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4D nano-tomography for
advanced battery microstructure analysis†

Michael Häusler, ‡a Raphael Wilhelmer, ‡a Rahulkumar J. Sinojiya,a Olga Stamati,b

Julie Villanova,c Christoph Stangl,d Stefan Kollerd and Roland Brunner *a

Monitoring the evolution of electrode microstructures at the sub-micron scale during electrochemical

charging is crucial for elucidating battery aging mechanisms. Four-dimensional (4D) synchrotron X-ray

nano-tomography (SXCT), defined as time-resolved three-dimensional (3D) imaging, allows the

perception of such dynamic processes. Yet, 4D SXCT faces a dilemma between resolution and field-of-

view including the troublesome invasive beam exposure. In this work, we demonstrate the potential of

generative AI (genAI) models to significantly enhance 4D SXCT image datasets. Specifically, we apply

a trained Inversion by Direct Iteration (InDI) algorithm suitable to improve the spatial resolution of

measured unseen 4D SXCT image data, obtained during a lithiation cycle, by a factor of about two, while

achieving an eight times larger field-of-view (FOV) as typically provided by such a resolution. Compared

to other image enhancement algorithms like CNNs or GANs, InDI exhibits improved contrast and training

stability. Besides, when compared to classical diffusion models, the number of iterations is reduced from

several hundreds to roughly one dozen. Our results demonstrate the tremendous potential of the InDI

model, facilitating enhanced possibilities to quantify the microstructure evolution during cycling with

sufficient FOV and spatial resolution. Furthermore, the InDI framework has the potential to generalize as

well as illustrate a broad applicability across many areas of materials science and imaging-driven fields,

enabling the observation of dynamic processes on the nano-scale.
Introduction

Batteries play a vital role in enabling transport electrication
and renewable energy storage, driving the transition towards
a more sustainable energy landscape.1,2 The growing demand
for higher capacities, longer lifespans and improved safety
necessitates the development of advanced battery materials and
designs. The performance of a battery, whether in terms of
capacity, energy density, or cycle life, is fundamentally governed
by the intrinsic properties and dynamic behaviour of its
constituent materials. Gaining a deeper understanding of these
properties and their evolution during operation is crucial for
the development of next-generation battery technologies.1–4

Silicon-based anodes are among the most promising candi-
dates for next-generation lithium-ion batteries due to their
exceptionally high theoretical capacity, approximately ten times
that of conventional graphite anodes.5–14 Consequently, they
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have gained signicant attention in the scientic community
and are considered crucial for advanced energy storage solu-
tions.12 However, practical applications of silicon (Si) anodes
face substantial challenges, particularly at high Si content,
which is essential to reach higher energy densities and to meet
the requirements for future e-mobility and storage applica-
tions.6,11 During lithiation/delithiation, silicon undergoes large
volume expansions and contractions, leading to particle frac-
ture, pore formation, solid-electrolyte interphase (SEI) refor-
mation and mechanical stress accumulation.8,10,13 These
underlying aging mechanisms cause microstructure degrada-
tion and are correlated with rapid capacity fade and limit the
cycle life.8,14 Understanding these dynamic processes, especially
at the particle level is essential for overcoming these limitations
and unlocking the full potential of silicon-based anodes.

Various high-resolution imaging techniques have been
developed to study the microstructure of battery electrodes,
including Si-particles, critical interfaces and material phases
relevant to modern batteries.15–25 Image quality plays a crucial
role in enabling the extraction of physical descriptors through
image classication, such as microstructural features, which
are essential for modelling, process optimization, andmaterials
development.

To date, researchers have predominantly relied on post-
mortem investigations using high-resolution techniques such
This journal is © The Royal Society of Chemistry 2025
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as scanning electron microscopy (SEM) or transmission elec-
tron microscopy (TEM), as these methods are experimentally
straightforward and widely accessible.19,21,26 These methods
feature high contrast and resolution, revealing particle shapes,
particle interfaces and material phase information, as well as
structural changes upon electrochemical loading conditions at
the micro- and nanoscale.26–29 These ex situ techniques are
typically conducted under high vacuum conditions and oen
require invasive sample preparation steps that can alter the
material's native state. While in situ variants, enabling us to
witness the microstructure evolution over time, of SEM and
TEM exist, they are limited by small sample volumes and
idealized conditions, limiting their suitability for studying
operational battery systems.26,30,31

X-ray-based methods, such as synchrotron X-ray computed
tomography (SXCT), have emerged as powerful tools for three-
dimensional imaging in battery research.17,22–25 Their non-
destructive nature allows repeated imaging of the same
sample, allowing both post-mortem (ex situ) analyses of battery
structures and in situ studies of structural evolution during
operation.23,32,33 Micro-SXCT, with voxel sizes in hundreds of
nanometres, facilitates ex situ and in situ investigations of
entire battery cells, including phenomena such as electrode
cracking34 and thermal effects.35 However, its limited spatial
resolution prevents the visualization of particle-level features,
making it unsuitable for studying associated degradation
mechanisms. Nano-SXCT addresses this limitation by offering
a spatial resolution in the nm-regime, enabling high-resolution
imaging at the level of individual electrodes.22–24,33

However, the benets of nano-SXCT come with inherent
trade-offs. High-resolution scans are typically restricted to small
measurement volumes, ranging from a few micrometres to
several hundred micrometres, which may not be representative
of the overall electrode architecture.22,24,33 While in situ nano-
tomography has successfully been used to visualize
micrometre-scale features such as crack propagation, pore
formation and lithiation-induced structural changes at the
electrode level, achieving sufficient signal-to-noise ratios under
in situ conditions presents additional challenges.23,24 Speci-
cally, a high photon ux is oen required to minimize motion
artefacts during rapid scanning, which in turn increases the risk
of beam-induced damage in sensitive battery materials.36,37

