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Performance metrics for tensorial learning: prediction
of Li4Ti5O12 nuclear magnetic resonance observables at
experimental accuracy

Angela F. Harper,a Simone S. Köcher,b,a Karsten Reutera and Christoph Scheurera

Predicting observable quantities from first principles calculations is the next frontier within the field
of machine learning (ML) for materials modelling. While ML models have shown success for the
prediction of scalar properties such as energetics or band gaps, models and performance metrics for
the learning of higher order tensor-based observables have not yet been formalized. ML models for
experimental observables, including tensorial quantities, are essential for exploiting the full potential
of the paradigm shift enabled by machine learned interatomic potentials by mapping the structure-
property relationship in an equally efficient way. In this work, we establish performance metrics for
accurately predicting the electric field gradient tensor (EFG) underlying nuclear magnetic resonance
(NMR) spectroscopy. We further demonstrate the superiority of a tensorial learning approach that
fully encodes the corresponding symmetries over a separate scalar learning of individual tensor-derived
observables. To this end we establish an extensive EFG dataset representative of real experimental
applications and develop performance metrics for model evaluation which directly focus on the
targeted NMR observables. Finally, by leveraging the computational efficiency of the ML method
employed, we predict quadrupolar observables for 1512 atom models of Li4Ti5O12, a high performance
Li-ion battery anode material, which is capable of accurately distinguishing local atomic environments
via their NMR observables. This workflow and dataset sets the standard for the next generation of
tensorial based learning for spectroscopic observables.

Experimental solid-state NMR provides powerful, yet non-
destructive methods to characterize atomic structures and dy-
namics over several length and time scales1–3. In quadrupolar
nuclei, such as 7Li, 27Al, or 17O, additional information is gained
by directly probing the electric field gradient (EFG) tensor at the
nucleus. However, in most state-of-the-art materials of interest,
such as high-performance battery materials, local defects, disor-
der or amorphous regions are not only key to their function, but
result at the same time in complex spectra, which are impossi-
ble to interpret unambiguously from experiment alone. This of-
ten renders a complementary predictive-quality modeling of EFG
tensors indispensable for a comprehensible NMR crystallography
approach4–7. Corresponding first-principles calculations, typi-
cally based on density-functional theory (DFT), are well estab-
lished7–12. Despite their intrinsic high computational cost and
unfavorable scaling with system size, they are routinely com-
bined with random structure searches7,13, systematic sampling of
structural disorder13, and molecular dynamics simulations14,15

a Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, DE
b Institute of Energy Technologies (IET-1), Forschungszentrum Jülich GmbH, Wilhelm-
Johnen-Straße, 52425 Jülich, DE
† Supplementary Information available in supplementary pdf.

to study the NMR observables of structural or temporal ensem-
bles. However, while the structural models become more com-
plex and larger and the dynamic trajectories longer in order to
approach the complexity of real samples and experiments, the
limits of DFT become more apparent in particular when study-
ing the interplay of high structural complexity and dynamics over
various timescales16,17.

A now common approach to reduce the computational bur-
den of quantum mechanical simulations while retaining their
first-principles accuracy is to train a machine learning (ML) sur-
rogate model from a suitably composed database of calculated
data. This is an established field for scalar properties, primar-
ily focused on predicting the potential energy surface in order to
create an ML inter-atomic potential for a given system18–23. A
limited set of studies also learn additional scalar properties such
as isotropic chemical shifts, dipole moments, or band gaps24–26.
However, many physical properties are tensorial in nature or are
derived from tensorial quantities, just as all NMR quadrupolar
observables derive from the EFG tensor. In principle, either the
relevant experimental scalar observables27–29 or the individual
scalar tensor elements can also be learned with well-established,
symmetry-invariant ML approaches26. Yet, as this neglects the
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inherent tensor symmetries one would intuitively expect this ap-
proach to be inferior to a full tensorial learning that uses appro-
priate symmetry-equivariant descriptors16.

