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ting oxygen and chlorine evolution
reactions over electrochemically formed single-
atom centers of MXenes†

Shohreh Faridi, a Samad Razzaq, a Diwakar Singh, a Ling Meng, b

Francesc Viñes, b Francesc Illas b and Kai S. Exner *acd

Single-atom catalysts (SACs) have garnered widespread attention in the catalysis community due to their

ability to catalyze transformations relevant to energy conversion and storage with high activity and

selectivity and maximum atomic efficiency. Although considerable efforts are being made to develop

synthetic routes for SACs based on non-noble metal atoms, the state-of-the-art SACs are largely based

on rare Pt-group metals. MXenes, a new class of two-dimensional materials, offer the exciting possibility

of synthesizing single-atom centers with structural similarity to archetypical SACs and without the need

for scarce metal atoms such as Pt or Ir. Instead of a dedicated synthetic protocol, only a sufficiently large

anodic electrode potential is required to enable the activation of the MXene basal plane by surface

oxidation, and the as-formed single-atom centers are sufficiently stable under anodic bias. The

electrochemically formed single-atom centers of MXenes based on surface reconstruction differ

significantly from previous studies based on SAC sites obtained by doping with foreign metal atoms. In

the present work, we demonstrate that the in situ formed single-atom centers of MXenes can be

effectively used to catalyze energy conversion processes relevant to the chemical industry. By

combining electronic structure theory calculations and descriptor-based analysis, we determine activity

and selectivity trends in competing oxygen and chlorine evolution reactions and derive activity and

selectivity trends for a noble metal-free electrochemical synthesis of gaseous chlorine. Our results

indicate that electrochemically formed single-atom centers of two-dimensional materials can play

a crucial role for the development of next-generation catalysts for sustainable energy.
Introduction

MXenes are two-dimensional transition-metal carbides and
nitrides with the general formula Mn+1XnTx, where M represents
a transition metal (Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, or Mn),
X is either carbon or nitrogen, and T denotes surface adsorbates
(*O, *OH, and *F, among others).1,2 Since their discovery by
Gogotsi and co-workers in 2011,3 this class of materials has
attracted interest in energy conversion and storage due to their
excellent electronic conductivity, large surface area, and
hydrophilic surfaces combined with their low cost due to the
use of non-scarce metals.4 The application of MXenes even goes
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beyond the energy sector and includes medical platforms and
devices.5

In the eld of electrocatalysis, two-dimensional materials6,7

including MXenes are discussed as a potential replacement for
traditional Pt-group catalysts.8–15 The suitability of this class of
materials for catalyzing electrochemical transformations was
demonstrated back in 2016 by Vojvodic and co-workers,16 who
reported that the basal planes of the MXene Mo2CTx are cata-
lytically active toward the hydrogen evolution reaction. In the
following years, numerous DFT-based studies investigated the
elementary steps of (electro-)catalytic processes on the basal
planes of MXenes, with a focus on reactions occurring under
cathodic conditions.17–21 While the MXene basal plane could
represent a suitable active site motif for cathodic polarization,
the MXene surface reconstructs in contact with water under
anodic polarization:22,23 a surfacemetal atom is pulled out of the
basal plane, and the resulting site is somewhat reminiscent of
a single-atom catalyst (cf. Fig. 1a). Only recently, it has been
demonstrated that this motif formation through surface
oxidation is potential dependent,24 and the as-formed single-
atom centers (SACs)25 are active for the oxygen evolution reac-
tion (OER)— 2 H2O/ O2 + 4 H+ + 4 e−, UOER

0 = 1.23 V vs. RHE
J. Mater. Chem. A, 2025, 13, 16481–16490 | 16481
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Fig. 1 (a) Single-branch MXene-SAC motif with a single intermediate adsorbed at the out-of-plane metal atom, represented by MSAC-*O. (b)
Double-branch MXene-SAC motif with two intermediates adsorbed at the out-of-plane metal atom, represented by MSAC-*O-*OH. Blue,
brown, red, and white spheres denote metal, carbon or nitrogen, oxygen, and hydrogen atoms, respectively.
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(reversible hydrogen electrode). A clear challenge in (electro-)
catalysis is therefore to activate the MXene surface by surface
oxidation to enable the formation of the SAC-like sites, although
this activation process should not lead to degradation of the
material, which would be the case at large anodic potentials. A
recent theoretical work for Ti2CTx based on ab initio molecular
dynamics demonstrated that the SAC-like motif is stable at
applied electrode potentials up to U = 1.76 V vs. RHE,26 which
provides a sufficient potential range beyond the equilibrium
potential of the OER to catalyze electrochemical trans-
formations under anodic bias. This suggests that the electro-
chemically formed SAC-like motif of MXenes in the homologous
series of M2X-SAC is a promising candidate for anodic conver-
sion reactions due to its stability under anodic polarization.