Balancing the spatial resolution, eld-of-view (FOV) and beam
exposure remains a fundamental challenge for resolving sub-
micrometre features across representative volumes.17,33,38

The enhancement and restoration of image quality is
a fundamental problem in digital image processing, with broad
applications ranging from medical imaging39,40 and remote
sensing41,42 to digital photography and scientic visualiza-
tion.20,43 Techniques such as convolutional neural networks
(CNNs),44,45 generative adversarial networks (GANs),44,46 and
diffusion-based models47,48 have shown the ability to recover
intricate details, mostly outperforming classical algorithms
such as histogram-equalization,49,50 interpolation-algorithms51

or denoising lters.39,52 Nevertheless, CNNs are affected by
regression-to-the-mean,53,54 GANs suffer from training insta-
bility46 and diffusion models, while offering stable training and
This journal is © The Royal Society of Chemistry 2025
high-quality outputs, are computationally expensive due to their
iterative nature. Additionally, diffusion models require an
analytic form of the degradation process as prior knowledge.54

A promising alternative to the aforementioned methods is
the recently introduced diffusion-like Inversion by Direct Iter-
ation (InDI) algorithm for realistic and detailed image restora-
tion.54 Unlike conventional generative diffusion models55 which
start with an image typically consisting of purely Gaussian
noise, InDI uses a pair of low-quality/high-quality (LQ/HQ)
images, starting with the low-quality image as an input and
rening it iteratively in several steps by learning the physical
degradation processes. Using the LQ image as prior also
signicantly reduces the number of iterations and simplies
the implementation by avoiding conditioning of the model.54,56

Despite their superior performance, highly generative ML-
based algorithms are prone to some fundamental challenges,
such as hallucinations,57,58 which are unphysical or incorrect
predictions that drastically limit reliability in practical appli-
cations. This underscores the need for careful testing and
evaluation to ensure these approaches can accurately reproduce
the underlying physical behaviour of the systems being studied.
In fact, since InDI learns the degradation process directly from
the real data,54 it reects a more deterministic ansatz; therefore,
it should also be less prone to hallucinations than standard
diffusion models.

In this work, we present a generative AI-based workow for
enhancing 4D nano-SXCT images of miniaturized lithium-ion
batteries comprising a silicon suboxide (SiOx) anode, a sepa-
rator and an NMC cathode. The custom-designed cells optimize
X-ray transmission and spatial resolution, enabling in situ nano-
tomography at the single-particle level with feature sizes on the
order of several hundreds of nanometres. Unlike traditional
SXCT workows which struggle with trade-offs between
contrast, resolution, beam damage and eld-of-view, the pre-
sented approach leverages the generative articial intelligence
(genAI)-based InDI algorithm to achieve superior image quality
while maintaining a large eld-of-view. Notably, the model
requires only a single pair of low-quality and high-quality scans
for training, which can be obtained immediately aer the in situ
measurement, minimizing the risk of beam-induced artefacts
during electrochemical charging. The InDI-enhanced images
show signicantly improved perceptual quality and a twofold
increase in measured spatial resolution, enabling more accu-
rate downstream image analyses such as semantic segmenta-
tion. This facilitates the extraction of physical descriptors and
microstructural features, crucial for understanding degradation
mechanisms and capacity fade in silicon anodes. By providing
clearer and more detailed temporal information, our workow
supports the investigation of dynamic processes during battery
operation and serves as a foundation for both physics-based
and data-driven modelling approaches. Moreover, our results
demonstrate that InDI minimizes the likelihood of introducing
unphysical artefacts, making it especially well-suited for scien-
tic applications where structural delity is essential. Further-
more, while this study focuses on lithium-ion battery materials,
the presented workow is not exclusive to this eld and may
have broad potential across various imaging-driven domains.
J. Mater. Chem. A, 2025, 13, 29930–29942 | 29931
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Results and discussion
Workow of enhancing the image quality with the InDI model

For battery research, it is crucial to determine the key physical
descriptors such as particle morphology and phase distribution,
as well as temporal data on structural evolution over time.
Semantic segmentation is one method for calculating these
descriptors; however, achieving precise segmentation of
particle features is challenging when working with datasets
demonstrating insufficient resolution and contrast. As ne
details may be obscured by a higher noise content, an effective
resolution far below 1000 nm in nano-SXCT scans is usually
necessary for both the electrode and Si-particles. To address this
limitation, we employ an image enhancement strategy based on
the implementation of generative AI. In particular, we imple-
ment an InDI algorithm in the image analysis workow, which
reduces noise, renes contrast and improves spatial resolution.
This enables more reliable classication of microstructural
features and subsequent calculation of important physical
parameters. An overview of the main components in the
proposed AI workow, from experimental measurement to
image-enhancement, is displayed in Fig. 1.