Validating and quantifying this notion requires both a diverse
and challenging database that is representative for the complex-
ity of a real-life application and a standardized method for eval-
uating and optimizing tensorial ML approaches to the respective
tensor-derived observables. To this end, we use NMR as a promi-
nent showcase and introduce an extensive EFG database for the
commercial, high-performance Li-ion battery material Li4Ti5O12

(LTO). LTO is particularly suitable for such benchmark purposes
as all three of its constituent species are quadrupolar and because
its ionic mobility has been repeatedly studied by advanced 7Li
NMR experiments30–32. We correspondingly assemble a database
of 68,880 EFG tensors calculated for all three atomic species and
for a wide range of interatomic distances that reflect those probed
in the measurements. We then derive a performance metric for
key NMR observables that is used in the optimization and assess-
ment of scalar and tensor EFG ML models. This indeed reveals
an order of magnitude superiority in predictive performance for
an explicit learning of the full EFG tensor. The failure of the
symmetry-agnostic scalar approach is instead traced back to its
inability of capturing especially the orientation of the EFG tensor,
which the experimental observables sensitively depend on. We
finally demonstrate the effectiveness of our approach by predict-
ing the EFG tensors for over 11,000 Li sites within 1512 atom
models of LTO, and successfully distinguishing different local Li
environments in the material.

Our guiding principles for developing performance metrics are
directly geared to measurable observables and using them in the
ML optimization are readily transferable to multiple other appli-
cations where tensor interactions matter, e.g. dielectric inter-
actions, atomic forces, stress and strain, or chemical shielding.
By explicitly demonstrating its effectiveness over scalar learning,
and providing a database suitable for benchmarking, we thus aim
to present this work as a general guideline for further tensorial
learning methods.

1 Methods

1.1 Computational Details

All DFT calculations of the EFG tensors carried out to generate
the LTO-EFG database were performed with the plane-wave pseu-
dopotential code CASTEP v22.133, using the Gauge-Including
Projector Augmented Waves (GIPAW) implementation34,35 for
calculating NMR properties. The PBE functional36 was used to
describe electronic exchange and correlation, with test calcula-
tions indicating essentially unaltered EFG tensors when instead
using the PBEsol37 or RSCAN38 functionals. At a plane wave cut-
off of 1000 eV and a k-point spacing of 0.03×2πÅ−1, the change
in individual EFG tensor components ∆Vi j between energy cutoffs
are converged to within 4×10−3 V/Å2. We fix VZZ to be positive,
to ensure that the sign of the eigenvalues is consistent between
the DFT and ML tensors. The accuracy of DFT-derived EFG ten-
sors was benchmarked before.39.

All ML tasks were carried out using the SA-GPR (Symmetry-

Adapted Gaussian Process Regression) implementation of λ -
SOAP openly available at github.com/dilkins/TENSOAP. In par-
ticular, the scalar learning was performed using this code, with
a scalar λ = 0 value, and the rank-2 tensorial learning was per-
formed using the tensor λ = 2 value. Full details of the compu-
tational and theoretical background for TENSOAP are given in
Grisafi et al.40. We provide further details of the specific formu-
lations of the SOAP kernels used for the scalar GPR, and λ -SOAP
kernels for the tensorial GPR in sections 2.4 and 2.5.

2 Results

2.1 NMR as a showcase for tensorial learning.

NMR quadrupolar observables all derive from the EFG tensor V
that characterizes the gradient of the electric field V experienced
by a nucleus due to the nearby charge distribution. The tensor is
calculated as a spatial second derivative

Vi j =
∂ 2V

∂xi∂x j
, (1)

which at a fixed position can be written as a (3×3) matrix,

V =

V11 V12 V13

V12 V22 V23

V13 V23 V33

 . (2)

This matrix is not simply a combination of nine unrelated values,
but rather a set of components which must satisfy both the prop-
erties that the matrix is symmetric (Vi j = V ji) and that the trace
is 0 (V11 +V22 +V33 = 0). Therefore, while every EFG tensor can
be written as a (3× 3) matrix, not every (3× 3) matrix is a valid
tensor. In other words, any (3× 3) matrix that we might predict
from ML methods, which does not have these properties, violates
the basic underlying physical properties of the system.

An EFG tensor can be transformed into its principal axis sys-
tem (PAS) VPAS, shown in Fig. 1a, by diagonalization at a given
nuclear position. This yields the eigenvalues VXX, VYY, and VZZ,
where by convention |VZZ| ≥ |VYY| ≥ |VXX|41. In the PAS, VZZ de-
scribes the magnitude of the tensor, while VYY and VXX describe
its width. Major standard NMR observables like the quadrupolar
coupling constant CQ and the quadrupolar asymmetry parameter
η directly derive from these eigenvalues. CQ defines the coupling
strength between the EFG and the applied magnetic field B0

CQ =
e
h

QVZZ , (3)

where e is the charge of the electron, Q is the nuclear quadrupole
moment of the specified nucleus, and h is Planck’s constant.