In addition to the OER, there is interest in the formation of
gaseous chlorine, which is realized industrially by chlor-alkali
electrolysis:27–29 there, the chlorine evolution reaction (CER) — 2
Cl− / Cl2 + 2e−, U0

OER = 1.36 V vs. SHE (standard hydrogen
electrode) — takes place at the anode, the selectivity of which is
impaired by the competing OER.While the introduction of single-
atom30–32 or atomically-dispersed catalysts as anode materials has
opened new avenues to direct the selectivity in the competing CER
and OER toward the desired product Cl2,33 the state-of-the-art
catalysts for the CER still rely on Pt-group metals.34–36 Mixed-
metal oxides based on RuO2, IrO2, and TiO2 are combined in
dimensionally stable anodes for industrial electrolysis, and the
most prominent SAC for the CER refers to a single platinum site
doped on a carbon nanotube developed by Joo and co-workers.37

In the present manuscript, we suggest the application of
electrochemically formed SAC-like sites on the MXene basal
plane as a new sustainable pathway for selective chlorine
formation to overcome the dependence on scarce platinum
group metals. To this end, we report activity and selectivity
trends of competing CER and OER over SAC-like sites of twelve
different MXenes. All computational details for the application
of density functional theory (DFT) are summarized in the
following section, while section 2 of the ESI† compiles the
relevant SAC-like structures for the investigated M2XTx MXenes
with ABC stacking38 under applied bias.

Computational details

In this work, we apply electronic structure calculations in the
density functional theory (DFT) framework as implemented in
16482 | J. Mater. Chem. A, 2025, 13, 16481–16490
the Vienna Ab initio Simulation Package (VASP),39–41 using the
Perdew–Burke–Ernzerhof (PBE) exchange correlation func-
tional42 combined with Grimme's D3 scheme to account for
dispersion effects.43 Core electron effects on the valence elec-
tron density are taken into account by the projector augmented
wave (PAW) approach.44 Valence electron density is expanded in
a plane wave basis set with a kinetic energy cutoff of 440 eV.
Structural relaxation is systematically achieved through energy
minimization, and the total energy convergence and maximum
force threshold is set to 10−6 eV and 0.01 eV Å−1, respectively.
For the integration of the reciprocal space, we employ a 5 × 5 ×

1 G-centered grid within the Brillouin zone.
To ensure physical isolation of the MXene layers along the

direction perpendicular to the surface, a vacuum region with
a thickness of at least 12 Å is included in all our models. We have
performed test calculations for all the adsorbate species observed
under chlorine evolution (CER) and oxygen evolution (OER)
reaction conditions (all intermediate structures are listed in eqn
(1)–(10) or Fig. 3 of the main text), and it turns out that spin
polarization changes adsorption energies by less than 0.02 eV.
This is the line with previous works,45 reporting that spin polar-
ization is not relevant to functionalized MXenes surfaces. For
a thorough computational benchmark of the single-atom centers
(SAC) formed onMXenes, we refer to our recent work in which we
tested different levels of theory.46 There, we also investigated the
electronic structure of the SAC-like motif and found that the
formation of the SAC motif does not cause any change in the
metallic character of functionalized MXenes.46

Besides electronic energies, EDFT, we determine the vibra-
tional frequencies of adsorbate species on the MXene surface in
the harmonic approximations, by means of DFT calculations,
building and diagonalizing the corresponding block of the
Hessian matrix, with elements computed as nite difference of
analytical gradients. This allows for the calculation of the zero-
point energy and entropy of the reaction intermediates. While
the entropic contribution consists of the sum of translational,
rotational, and vibrational contributions, for adsorbate species
we only use the vibrational frequencies to determine an
entropic correction. The equations to calculate zero-point
energy (ZPE) and vibrational entropy (S) based on the vibra-
tional frequencies are as follows:

EZPE ¼ 1

2

X
i

hvi (1)
This journal is © The Royal Society of Chemistry 2025
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TS ¼ kBT
Xn

i

2
664

hvi

kBT

e
hvi
kBT � 1

� ln

�
1� e

�hvi
kBT

�3775 (2)

In the above equation, kB, h, vi, n, and T denote the Boltzmann
constant, Planck's constant, frequency of vibration, total
number of frequencies, and temperature in Kelvin. Zero-point
energy and entropic corrections are needed to derive free
energies according to the following relation:

G = EDFT + EZPE − TS (3)

In the remainder of this article, we discuss free-energy
changes, DG, for the formation of adsorbate species on the
MXene-SAC motif. Note that the free-energy changes obtained
from the free energies of eqn (3) refer to U = 0 V vs. SHE
(standard hydrogen electrode) and pH = 0, which is denoted as
DG(0). We will make use of this nomenclature in section 4 of the
ESI† when we introduce the computational hydrogen electrode
(CHE) approach47 to determine potential-dependent free-energy
changes to describe the elementary steps of the CER and OER.

A possible source of error in the chosen PBE + D3 level of
theory is the existence of localized d-electrons, which GGA
functionals tend to excessively delocalize. This can be avoided
by making use of hybrid functionals including a fraction of
nonlocal Fock exchange such as PBE0 or HSE06, or through the
addition of the somehow empirical onsite two-electron repul-
sion term U leading to the basis of the PBE + U approach.
However, one must advert that the choice of the contribution of
Fock exchange in hybrid functionals, and also the range sepa-
ration parameter in HSE06, or the value for the U parameter in
PBE + U remain open issues as discussed elsewhere.48 Consid-
ering that the main goal of this study is to discuss activity and
selectivity trends for single-atom centers of MXenes based on
the calculation of adsorption free energies, one can safely
compare the results obtained using the PBE + D3 level of theory
as the main interest refers to free-energy differences rather than
absolute values. A discussion of the electronic structure of the
SAC-like site of MXenes is provided in section 1 of the ESI.†
Results and discussion

In a previous work, we found that the electrochemically formed
SAC-like site of MXenes— the one-branch MXene-SAC motif (cf.
Fig. 1a) — is able to catalyze the OER and CER with reasonable
electrocatalytic activity, whereas the MXene basal plane is
inactive for both processes.46 Previous work by Pacchioni and
co-workers49,50 provides evidence that the surface chemistry of
single-atom catalysts oen differs from that of traditional bulk
materials, as the coordination of intermediates adsorbed to the
single-atom site is reminiscent to the coordination of ligands in
organometallic chemistry. This can give rise to unconventional
intermediates and unconventional reaction mechanisms,51 and
— despite the fact that the electrochemically formed SAC-like
sites of MXenes are not typical single-atom catalysts even if
they show structural similarity — we witness a similar
This journal is © The Royal Society of Chemistry 2025
observation for the MXene-SAC motif. With sufficient anodic
bias, it is possible that a second adsorbate is stabilized at the
single-atom center, which we refer to as the two-branch MXene-
SAC motif (cf. Fig. 1b). This nding is also conrmed by the
application of ab initio molecular dynamics simulations with
explicit water molecules46 (cf. Fig. S5 in section 2 of the ESI†).

Using thermodynamic considerations in a Pourbaix-like
approach,45,52–54 we determine the stability region of the two-
branch MXene-SAC motif depending on the metal atom of
M2X. While a detailed analysis can be found in section 3 of the
ESI,† Fig. 2 illustrates the electrode potential at which the one-
and two-branch MXene-SAC motifs are in electrochemical
equilibrium. We infer that the two-branch MXene-SAC motif is
energetically favored over the one-branch MXene-SAC motif at
electrode potentials relevant for the CER and OER; that is, U $

1.40 V vs. RHE. Therefore, we investigate the elementary steps of
both anodic processes at the two-branch SAC motif and choose
a target potential of U = 1.40 V vs. RHE for analysis purposes. In
this context, we assume that one of these branches catalyzes the
OER, whereas the other branch is responsible for the CER (cf.
Fig. 3).