Fig. 1A schematically illustrates the in situ measurement
setup at the ID16B beamline59 of ESRF, employing X-ray holo-
nano-tomography60 suitable to trace the dynamic behaviour of
the morphology during charging and discharging. The electro-
chemical cell has a cylindrical design measuring 1 mm in
diameter, featuring a silicon-based anode, a polypropylene
separator and a nickel–manganese–cobalt-oxide (NMC811)
cathode. The cell is placed inside an in situ holder mounted on
a rotating stage, allowing the X-rays to pass through in the
direction perpendicular to the rotation axis. This conguration
minimizes scattering artefacts from both the in situ cell holder
and the copper current collector. The cell is connected to
a potentiostat which is synchronized with the holo-tomography
acquisition soware,61 enabling automated charging/
discharging while performing tomographic scans at pro-
grammed time intervals; further details are provided in the
Materials and methods section and Fig. S1.†

Fig. 1B illustrates the inherent dilemma between the voxel
size and eld-of-view (FOV) in nano-SXCT. High-quality (HQ)
reconstructions, dened in this work as having 50 × 50 × 50
nm3 voxel size in x, y and z planes, respectively, enable ne
structural detail but limit the imaged volume to a small FOV. In
contrast, low-quality (LQ) scans, dened in this work to have
100 × 100 × 100 nm3 voxel size, allow for a larger FOV at the
expense of image quality. In this specic case, the LQ images
capture a volume of ∼200 mm3, which is 8× larger than the FOV
of the HQ scan. Additionally, the HQ scan increases photon
density compared to the LQ one, posing additional problems to
beam sensitive materials.

In Fig. 1C, the measurement and training strategy including
validation as well as the application of the image enhancement
algorithm on an unseen data set is illustrated. Initially, a sin-
gle pair of LQ and HQ nano-tomography measurements of
a battery cell is obtained. These two initial scans are used
29932 | J. Mater. Chem. A, 2025, 13, 29930–29942
to train the InDI model in a supervised manner to enhance
the quality of the LQ images to match the HQ ones.
Noticeably, the measurement for the initial training is per-
formed only once.

Aer supervised training of the InDI model with the initial
HQ and LQ measurements, InDI can be applied to enhance
images of different battery cells which the model has never seen
before. To show this, we perform in situ nano-tomography
measurements on a second but identical cell. However, this
time, only the LQ scans are taken, reducing beam damage and
capturing a higher FOV than the HQ scans do. Furthermore,
these second measurements are done in three key time steps
during electrochemical loading to show the chemical evolution
of the cell. Importantly, the model is not retrained for this
second dataset, since no HQ scans are available. Further details
are provided in the Materials and methods section.

Fig. 1D presents an LQ 3D rendering of a selected volume of
interest within the anode, and the same image with InDI
applied. Dark grey regions correspond to SiOx particles
embedded in a lighter grey matrix, which includes binder,
electrolyte andmaterial below the resolution limit. We note that
the purpose of InDI enhancement is to combine a wide FOV
with high image quality, especially focusing on resolving the
particles.

In Fig. 1D, we display the workow of enhancing the X-ray
nano-tomography images using the generative InDI approach.
First, we slice the 3D data into 2D images (xy-planes) and
enhance each slice individually – signicantly improving
contrast. To ensure isotropic voxel sizes in all three dimensions,
we apply bicubic interpolation of the enhanced grey values
along the axial direction. While direct 3D enhancement algo-
rithms exist,62–64 they usually require substantial computational
resources, making them unfeasible for most research work-
ows. However, when changes between slices are small,
a simple bicubic interpolation delivers equivalent results, see
Fig. S2† for more information.

Our model architecture, depicted in Fig. 1D, follows a U-Net
like structure with down-sampling and up-sampling blocks
combined with skip connections. Because the InDI algorithm
requires input and output images to have identical sizes, we
rst upscale the LQ scans using bicubic interpolation before the
initial iteration. Aer the rst iteration, the resulting enhanced
image serves as the input for the next iteration, and this process
continues until the desired quality is achieved or image quality
degradation begins. Further details on the model architecture
are provided in the Materials and methods section.
Training and testing of the InDI model for SXCT image data

As shown in Fig. 2A and B, we utilize the initial pair of LQ and
HQ image data with 100 × 100 × 100 nm3 and 50 × 50 × 50
nm3 voxel sizes, respectively, to train and test the InDI algo-
rithm. Hence, the HQ image has an eight times smaller FOV
compared to the LQ image. Since we train the model in a fully
supervised manner using paired images with different voxel
sizes, we have to match the image volumes. To do this, we rst
crop and then upscale the LQ images by a factor of two,
This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Overview of the SXCT measurement workflow and InDI model architecture. (A) Schematic of the investigated LIB, featuring a Si-based
anode coated on a thin copper foil, a separator, and an NMC cathode coated on a thin sheet of aluminium (not to scale). Below, the in situ holder
setup at ID16B is illustrated. (B) Measurement strategy showing two voxel sizes: 100× 100× 100 nm3 voxel size (denoted as LQ), which captures
a large field-of-view (FOV) but with lower image quality, and 50× 50× 50 nm3 voxel size (denoted as HQ), which offers enhanced image quality
at the cost of reduced FOV. (C) Training and evaluation workflow. First, InDI is trained on acquired HQ and LQ data, then the trained InDI model is
applied to unseen images. InDI enhancement aims to combine high image quality while maintaining a large FOV. (D) Example of a rendered sub-
volume inside a reconstructed LQ 3D tomography image shown before and after InDI enhancement. A 2D cross-sectional slice (xy-plane) is
highlighted with a red dashed circle. (E) U-Net-like model architecture with skip connections and dilated convolutions in the bottleneck layer. All
kernel sizes are set to 3 except for the first and last convolutional layers in the network, where it is 7. The number of filters is set to 64 in the first
layer and doubled after every down-sampling block. The last up-sampling layer before the final hyperbolic tangent (tanh) activation is a sub-pixel
convolution.