η =
VXX −VYY

VZZ
(4)

describes the shape of the tensor, where η ∈ [0,1] ranges from
axial symmetry (η = 0, VXX =VYY) to a flat disk (η = 1, VXX = 0).

Advanced NMR methods like Spin Alignment Echo (SAE) are
also sensitive to the explicit orientation of the EFG tensor. SAE
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Fig. 1 Electric field gradient tensor visualized on an atomic site. (a)
EFG tensor VPAS in the principal axis system (PAS), where the eigenvalues
VXX , VYY , and VZZ describe its magnitude and width. (b) Relationship
between the reference orientation of the magnetic field B0 and VPAS using
the polar and azimuthal angles θ and φ .

particularly tracks changes in the quadrupolar frequency

ωQ =
3

2I(2I −1)
CQ

1
2
(3cos2(θ)−1−η sin2(θ)cos(2φ)) , (5)

where I is the nuclear spin, and θ ∈ [0,π[ and φ ∈ [−π/2,π/2[
are the polar and azimuthal angles, respectively, between VPAS

and the lab frame with z-axis parallel to the magnetic field B0 as
shown in Fig. 1b 42–44. As ionic mobility can induce changes in
ωQ, SAE has e.g. been repeatedly applied to battery materials like
LTO30–32.

2.2 Introducing suitable performance metrics.

The previous relations motivate to directly learn the EFG tensor
as a whole, instead of separately or simultaneously learning a
multitude of derived scalar observables or the individual EFG ma-
trix elements. Consider, that even if each of the Vi j components
are learned individually, for example, there is no guarantee that
the final nine components when recombined to form a (3 × 3)
matrix will satisfy any of the properties of a rank-2 tensor. Fur-
thermore, each of such trained models will have its own separate
uncertainties with unspecified error propagation to the set of fi-
nally targeted NMR observables. Precisely, the latter limitation
applies equally to the way tensorial learning models have thus
far been evaluated and optimized. While in recent years, several
tensorial learning approaches have been introduced, with neu-
ral networks26, structure-property maps45 and with regression-
based approaches25,40 using a variety of descriptors46,47, they
are typically only evaluated on the mean absolute error (MAE) of
predicting the individual elements, Vi j, of the non-diagonalized
tensor. For a total number of N data points for which reference
values are available, MAE(Vi j) is given by

MAE(Vi j) =
∑

N
l=1 ∑

3
i=1 ∑ j≥i |V

data,l
i j −V ML,l

i j |
N

. (6)

While this is indeed the direct error, i.e. loss function, of the
tensorial learning model, it again provides no information on how

well the actual observables of interest are predicted, and neither
has the latter objective ever entered the very optimization process
of the model.

To this end, we introduce suitable performance metrics on
which we then base the model evaluation and hyperparameter
optimization. These metrics are directly related to the targeted
observables, but are universally applicable across nuclear species,
less prone to noise, and rescaled to all lie within a compara-
ble range. Use of such metrics instead of the observables them-
selves is particularly relevant for an efficient learning of diverse
databases that comprise different quantities of different chemical
species, like in the present showcase where we target the simulta-
neous learning of several key NMR observables for the three con-
stituent LTO species 7Li, 47Ti, and 17O. With the above introduced
CQ and η , we thereby specifically define a metric related to these
two standard NMR observables sensitive to the magnitude and
shape of the EFG tensor, while with the quadrupolar frequency
ωQ probed in advanced SAE-NMR we choose an observable that
is sensitive to the tensor orientation.

For CQ and η , we define such rescaled and normalized metrics
as

C̃Q =
VZZ −µ(VZZ)

