substituting
Mg>" with AI’" in LiMgPO,, and O®~ with F~ in LiTiPOs. This
doping strategy significantly decreases the barriers, reducing
the activation energy to 0.30 eV and 0.36 eV for the two
respective configurations. Fitting the diffusion coefficients to
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Fig. 6 Arrhenius plot of LIMgPOy,, LiTiPOs and their doped structures
simulated by fine-tuned CHGNet-MD.

the temperature using the Arrhenius relationship, we get room-
temperature conductivity of 0.20 mS cm ™" for Liy sMgo sAly sPOy4
and 0.022 mS em ™" for Lig sTiPO, sF, 5. Both doped structures
maintained reasonable thermodynamic stability with energy
above hull values of 29.7 meV per atom and 0 meV per atom. We
performed CHGNet-MD simulations on the two doped struc-
tures. Fig. S3 illustrates the unit cell structures of the two
materials and Li ion transport trajectories at 1000 K. Both

34924 | J Mater. Chem. A, 2025, 13, 34918-34926

materials exhibit unidirectional transport channels within
planes. Fig. S4 presents energy barriers calculated by the
CHGNet-NEB method. Compared to pristine unit cells, doped
configurations show no significant change in energy barriers
(~0.3 eV). However, aliovalent doping introduces vacancies at
pristine lattice Li sites, thus decreasing the formation energies
of Li vacancy and increasing the carrier density, promoting
a significant enhancement in ion transport performance

(Fig. 6).

3. Conclusions

In this work, we have developed an automated high-throughput
NEB screening workflow integrated with a fine-tuned CHGNet
model which systematically explores all the inequivalent
migration paths in crystal structures and predicts the Li-ion
migration barriers with high accuracy. The CHGNet-based
NEB method demonstrates significant improvements over
traditional approaches in three aspects:

(1) It automates the NEB calculation process including cell
expansion, initial/final state construction, and IDPP interpola-
tion to generate the initial guess of the migration path.

(2) Using CHGNet as the energy and force calculator enables
rapid optimization of transition states in NEB calculations to
locate saddle points along the pathway. Compared to the pre-
trained potential, the fine-tuned CHGNet model clearly
reduces the potential energy surface softening and

This journal is © The Royal Society of Chemistry 2025
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demonstrates an 80% improvement in energy barrier prediction
accuracy.

(3) The high-throughput CHGNet-NEB framework enables
the efficient discovery of new superionic conductors. And the
CHGNet-MD method provides an efficient approach for
studying ionic conductivity in low-symmetry doped structures
even at low-temperatures with rare migration events. In
comparison to the traditional method, the fine-tuned CHGNet
HT-NEB/MD simulations achieve a balance between accuracy
and efficiency, making it suitable for large-scale screening of
low-barrier conductive materials.

Through the application of the workflow, we identified 66
compounds with migration barriers below 0.5 eV, particularly
noting that those belonging to the Pnma space group displayed
low barriers and high stability, such as LiMgPO, and LiTiPOs.
Based on this structural framework, the doped structures
Lip sMgo.5Alp sPO, and LiosTPO,5Fg 5 exhibiting high ionic
conductivity (0.20 mS em ™" and 0.022 mS cm ™) were explored.
Reasonable thermodynamic stability (E},.y; of 29.7 meV per atom
and 0 meV per atom, respectively) was maintained. This study
provides a new strategy for developing novel solid-state elec-
trolytes by using machine-learning interatomic potentials fine-
tuned by high-energy structures. This approach enables large-
scale conductivity predictions for complex doped structures,
facilitating the discovery of next-generation fast-ion conductors.

4. Methods

All DFT calculations were performed using the Vienna ab initio
Simulation Package (VASP)** within the projector augmented
wave (PAW) approach with the Perdew-Burke-Ernzerhof (PBE)**
generalized gradient approximation. A uniform Monkhorst-
Pack k-point mesh was generated for each structure such that
the spacing between adjacent k-points in reciprocal space did
not exceed 0.05 A™', ensuring consistent sampling density
across different unit cell sizes. For AIMD simulations an NVT
ensemble of the Nose-Hoover thermostat® and a timestep of 2
fs were used to accelerate the long-duration simulations.
CHGNet molecular dynamics were simulated with a pre-trained/
fine-tuned CHGNet model through an ASE python interface,
with an NVT ensemble and a timestep of 1 fs.

The training set containing DFT static energy calculations
for a total of 2784 structures was generated by the NEB method
using the pre-trained CHGNet model. All images were calcu-
lated by VASP using the projector-augmented wave (PAW)
method to obtain single point energy, atomic forces and lattice
stress as labels. The CHGNet model was fine-tuned by these
data with energy, force and stress labels with normalized loss
weights (energy: 1, forces: 1, stresses: 0.1) under the mean
squared error (MSE) optimization. The dataset was partitioned
into training (80%), validation (10%), and test (10%) subsets.
The RAdam optimizer and an initial learning rate of 0.001 were
used to train the model for 500 epochs. The optimized model
achieved a good performance with the MAE of 2 meV per atom
for energy, 13 meV A" for force and 13 mGPa for stress (Fig. S5).
To further validate the accuracy of the fine-tuned model, we
prepared an additional test set comprising 331 configurations.

This journal is © The Royal Society of Chemistry 2025
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This test set was then used to compare the model's performance
on the training set with that on the unseen compositions and
structures, allowing us to assess its generalization performance
beyond the training data.
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