This journal is © The Royal Society of Chemistry 2025 J. Mater. Chem. A, 2025, 13, 29930–29942 | 29933
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Fig. 2 Model evaluation and comparison on the test dataset. (A) SXCT xy-slice images with a large FOV. The left image is acquired at 100× 100×

100 nm3 voxel size (LQ) in x, y and z, respectively, while the right image is the same slice enhanced using the InDI model. Red circles indicate the
FOV captured by the 50 × 50 × 50 nm3 (HQ) scan. (B) Comparison LQ, HQ and LQ after InDI enhancement. All images are cropped to the same
FOV for direct comparison. Detailed zoomed-in views of specific regions of interest (ROI 1–4) are shown in coloured boxes. (C) Quantitative
evaluation of InDI performance using four metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), SIFT-based feature
matching, spatial resolution in nm and contrast-to-noise ratio (CNR). Higher values of PSNR, SSIM, SIFT and CNR indicate improved image quality
relative to the HQ reference scan. Lower spatial resolution values correspond to an increased ability to distinguish finer structural details from the
background.
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obtaining the same imaged volume as the HQ images. However,
acquiring a holo-tomography scan at different voxel sizes
requires translating the sample along the X-ray beam axis from
closer to further away to the focal spot, Unavoidably leading to
slight misalignments among the cropped and upscaled recon-
structed volumes. To address these misalignments, we utilize
the spam.register image sub-pixel registration algorithm from
the SPAM library.65 Around 10% of the dataset is excluded from
training and reserved for evaluation and testing. Further details
on training and cropping are provided in the Materials and
methods section.

Fig. 2A shows an exemplary LQ xy-slice used for testing,
along with its InDI-enhanced version. During testing, we
29934 | J. Mater. Chem. A, 2025, 13, 29930–29942
observed that image quality improves for about 7 to 10 itera-
tions in the InDI procedure. Decreasing the number of itera-
tions produces blurrier images due to the so-called regression-
to-the-mean effect.53 Contrarily, using a higher number of iter-
ations leads to the amplication of unwanted noise or ring
artefacts. Furthermore, the pixel-wise enhancements achieved
by InDI cannot be solely accounted to a global contrast adjust-
ments or histogram matching of the image.

Fig. 2B compares the HQ image with the LQ, as well as the
InDI-enhanced image. A qualitative comparison between the
experimental and generated images indicates that InDI
improves both phase contrast and sharpness, revealing
This journal is © The Royal Society of Chemistry 2025
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Fig. 3 In situ X-ray tomography measurements at different time steps. (A) Tomography xy-slice images of the same region at three timesteps:
the uncharged state (T0), an intermediate state (T1) and the first fully charged state (T2). Original LQ images (left, blue) are acquired at 100× 100×
100 nm3 voxel size in x, y and z, respectively, while InDI-enhanced reconstructions (right, orange) have 50× 50× 50 nm3 voxel size. Zoomed-in
views of specific regions are presented in the middle for detailed comparison across all time steps. Contrast-to-noise ratio (CNR) values are
calculated for all timesteps and indicated on the left. (B) Intensity profiles (grey values) along the red lines in the images. The intensity profile of the
InDI-enhanced image (orange) shows deeper trenches and higher peaks compared to the original (blue), indicating sharper edges and improved
contrast. This effect is qualitatively highlighted in the red-shaded area, which emphasizes enhanced particle separation in the InDI image. The
intensity profile also includes an exemplary calculation of spatial resolution, where the black line represents the derivative of the intensity profile

This journal is © The Royal Society of Chemistry 2025 J. Mater. Chem. A, 2025, 13, 29930–29942 | 29935
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previously indistinguishable details in the LQ image. This effect
is particularly evident on small particles and particle edges.

Fig. 2C quanties the improvements using different metrics.
Since the low- and high-quality images are not perfect pixel-wise
matches, classical metrics for quantifying the restoration
quality, such as the Peak Signal-to-Noise Ratio (PSNR) or
Structural Similarity Index (SSIM),66 show close to no improve-
ment due to InDI, even though quality has improved noticeably.
These metrics heavily depend on pixel-level restorations,
making them sensitive to even small pixel shis, like trans-
lations or rotations, which can lead to inaccurate evaluations.
To address this, we introduce two additional metrics that better
capture physical image characteristics. The rst is based on the
Scale Invariant Feature Transform (SIFT) algorithm,67 which
identies congruent features between images. A higher number
of congruent features indicates better restoration quality.
Notably, applying InDI more than doubles the number of
congruent features compared to the original LQ image,
demonstrating its effectiveness in restoring ne details. More
information on our SIFT metric is provided in the Materials and
methods section.

Furthermore, we assess the spatial resolution, to quantify
how well the SiOx particles within the anode can be distin-
guished from the background. Spatial resolution is dened as
the full width at half-maximum (FWHM) between foreground
particles and background pixels and has a unit of nm. Details
can be found in Materials and methods as well as in Fig. S5.† In
fact, the spatial resolution of the InDI-enhanced image (286 ±

25 nm) is comparable to that of the HQ image (357 ± 53 nm)
and even surpasses it in some cases. The spatial resolution of
the LQ image is 803 ± 135 nm and therefore signicantly lower.

This slight superiority of InDI compared to the HQ image is
likely due to a reduction in noise and artefacts. To test this
argument, we evaluate the contrast-to-noise ratio (CNR)
between foreground SiOx particles and background in Fig. 2C.
The extracted CNR is 3.9 and 2.4 for the InDI enhanced and HQ
images, respectively. For the LQ image data, the CNR is signif-
icantly lower, measuring 0.9.