σ(VZZ)
(7)

and

η̃ =
VXX −VYY

µ(VZZ)
, (8)

using the mean µ(VZZ) and standard deviation σ(VZZ) for each
nucleus. C̃Q thus preserves the magnitude of the original ten-
sor while centering the values around zero. In turn, η̃ reduces
the noise introduced in η by the division by VZZ , cf. Eq. 4, and re-
flects the fact that NMR measurements will only probe an average
property over the system, such as µ(VZZ), rather than an individ-
ual VZZ. At first glance, the polar and azimuthal angles θ and φ

appear as useful additional metrics for ωQ, cf. Eq. 5, as they have
a fixed range, define the orientation of the EFG tensor in space,
and hence are independent of the studied nuclear species. How-
ever, their discontinuity renders them a non-ideal representation.
In tensorial learning, where the tensor orientation is explicitly
available, this limitation can be overcome by the unit quaternion
(cf. SI). This defines the orientation of any rank-2 tensor in terms
of a normalized vector (q = (q0,q1,q2,q3)) and the dot product
between two quaternions defines how closely oriented the two
respective tensors are48. When using quaternions as metric, the
performance would thus be evaluated by the calculation of

q̃ = qdata ·qML , (9)

which tells how well the learned ML tensors are aligned with
the reference tensors. In short, inspired by the physical observ-
ables (CQ, η , θ , φ), we introduce a new set of adapted parameters
(C̃Q, η̃ , q) as ensemble adapted performance metrics, which still
represents the magnitude, shape, and orientation of the EFG ten-
sor albeit in a way that allows for a continuous, homogeneously
weighted, less noisy, more stable description at the negligible cost
of slightly softening some exact bound on the individual tensors
(e.g. η ∈ [0,1]).
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Fig. 2 Distribution of bond lengths, CQ, and η for all nuclei in the LTO-EFG database. (a) LTO unit cell with labelled Wyckoff sites, Li 8a (green),
Li/Ti 16d (blue spheres and green polygons), and O 32e sublattice (orange). (b) Violin plot showing the distribution of inter-atomic distances in the
database, where Li is separated into the 16d and 8a sites. (c) Histograms showing the distribution of the DFT-calculated reference CQ (top) and η

(bottom) for each nucleus.

2.3 The LTO-EFG database.

Previous databases of tensorial NMR properties including
both chemical shielding and EFG tensors focused on provid-
ing a breadth of structures across varying chemical composi-
tions2,26,49,50. Yet, they used locally geometry-optimized struc-
tures throughout, such that only NMR data of stable and
metastable states (global and local minima) are included. By con-
struction, learning on such datasets will have only a limited trans-
ferability to real (aka defected) or dynamic (aka finite tempera-
ture) systems for which information away from the minima would
be required. Our aim in creating the LTO-EFG tensor database is
therefore to provide a large (68,880 tensors in total) complemen-
tary database of DFT-calculated EFG tensors representative of real
experimental applications.

In order to provide EFG tensors for the three different nuclei,
7Li, 47Ti, and 17O, in a standardized way, all DFT calculations are
based on the 42 atom R3̄m supercell of stoichiometric Li4Ti5O12,
shown in Fig. 2a. The tetrahedral 8a sites are occupied by Li and

the octahedral 16d sites by either Li or Ti in a ratio of Li:Ti, 1:5.
The occupational disorder on the 16d Wyckoff site allows for 6
symmetry-inequivalent crystal structures to be enumerated. By
‘rattling’ the atomic positions using a random displacement pro-
cedure51 and by rescaling the crystalline lattice vectors, a total
of 1640 structures are generated that we describe in further de-
tail in the supplementary information (SI). The configurational
sampling, rattling, and scaling procedure effectively distributes
the interatomic distances across a wide range of 1-2 Å around the
mean neighbor distance for every atom combination, as shown in
Fig. 2b. The resulting diverse quadrupolar coupling constants CQ

and quadrupolar asymmetries η , as calculated from the eigenval-
ues of the EFG tensors, are shown across the entire database for
each nucleus in Fig. 2c. Being only the second ever EFG tensor
database available in literature52, this heterogeneity of the LTO-
EFG database renders it a truly challenging benchmark for ML
tensorial learning.
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Fig. 3 7Li EFG performance metrics with scalar and tensorial learning approaches. (a) Schematic representation of the two learning approaches:
scalar learning, encoding invariances of scalar observables such as CQ, and tensorial learning, with equivariant encoding of the tensor symmetries of
the full EFG tensor V. Spherical harmonics illustrate the symmetries captured by each descriptor. (b) Results of the scalar learning approach on the
7Li test set from the LTO-EFG database, using separately trained models for the metrics C̃Q, η̃, θ , and φ (lower panels correlation plots, upper panels
value distributions with DFT values in grey and ML predicted values in the corresponding color). (c) Corresponding results of the tensorial learning
approach, where a single model is trained on the complete EFG tensor and the four quantities are subsequently derived from the model’s predictions,
see text.