Finally, we compare the InDI with CNN- and GAN-based
model architectures. See the ESI† for further information on
the model structure. As illustrated in Fig. S3 and S4,† the CNN-
based architecture clearly suffers from regression-to-the-mean,
while the GAN exhibits training instability and overamplies
unwanted image artefacts. The analysis of the spatial resolution
obtained for the CNN and GAN is 550± 54 nm and 392± 68 nm,
respectively, which are signicantly higher than that obtained
for the InDI model. The ability of InDI to achieve a balance
between detailed reconstructions and avoiding unwanted arte-
facts is the main advantage compared to CNN-based models
and GANs. It is also obvious that InDI provides a major speedup
compared to classical diffusion-based algorithms. Classical
diffusion-based models usually require up to several thousands
of iterations55 for reconstruction.
at the particle edge, and the red line marks the full width at half-maxi
learning models, trained on the LQ and InDI-enhanced images, are show

29936 | J. Mater. Chem. A, 2025, 13, 29930–29942
Application of the InDI image enhancement algorithm to LQ
in situ image data

Aer training and testing the model on the initial two
measurements, it is applied to a different unseen LQ dataset
acquired in situ during a second experiment. The LQ scan
reduces beam damage and enables an increase of the FOV
compared to a HQ scan. Note that no corresponding HQ data
are acquired in this second measurement and that the model is
not retrained – the pretrained model from the last section is
used throughout this chapter.

Fig. 3A illustrates the microstructural time evolution of the
Si-based anode captured by the in situmeasurements. Three key
time steps upon electrochemical charging (lithiation) are
denoted as T0, T1, and T2. T0 represents the pristine, uncycled
state. T1 corresponds to an intermediate stage during the rst
charging cycle. T2 denotes the fully charged state at the end of
the rst cycle. The le column shows original LQ in situ
tomography slices, while the right column presents the corre-
sponding enhanced images by applying the generative InDI
model. To provide better visual insights, magnied regions of
interest for all time steps are displayed in the middle column of
Fig. 3A, emphasizing structural details and changes throughout
the charging process. CNR values between background and SiOx

particles are calculated to quantify changes between timesteps
and improvements due to InDI, see Table 1 and Fig. 3A. In fact,
the InDI enhanced images show a higher CNR in all cases. Also
note that the CNR values depicted in Table 1 are higher than the
ones denoted in Fig. 2C. This is mainly due to the absence of
ring artefacts in the depicted regions of interest in Fig. 3A.

For the uncharged initial state at T0 of the in situ experiment,
the SiOx particles (dark grey) exhibit a relatively uniform grey
level, indicative of the pristine state. As electrochemical
charging progresses to the time-step of T1, notable morpho-
logical changes emerge. In the fully charged state at T2, the
image reveals an increase of the particle size and the develop-
ment of surface fractures, also accompanied by a decrease in
CNR. Further distinct dark regions appear, likely indicating new
dense phases formed during electrochemical charging.

Fig. 3B presents an exemplary intensity prole with an
illustration of how to calculate spatial resolution, highlighting
the enhanced image quality and sharper particle boundaries in
the enhanced image. The InDI-enhanced image exhibits deeper
trenches and more pronounced peaks, indicating sharper edges
and enhanced contrast. Notably, the spatial resolution
improves from 866 ± 183 nm in the original LQ image to 378 ±

81 nm in the InDI-enhanced in situ image when averaged over
several particles. Exemplarily, a peak located at approximately
4500 nm, is only marginally visible in the original LQ image,
while it stands out clearly in the InDI-enhanced image.
Although this feature could be a consequence of hallucinations,
we argue, as will be discussed in the Conclusion section, that
the model has learned to capture the underlying physics and
generate meaningful results. In fact, the spatial resolution
mum (FWHM). Additionally, segmentation results from two machine-
n, demonstrating improved accuracy, particularly at particle edges.

This journal is © The Royal Society of Chemistry 2025
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Table 1 Contrast-to-noise-ratios (CNR) for timesteps T0 to T2 in the in
situ measurement. The CNR values are higher for the InDI-enhanced
images, indicating clearer images and particles which aremore distinct
from the background. Furthermore, the CNR decreases from T0 to T2
which is due to the morphological changes of Si particles during
electrochemical loading

Time-steps

Contrast-to-noise-ratio (CNR)

LQ in situ InDI-enhanced

T0 4.1 5.1
T1 3.8 4.7
T2 3.6 4.4
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achieved by InDI on image data from a different cell, never seen
by the model during training, matches the resolution of the
reference images used for training and validation, see Fig. 2.
This also emphasises good generalizability of the model across
similar image datasets.

As emphasized by the segmentation plot in Fig. 3B, the
improvements achieved with InDI also enhance subsequent
quantitative analyses, such as phase segmentation. The
increased phase contrast and spatial resolution facilitate the
training of machine learning-based segmentation models by
making microstructural features more discernible, which might
otherwise remain undetected in the original LQ data. This is
particularly benecial for automated, computer-based analysis
workows, where improved phase segmentation contributes to
more reliable statistical assessments of key morphological
metrics and interface characteristics, such as particle integrity,
porosity, and phase connectivity. To illustrate this, we train two
distinct machine learning-based segmentation models using
a single image slice from both the LQ and InDI-enhanced
datasets.

As shown in Fig. 3B, when HQ or InDI enhanced images are
available, accurate segmentation can be achieved even with
limited training data, signicantly reducing the need for
extensive manual labelling and computational effort.68 By
reducing the dependence on large training datasets while
maintaining high segmentation accuracy, this method enables
more efficient and scalable image analysis. More details on the
segmentation algorithm can be found in the Materials and
methods. Further segmentation results, including difference
maps, are displayed in Fig. S6.†
Conclusion

In situ imaging is essential to understand the dynamic micro-
structure evolution within battery materials upon electro-
chemical loading, such as particle expansion, or phase changes.
However, challenges arise in maintaining high contrast to
enable subsequent image classication for accurate micro-
structure feature extraction while also preserving a wide eld-of-
view in in situ nano-tomography. Accurate extraction of physical
descriptors, such as particle size, morphology and phase
distribution, is critical for both physical and data-driven
This journal is © The Royal Society of Chemistry 2025
modelling approaches, including generative prediction of
microstructure evolution. Inaccuracies in classication can lead
to error propagation in these models, ultimately compromising
the predictive power and the development of optimized battery
materials.

To address these challenges, we introduce a genAI-based
image enhancement workow utilizing the InDI algorithm. By
applying InDI, we successfully enhance the contrast and spatial
resolution of low-quality SXCT scans of silicon anodes across
a temporal dataset, using only a single pair of low- and high-
quality scans for model training. Generalization capabilities of
the model are tested on a second unrelated in situmeasurement
utilizing another assembled cell, capturing the temporal
behaviour of the lithiation process during electrochemical
charging. The improvements achieved by the application of the
InDI model in spatial resolution and contrast can facilitate the
segmentation and analysis of particle morphology, cracking,
porosity, and interphase development, which are key descrip-
tors linked to the capacity fade and mechanical failure. These
high-delity features serve as inputs for both physics-based
degradation models and machine learning approaches,
enhancing the accuracy of lifespan predictions. In this way, the
enhanced data quality supports a more mechanistic and
predictive understanding of aging in high-capacity anode
materials by shedding light on the mechanical and electro-
chemical degradation mechanisms underlying capacity fade
and lithiation properties.

For practical applications, we propose two primary strategies
for obtaining suitable training data, each having its trade-offs in
terms image acquisition time, beam-damage and generalization
capabilities. In the single-sample approach, the high-quality
scan is acquired either at the initial time step, before struc-
tural changes occur, or at the nal time step, using the same
sample as in the in situ experiment. In the identical-sample
approach, which is used in this study, a separate but identical
sample is scanned at higher voxel sizes, ensuring that the in situ
experiment remains undisturbed. However, this assumes some
microstructural similarity between the two samples. The single-
sample approach offers direct correspondence between high-
and low-voxel size datasets but risks introducing beam damage
to the in situ sample. The identical-sample approach avoids
beam damage but requires more time and resources and relies
on structural similarity between the samples, which may not
always hold. For cases involving signicant microstructural
evolution, such as large-volume expansion or severe particle
degradation, an improved strategy would involve acquiring two
high-quality scans – one at the beginning for the pristine state
and another at the end of the experiment, e.g. for a state of
charge (SoC) of 100%. Even though our model architecture has
shown to handle these changes to some amount, additional
measurements can increase the ability to generalize across
varying stages of the battery cycling process. This could be
achieved using the single-sample approach or by conducting
a parallel in situ experiment on an identical sample with only
two scans (at the beginning and end), minimizing overexposure
of the actual in situ sample. Future studies could further explore
this dual-scan strategy.
J. Mater. Chem. A, 2025, 13, 29930–29942 | 29937
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Despite the demonstrated efficiency and generalizability of
our approach, certain limitations should be considered. The
InDI model is case-specic and may require retraining when
applied to datasets with signicantly different microstructures,
such as those from other electrode architectures or battery
chemistries. These so-called out-of-domain errors can also be
observed when training InDI on an underrepresented or too
small subset of the whole cell. Fig. S4† exemplarily demon-
strates the effects of training InDI on a non-representative
fraction of the LQ image, only containing 1/64 of the total
volume. As a result, the model’s ability to generalize to a larger,
more heterogeneous area, which contain brightness and
contrast variations, is limited. Nevertheless, out-of-domain
errors are not specic to the InDI algorithm. Such errors are
also observed for CNN- and GAN-based image enhancement
models.62

Another concern in using highly generative machine-
learning approaches for image enhancement is hallucina-
tions. For example, while the additional peak in the InDI-
enhanced image of Fig. 3B demonstrates a visual improve-
ment, it also emphasizes the generative nature of InDI and its
potential for unphysical hallucinations. Although such artefacts
are an unavoidable aspect of generative image enhancement,
they do not necessarily pose problems. The InDI architecture
appears to generate visually realistic structures, which align
with physical expectation in the tested cases, as evidenced by
Fig. 2, where no unphysical artefacts are observed. While the
possibility of unwanted image alterations in the in situ data of
Fig. 3 cannot be entirely ruled out due to the absence of a HQ
ground truth, the enhancements appear realistic, and any
unphysical augmentations, if present, are minimal and likely
negligible. This assumption is also underscored by the fact that
InDI, in contrast to standard diffusion models, directly learns
the physical degradation process from the real data, reducing
its potential for hallucination.

In summary, the advancements presented in this study have
a large potential for enhancing battery research and offer
promising opportunities for other scientic and industrial
disciplines that rely on high-resolution imaging of dynamic
processes. For battery research, monitoring the evolution of
electrode microstructures at the sub-micron scale during elec-
trochemical charging is essential to derive deeper insights into
the lithiation of the particles as well as underlying aging
mechanisms. As illustrated, four-dimensional (4D) synchrotron
X-ray nano-tomography (SXCT) allows the perception of such
dynamic processes. The utilization of generative articial
intelligence (genAI) facilitates solving the dilemma between
resolution and eld-of-view. The InDI algorithm allows not only
a larger FOV but also higher spatial resolution and promotes
subsequent image classication with higher accuracy as well as
improved statistical analysis. Extracted microstructure features
as well as classied volume data foster physics-based battery
model parametrization. Furthermore, the approach reduces
invasive beam exposure by excluding the need to focus on small
volumes, which is highly advantageous for beam sensitive
materials such as those utilized in the battery.
29938 | J. Mater. Chem. A, 2025, 13, 29930–29942
The integration of machine learning-driven enhancement
techniques, like InDI, into the routine of in situ characterization
workows could substantially accelerate not only battery inno-
vation but also progress in other elds such as biomedical
imaging,69 high-temperature electrochemistry70 or semi-
conductor manufacturing.71 These applications similarly
demand high spatial resolution and wide eld-of-view while
minimizing sample perturbation. Altogether, this makes InDI
a versatile and scalable tool for applications across a wide
spectrum of image-driven eld.
Materials and methods
Material preparation and cell assembly