2.4 Scalar learning.

Scalar learning focuses on the direct and separate learning of in-
dividual scalar quantities. Since the three target NMR observ-
ables CQ, η and ωQ as well as the quaternion vector q are un-
suitable for scalar machine learning purposes as described above,
we therefore employ the scalar quantities C̃Q, η̃ , θ and φ as
training objectives as well as as performance metrics for hyper-
parameter optimization. Technically and without loss of general-
ity, we choose the established smooth overlap of atomic densities
(SOAP) descriptor to encode the local atomic environments in a
symmetry-invariant way53. SOAP is an appropriate special case
of the atomic cluster expansion54,55 which combines both radial
and spherical harmonic basis functions using a Gaussian smearing
to approximate the local atomic density ρ(r) in a sphere of radius
rc around any atom of a given structure as depicted in Fig. 3a.
The corresponding SOAP kernel (KSOAP)53 between two atomic
configurations X and X ′ is then designed to enforce that the pre-
dicted scalar quantities are invariant under symmetry operations
such as rotation, translation, and atomic permutation40,53

KSOAP
(
X ,X ′)= ∣∣∣∣∫ ρ(r)ρ ′(r)dr

∣∣∣∣2 . (10)

For learning and testing the scalar models, the entire LTO-EFG
database for each nucleus is randomly divided into a training and
test set with a ratio of 4:1. The learning of each scalar quantity,
y (= C̃Q, η̃ , θ , φ), over all configurations X across the entire
training set of the LTO-EFG database is performed using Gaussian

Process Regression (GPR)20

y(X ) =
N

∑
l=1

wlKSOAP (X ,Xl) , (11)

solving for weights wl . In practice, the SOAP representation is
used here in its kernel form rather than exclusively as a descrip-
tor vector. This choice is critical since the SOAP power spectrum
can easily reach thousands of dimensions, which would make di-
rect regression inefficient and prone to overfitting. For optimiza-
tion of the SOAP hyperparameters, a global MAE minimization is
efficiently achieved for each separate scalar quantity using a Box-
Behnken design-of-experiment approach56 with five-fold cross-
validation for each nucleus across the training set. Full details of
the specific hyperparameters used for each nucleus are provided
in the SI. The resulting kernel matrices were normalized and reg-
ularized during GPR training to ensure numerical stability. All
scalar kernels were generated using the λ = 0 implementation of
SA-GPR available at github.com/dilkins/TENSOAP, which is the
generalized version of the original SOAP kernel introduced in53.

The achieved predictions of C̃Q, η̃ , θ , and φ for all 7Li in the
test set are compiled in Fig. 3b, with comparable findings for the
other two nuclei, as well as results for the MAE(Vi j) provided
in the SI. C̃Q and η̃ show an acceptable correlation between DFT
and ML data. The Pearson correlation for C̃Q and η̃ is r = 0.96 and
r = 0.84, and the MAE is 0.17 and 0.14, respectively. In contrast,
the predictions of θ and φ are of a substantially lower quality, with
no visible linear trend in the correlation plots shown in Fig. 3b.
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This is reflected in the corresponding poor Pearson correlations of
r = 0.46 and r = 0.28, and MAEs of 0.47 and 0.75 radians, for θ

and φ , respectively. This corresponds to a staggering MAE of 27◦

for θ and 43◦ for φ .

2.5 Tensorial learning.

The tensorial learning targets the full EFG tensor V and trains
on the loss function defined in Equ. 6. Correspondingly, we can
now employ C̃Q, η̃ and the quaternion q as performance met-
rics for hyperparameter optimization. The observable-targeted
performance metrics (C̃Q, η̃ , q) puts the final observables of in-
terest, namely ωQ, into focus and allows for an evaluation of the
accuracy of the ML model with respect to the observable to be
predicted. The extension to predicting tensors requires to ad-
ditionally encode the rotational symmetry of tensorial proper-
ties, i.e. how the individual tensor elements change under ro-
tations, cf. Fig. 3a. A corresponding equivariant description is
achieved by the λ -SOAP40 kernels, which are built on the defini-
tion of the scalar SOAP descriptor. These kernels exploit that by
transforming the tensor of interest into its irreducible spherical
tensor (IST) representation57, the GPR procedure can be simpli-
fied from learning on a tensor of order λ into a vector of length
k = 2λ +1. In this representation, all symmetry operations follow
the same transformations as the spherical harmonics, shown visu-
ally in Fig. 3a, and thus all kernel transformations can be written
as Wigner matrices, Dλ . The corresponding k-component vector
kernel Kλ