The silicon-based anode was prepared using 89.3 wt% silicon
suboxide (SiOx) particles, 8 wt% lithium polyacrylate (LiPAA),
1 wt% sodium carboxymethyl cellulose (Na-CMC), 1.5 wt%
carbon black and 0.2 wt% carbon nanotubes (CNTs). The elec-
trode slurry was cast onto a battery-grade copper foil, resulting
in electrodes with an areal capacity of 3.0 mA h cm−2. As the
cathode, nickel–manganese–cobalt oxide (NMC811, 3.0 mA h
cm−2) was employed. Circular electrodes with a diameter of
1.0 mm (corresponding to a geometric area of 0.8 mm2 and
a nominal capacity of ∼25 mAh) were punched out and assem-
bled in a layered conguration into an in situ electrochemical
cell setup. The electrodes were separated by a non-woven poly-
propylene separator (1.5 mm diameter), soaked in 0.5 mL elec-
trolyte comprising 1 M lithium hexauorophosphate (LiPF6) in
uoroethylene carbonate (FEC) and diethyl carbonate (DEC) (2 :
8 v/v) with 2 wt% vinylene carbonate (VC).

The in situ cell housing was constructed from a per-
uoroalkoxy alkane tubing (inner diameter: 1.6 mm; outer
diameter: 3.2 mm), which is transparent to X-rays and sealed
with threaded steel mounts screwed into the polymer tubing. A
spring contact within the upper steel mount was then adjusted
to apply a specied external pressure (∼0.5 MPa) on the cell. To
prevent air penetration, the contact interface between the
polymer and steel was further sealed with lacquer. Cell
assembly was conducted entirely in an argon-lled glove box to
maintain an inert environment.
In situ X-ray nano-tomography measurement

X-ray nano-tomography was performed at the ID16B beamline59

of the European Synchrotron Radiation Facility (ESRF) in Gre-
noble, France, using holo-tomography.60 A voxel size of 100 ×

100 × 100 nm3 was used for in situ scans, while training data
were generated bymeasuring a separate, identical sample at 100
× 100 × 100 nm3 and 50 × 50 × 50 nm3 voxel sizes, ensuring
that the in situ experiment remains undisturbed. Holo-
tomographic imaging involved phase-contrast acquisition at
four sample-to-detector propagation distances, enabling accu-
rate phase retrieval. The X-ray beam was monochromatic and
conical, operating at an energy of 29.6 keV with a ux of 1012

photons per second. Each tomographic scan consisted of 2505
projections captured during a 360° sample rotation, with an
exposure time of 20 ms per projection. Additionally, 20
This journal is © The Royal Society of Chemistry 2025

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta03471j


Paper Journal of Materials Chemistry A

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

0/
9/

20
25

 2
:3

0:
06

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
reference and 21 dark-eld images were recorded per scan. Data
acquisition utilized a PCO edge 4.2 CMOS camera (2048 × 2048
pixels) with a 30 mm thick LSO scintillator. The total time per
holo-tomography acquisition was approximately 10 minutes.

The in situ electrochemical cell was charged at a rate of C/3
using an OrigaFlex OGF500 potentiostat synchronized with
the holo-tomography acquisition soware.61 In collaboration
with ESRF, a workow was developed to integrate electro-
chemical control with holo-tomography imaging, ensuring
synchronized measurements through automated scripts that
coordinate charging parameters and acquisition timing. Holo-
tomography acquisitions were performed every 40 minutes
during a single charging cycle. To reduce mechanical and
thermal relaxation artefacts in the reconstructed images, the
charging programwas paused 1minute before each acquisition,
setting the cell to open-circuit potential (OCP). Once the holo-
tomography acquisition was completed, charging resumed
(see the ESI†).

Data reconstruction and processing

The 3D reconstruction process included an initial phase
retrieval calculation, using a custom in-house octave script
based on a Paganini-like approach, with a delta/beta ratio of
170. Filtered backprojection reconstruction was then performed
using the ESRF soware PyHST2.72 Post-reconstruction ring
artefact reduction was achieved using an in-house script. Final
reconstructed volumes of 102.4 × 102.4 × 102.4 mm3 and 204.8
× 204.8 × 204.8 mm3, corresponding to voxel sizes of 50 × 50 ×

50 nm3 and 100 × 100 × 100 nm3, respectively, were obtained
in 16 bit unsigned integer format. To enhance the contrast of
the images, we further postprocessed them by applying histo-
gram equalization.

Postprocessing of reconstructed volumes for InDI

To prepare the training data for the InDI model, it is critical to
ensure alignment between LQ and HQ reconstructed 3D images.
Misalignments between reconstructed volumes at different voxel
sizes in synchrotron X-ray tomography arise from factors such as
variations in the source-to-detector distance (caused by changes
in magnication) minor mechanical shis during sample repo-
sitioning73 and different image alignments of the four distance
datasets during the phase retrieval calculation step. To address
these misalignments, we utilized the spam.register image sub-
pixel registration algorithm from the SPAM library.65 The 100 ×

100 × 100 nm3 voxel size training data were rst upscaled by
a factor of two (through a bicubic interpolation) to match the
voxel size of the higher-quality data. A circular mask with a radius
of 1024 pixels was applied to all slices in the x, y-plane to exclude
image data in the peripheral region. Subsequently, non-rigid
registration was performed to align the two 3D volumes. The
computed transformation function from this calculation was
applied to the LQ data, achieving the best possible alignment of
the volumes in both horizontal and vertical planes. Even though
this should ensure an optimal overlap of features across the two
datasets, small deviation can still be observed. To ensure precise
spatial alignment of the reconstructed volumes across different
This journal is © The Royal Society of Chemistry 2025
time steps in the in situ scans, the spam.register image sub-pixel
registration algorithm was applied.