SOAP is then written as

Kλ
SOAP(X ,X ′) =

∫
dR̂Dλ (R̂)

∣∣∣∣∫ ρ(r)ρ ′(R̂r)dr
∣∣∣∣2 , (12)

and the GPR learning for the k-component vector quantities y aris-
ing in the IST representation of the target tensor generalizes to

y(X ) =
N

∑
l=1

wlKλ
SOAP (X ,Xl) . (13)

For λ = 0, one can show that Eq. 12 is equivalent to the scalar
representation shown in Eq. 1040, while for the present case of
the EFG rank-2 tensor, five-component vector quantities are being
learned that by construction preserve the full tensorial symme-
tries and physical properties.

For comparability, training and hyperparameter optimization
follows the same 4:1 training-test set separation and five-fold
cross validation scheme as in the scalar learning approach. As
only one model is trained this time though, the global Box-
Behnken minimization instead uses the average MAE of C̃Q, η̃ ,
and the quaternion dot product, q̃ as performance metrics. The
resulting hyperparameters used for the λ = 2 kernels are given in
the SI, and all λ = 2 kernels were constructed with the equivalent
SA-GPR framework as for the scalar kernels40. As in the scalar
learning framework, the models were trained using the explicit
λ -SOAP kernels within the GPR framework, to ensure preserva-
tion of symmetry throughout the learning procedure. The full
derivation of the λ -SOAP hierarchy of tensorial kernels is given

in40.
Again, we obtain a comparable learning performance for all

three nuclei, with the results for 47Ti and 17O provided in the
SI. Fig. 3c summarizes the achieved predictions for all 7Li in the
test set, where for a direct comparison with the scalar learning
results, the polar and azimuthal angles θ and φ were extracted
from the learned quaternions. The correlation for C̃Q and η̃ is
now excellent, with Pearson correlations of r = 1.00 and r = 0.98,
respectively, far surpassing the already good correlation achieved
in the scalar learning case. The MAE for C̃Q and η̃ is 0.06 and
0.04, respectively. Even more impressive is the improvement in
the case of the angles θ and φ . They now also show a good agree-
ment at only slightly lower Pearson correlations of r = 0.82 and
r = 0.78, respectively. The corresponding MAE is 0.15 radians or
an acceptable 8.6◦ for θ , and 0.22 radians or 13◦ for φ , which
despite the marked improvement is still significant. The parity
plots for θ and φ in Fig. 3c show systematic outliers, which origi-
nate from EFG tensors, where the definition |VZZ| ≥ |VYY| ≥ |VXX|
becomes more ambiguous since the eigenvalues are close in ab-
solute value. When correcting the assignment of the eigenvalues
and corresponding eigenvectors as described in the SI, the cor-
relation between DFT reference values and ML predicted values
improve considerably with MAE of 0.06 radians (3.4◦) and 0.05
radians (2.9◦) for θ and φ , respectively (cf. SI Fig. S6).

3 Discussion
The presented results clearly demonstrate the superiority of ten-
sorial learning. At a closer look, they especially reveal that scalar
learning struggles with predicting the orientation of the tensor
as expressed by the two angles θ and φ . Admittedly, this seems
generally a harder task as compared to the tensor magnitude and
shape, as the tensorial learning also exhibits a worse performance
for the angles than for C̃Q and η̃ . Nevertheless, the scalar learn-
ing is not even able to qualitatively capture the bimodal value
distribution of θ and φ across the 7Li test set in the LTO-EFG
database, cf. Fig. 3b. This bimodality in θ and φ is even more
pronounced for the 47Ti and 17O nuclei as shown in the SI, and
there, scalar learning fails completely. This is particularly worri-
some, as any NMR experiment will always measure an ensemble
average over the atomic sites in the studied material. Now, the
distribution of sites with their respective different atomic envi-
ronments in the highly diverse LTO-EFG database is of course not
truly representative of any distribution of atomic environments
encountered in even a largely disordered real LTO material. Still,
we consider the capability of tensorial learning to reproduce the
bimodal angular distributions for all three nuclei across the wide
site variety in the challenging LTO-EFG database an important
feature that suggests that NMR simulations performed with this
surrogate model will indeed yield correct structure-property re-
lationships when applied to an ensemble of realistic structures
derived from e.g. molecular dynamics simulations. Hence, from
an application point of view, the quantitative accuracy of the ML
model with respect to the individual data points (MAE) is sec-
ondary to the reliability of reproducing the correct distribution of
observables. The tensor ML model outperforms the scalar learn-
ing in either case, but in particular with regard to the distribution
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especially of θ and φ , which indicates improved transferability.
The limitations of scalar learning with respect to capturing the

tensor orientation imply that it will be particularly poor for any
NMR observable sensitive to this orientation. It thereby does not
matter if the tensor orientation is actually explicitly learned as
through the scalar performance metrics (of θ and φ) introduced
above or only implicitly contained in the observable (such as ωQ)
itself. We illustrate this in Fig. 4 for the tensor-orientation sen-
sitive quadrupolar frequency ωQ, cf. Eq. 5. Figure 4a compiles
the predictions across the 7Li LTO-EFG test set when the observ-
able ωQ is scalar learned directly, and following exactly the analog
scalar training and optimization protocol as before. The perfor-
mance is largely comparable and equally poor as the performance
obtained when scalar learning the performance metrics and then
using Eq. 5 to derive ωQ, cf. Fig. 4b.

A reliable description is instead only achieved through the full
tensorial learning and subsequent extraction of all quantities from
the learned V to compute ωQ as shown in Fig. 4c. When referring
to reliable, we hereby acknowledge that SAE-NMR experiments
probe a dynamically averaged value of ωQ and for e.g. 7Li in LTO
are sensitive to within roughly 10 kHz30. As indicated in Fig. 4,
with an MAE of 4.7 kHz only the average accuracy of the tensorial
learning approach falls well within this experimental uncertainty
range and thus allows to make meaningful predictions. In con-
trast, both scalar learning approaches to ωQ exhibit MAEs above
10 kHz.

Intriguingly, the tensorial learning approach is not only more
accurate, but also more data efficient. This extends to having
to only train one versatile model to predict any tensor-derived
observables, as well as to the required amount of training data.
As shown in Fig. 5a, the scalar learning approach for the four
quantities C̃Q, η̃ , θ , and φ exhibits a low learning rate across the
number of 7Li data used in the training. This learning rate is much
higher when predicting these quantities from the learned tensor
V, which in turn lowers the amount of training data required to
arrive at the same or even better model accuracy. The MAE for
the individual tensor components Vi j, which is additionally shown
in Fig. 5b, has a percent error in the same order of magnitude as
the quantities C̃Q and η̃ , θ , and φ of the performance metrics.
Yet, only assessing the performance of the model with respect
to Vi j does not give any information about the accuracy for the
quantities relevant to experimental applications.

Having ensured that our tensorial learning approach for EFG
tensors is both accurate and efficient, we now extend its use to
larger, realistic 1512 atom structures of LTO, in order to establish
whether the model is also size extensive and effective at distin-
guishing local Li environments at scale. We chose to select a set
of 20 low-energy structures of LTO from the database created by
Heenen et al. in58 . These structures were generated using a
combination of Metropolis Monte Carlo and Wang Landau sam-
pling59,60 over the disordered Li/Ti sites within the Fd3̄m bulk
unit cells. Given the computational efficiency of the EFG tenso-
rial model, we are able to successfully predict full EFG tensors for
the 11,000 Li sites within these 20 structures in under 24 hours
on a single CPU.

As shown in Fig. 6, we distinguish different Li local environ-

ments based on similar predicted ωQ values. The colored regions
in Fig. 6a are selected by first identifying the 5 most prominent
peaks in the histogram, and selecting the surrounding regions
down to a minimum threshold of 10 counts per bin, and enforced
that no two regions could overlap. This allows us to visualize the
large LTO structures as shown in 6b, where we can see that local
regions with similar Li ωQ have similar local environments.