Training details and model architecture

A total of 250 sliced and paired LQ and HQ images with a size of
2048 × 2048 px were used for training. 10% of these were
reserved for validation and testing. Since the eld-of-view (FOV)
of the HQ image was eight times that of the LQ image, the
peripheral regions of the LQ image were also used for qualitative
testing purposes. For training, a one cycle schedule74 with cosine
decay was used and training ended aer 1600 epochs. The
maximum learning rate obtained was 0.0005. A batch size of two
was used, and images were randomly cropped to 640 × 640 px.
Data augmentation included random ipping and random
rotations. All images were normalized to a pixel range from−1 to
1. To ensure that the input and output images have the same
dimensions, the LQ images were upscaled by a factor of two. Two
up-sampling methods were evaluated: the nearest-neighbour
(NN) interpolation and bicubic interpolation. In fact, bicubic
up-sampling producedmore homogeneous outputs, likely due to
overshoot errors that resulted in pixel values exceeding the valid
range. These values were subsequently smoothed by the tanh
activation in the nal layer. When bicubic interpolation was used
without tanh activation, the results turned out to be similar to
those obtained using NN upscaling with tanh activation. The loss
function utilized during InDI training was a combination of
Mean Squared Error (MSE) and Mean Absolute Error (MAE),
similar to Huber loss. For the range 0 to 0.5, MAE loss was used,
while MSE loss was used for larger values. This guaranteed that
the gradient remained as large as possible for small and large
values of the loss function.

We employed a U-Net-like75 model architecture with skip
connections and dilated convolutions in the bottleneck layer.
Throughout the model, we applied Swish activation to the dying
neuron problem, except in the nal layer, where a tanh activa-
tion function was applied. Instead of using multiple down-
sampling blocks, as is common in U-Nets, our model
employed a combination of non-dilated and dilated convolu-
tions in the bottleneck layer. This enabled us to capture both
ne and coarse features. The last up-sampling layer in our
architecture was set to a sub-pixel convolution to retain ne
details. All convolutional kernels were 3 × 3, except for the rst
and last layers, which used 7× 7 kernels. As is typical in U-Nets,
we started with a small number of convolutional lters, 64 in
our case, in the rst block and doubled the number of lters
aer every down-sampling block. Time embedding was imple-
mented through a sin/cos positional embedding of the time-
step. This embedding was transformed by a dense layer and
added to the convolutional input in the residual layer. All
training and pre-processing were done on python TensorFlow
2.10 (ref. 76) on a NVIDIA RTX A5000 GPU with 24 Gb V-RAM
and Intel Xeon w5-3433 CPU with 512 Gb RAM.

Using SIFT for quantifying image enhancement

To evaluate model performance, we employed ametric based on
the Scale-Invariant Feature Transform (SIFT) algorithm.67 SIFT
J. Mater. Chem. A, 2025, 13, 29930–29942 | 29939
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is a method that identies important key points in an image in
nearly scale-, rotation- and translation-invariant way. These key
points are represented by high-dimensional and unique feature
vectors. Aer identifying a set number of key points in both
InDI enhanced and high-quality image, these points were then
matched by calculating the Euclidean distance metric between
the feature vectors. We call these matched features congruent
points. The quality of the image enhancement was assessed
based on the number of congruent points between the two
images: a higher number of congruent points indicates a better
enhancement, while a lower number suggests a lower image
quality. The advantage of this method is its robustness to
transformations, which negatively impacts traditional image
quality metrics such as the Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM).
Calculating the spatial resolution and CNR

Spatial resolution was determined by manually identifying
particle edges and analysing orthogonal line prole plots, as
shown in Fig. 3B. At particle interfaces, grayscale values change
due to phase transitions. The spatial resolution was calculated
as the full width at half-maximum (FWHM) of the derivative of
the grayscale values at the interface, which was approximately
described by a quadratic function. More details and example
plots can be found in Fig. S5.†

For calculating CNR values, semantic segmentation of
particles and background was carried out. The particles were
considered as foreground pixels which have to be distinguished
from the background, and CNR was calculated between these
two domains. Note that CNR is noticeably affected by ring
artefacts, noise and also particle growth during electrochemical
loading.
Machine-learning image segmentation

To segment different material phases in tomography volumes,
a convolutional neural network (CNN)-based approach was
implemented using an attention residual U-Net model68 and the
Python Keras library. Two models were trained: one on a 1024 ×
1024 px InDI-enhanced image and another on the same image
at its original LQ voxel size (512 × 512 pixels), along with their
respective labels. Initial labels were generated using the open-
source soware Ilastik. The images were divided into four
sub-images and augmented three times to expand the training
dataset. The CNN models were trained on 16 images of 512 ×

512 px (InDI-enhanced) and 256 × 256 px LQ, respectively, for
150 epochs using an NVIDIA RTX A5000 GPU. For additional
details, see the ESI.†
Data availability

All data needed to evaluate the conclusions in the paper are
presented in the paper. The InDI algorithm used for the analysis
is publicly available at ‘https://github.com/Nikolai10/Diffusion-
TF’ (developed by Nikolai Körber). All other materials, including
model architecture and pre-processing steps, are described in
29940 | J. Mater. Chem. A, 2025, 13, 29930–29942
detail in the paper. Additional information can be obtained
from the corresponding author upon reasonable request.
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