Validating the simulated EFG tensors and the derived structure-
property relationship with experimental measurements is unfor-
tunately not possible, since NMR measures ensemble and tempo-
ral averages of all the 7Li nuclei present. Experimental results
from SAE experiments on LTO yield an averaged, residual ωQ in
the range of 10 kHz to 40 kHz30, while the computed values
range up to 130 kHz (cf. Fig. 6) and the full dataset ranges up to
500 kHz. In order to derive the experimentally accessible observ-
ables, the tensor ML-model has to be combined with dynamics
simulations such as molecular dynamics or kinetic Monte Carlo
to reproduce the correct physical averaging observed in experi-
ments.17

Because each of the identified local environments are distin-
guishable by their quadrupolar frequencies, it is furthermore pos-
sible to study Li diffusion between the sites in LTO using SAE
NMR, and extract different Li ion mobilities between each of
these 5 sites. There is strong evidence to suggest that the lo-
cal configurational disorder within LTO is the main driver for Li
ion mobility within the fast-ion conductor58. Therefore by study-
ing LTO experimentally with SAE NMR, we suggest that it would
be possible to experimentally confirm the modes of Li diffusion
within the material between each of the local, distinct ωQ en-
vironments. This ability to predict experimental observables on
realistic structures by combining complex structural models with
extended dynamical trajectories is only made possible using our
tensorial learning approach.

Conclusion
From the nature of all our results, it is clear that analogous con-
clusions would be obtained when using both invariant and equiv-
ariant equivalents to SOAP61–65. The decisive factor for the per-
formance of the ML model is in whether it preserves the symmetry
of the tensor or not, rather than in the style of learning or exact
formulation of the descriptor employed. With an appropriate en-
coding of physical symmetries and the use of observable-targeting
performance metrics for hyperparameter optimization and model
evaluation, accurate predictions of experimental tensor-derived
observables are reachable. We have exemplified this for the im-
portant case of NMR observables, achieving results within exper-
imental precision over an extensive DFT-computed EFG database
for the LTO battery material that is representative of the diversity
of atomic environments encountered in real experiments. The
tensorial learning excels particularly in the prediction of angular-
dependent observables such as the quadrupolar frequency. This is
especially impactful for the simulation and interpretation of ad-
vanced solid-state NMR experiments, which measure correlations
between tensors on long length and time scales and are therefore
highly sensitive to tensor orientation. Tensorial ML approaches
are indispensable in order to keep pace with machine learned
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Fig. 4 Predictions for the tensor-orientation sensitive quadrupolar frequency ωQ. Results for the NMR observable ωQ across the 7Li LTO-EFG test
set withheld from the training for three learning models: (a) direct scalar learning of ωQ, (b) ωQ derived from scalar learning the performance metrics
C̃Q, η̃, θ , φ as in Fig. 3b, (c) ωQ derived from tensorial learning of V as in Fig. 3c (lower panels correlation plots, upper panels value distributions
with DFT values in grey and ML predicted values in the color). The red stripe in the correlation plots roughly denotes the error range of SAE-NMR
experiments, see text.

Fig. 5 Learning curves of the 7Li EFG performance metrics for scalar and tensorial learning approaches. (a) Learning curves for the four
independent scalar learning models for C̃Q, η̃, θ , φ shown in Fig. 3b. (b) Corresponding curves when extracting these quantities from the tensorial
learning model in Fig. 3c. The line color corresponds to the model colors introduced in Fig. 3(b-c).

interatomic potentials (MLIP), which are currently revolutioniz-
ing the capabilities of structural ensemble simulations and molec-
ular dynamics approaching spectroscopically relevant time and
length scales17. To bridge the gap between theoretical simulation
models and experimental results, the MLIP derived structural and
temporal ensembles have to be mapped to experimental observ-
ables with an approach of comparable computational efficiency
to MLIPs so as not to nullify the computational advantage gained

by MLIPs.

By predicting on a 1512 atom model of LTO, we have shown
that this method is scalable and efficient for realistic systems.
Beyond NMR quadrupolar observables, this method is general
and applies to any tensorial property. Chemical shielding ten-
sors, stress and strain tensors, and polarizability tensors are some
of many, commonly used experimental properties which would
now be readily predicable using this ML workflow. We expect
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Fig. 6 Histogram of predicted ωQ for 1512-atom structures of Li4Ti5O12 (a) The histogram shows the predictions for all 11,808 Li sites in the 20
lowest energy structures of LTO extracted from58 . The colored regions distinguish 5 different regions of ωQ which are separated based on the 5 most
prominent peaks in the histogram. Any regions in grey were not classified into a distinct region. (b) Two sample structures of LTO, where the O and
Ti atoms are not shown, and the Li local environments are colored based on their corresponding region in the histogram in (a).

that our positive results and guiding principles for context-aware
performance metrics encourage the adoption of tensor-based ML
approaches for all tensorial spectroscopy.
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“The LTO-EFG dataset will be published open-access on the EDMOND MPG data 
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