OER is a four proton-coupled electron transfer process, in
which different adsorbates, including the *OH, *O, and *OOH
intermediates are formed. Similar to single-atom catalysts, the
MXene-SAC motif facilitates the stabilization of unconventional
OER intermediates,55 including h1–*OO(H) or h2–*OO(H),
which can become part of the catalytic cycle.46 While the h2–*

OO(H) intermediate is energetically favored in the case of the
one-branch MXene-SAC motif,46 we observe that only the h1–*

OO(H) adsorbate is formed in the case of the two-branch
MXene-SAC motif, which we attribute to steric hindrance
between the intermediates at the SAC-like site. Therefore, we
assess the elementary steps of the OER by the traditional
mononuclear mechanism (cf. eqn (1)–(4)) or by a Walden-type
description56–58 including the h1–*OO(H) intermediate (cf. eqn
(5)–(8)):

MSAC–*O + H2O / MSAC–*O–*OH + (H+ + e–), DG1a (4)

MSAC–*O–*OH / MSAC–*O–*O + (H+ + e−), DG2a (5)

MSAC–*O–*O + H2O / MSAC–*O–*OOH + (H+ + e−), DG3a(6)

MSAC–*O–*OOH / MSAC–*O + (H+ + e−) + O2, DG4a (7)

MSAC–*O–*OH / MSAC–*O–*O + (H+ + e−), DG1b (8)

MSAC–*O–*O + H2O / MSAC–*O–*OOH + (H+ + e−), DG2b(9)

MSAC–*O–*OOH / MSAC–*O–*OO + (H+ + e−), DG3b (10)

MSAC–*O–*OO + H2O / MSAC–*O–*OH

+ (H+ + e−) + O2, DG4b (11)

We note that during the formation of the different inter-
mediate species in the OER, the CER can take place on the
second branch of the SAC motif. Therefore, in each elementary
step of the OER in Fig. 3, the CER cycle is indicated at the other
J. Mater. Chem. A, 2025, 13, 16481–16490 | 16483
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Fig. 2 Equilibrium potential, Ueq, of the single-branch (cf. Fig. 1a) and double-branch (cf. Fig. 1b) MXene-SACmotifs. At potentials exceeding the
specified Ueq value, the double-branch MXene-SACmotif is energetically favored over the single-branched one, indicating the prevalence of the
double-branch MXene-SAC motif under oxygen evolution and chlorine evolution reaction conditions. Please note that Ti2N is the only MXene
among the investigated materials with Ueq > 1.23 V and therefore the data point for Ti2N is not shown in this plot.
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branch. In this context, we describe the CER by means of
a Volmer–Heyrovsky mechanism:59

MSAC–*O–*X + Cl− / MSAC–*OCl–*X + e−, DGVol (12)
Fig. 3 Schematic representation of the oxygen evolution reaction (OER)
(a) mononuclear mechanism, (b) Walden-type mechanism. The competin
the second branch of the SAC site.

16484 | J. Mater. Chem. A, 2025, 13, 16481–16490
MSAC–*OCl–*X + Cl− / MSAC–*O–*X + e− + Cl2, DGHey (13)

In eqn (9) and (10), *X denotes an arbitrary OER interme-
diate. The free-energy changes of eqn (1)–(10) are calculated
using the computational hydrogen electrode approach, and we
over the double-branch MXene-SAC motif via two different pathways:
g chlorine evolution reaction is investigated in each step of the OER at

This journal is © The Royal Society of Chemistry 2025
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refer to section 4 of the ESI† for details (cf. Tables S1 and S2†).
Knowledge of the OER and CER free-energy changes enables
determination of the activity descriptor Gmax(U) (cf. Table S3† in
section 4 of the ESI†),60,61 which is a potential-dependent
measure for the electrocatalytic activity based on the energetic
span model.62 A denition of this descriptor for the competing
reaction channels of the OER — Gmax

OER(U) — and CER —

Gmax
CER(U) — is provided in section 4 of the ESI,† and the

energetics of the different mechanisms of eqn (1)–(10) is dis-
cussed at U = 1.40 V vs. RHE in section 5 of the ESI† (cf. Fig. S6–
S17†).

Since the OER can proceed via different reaction mecha-
nisms, we rst determine the energetically preferred mecha-
nistic description. This is achieved by comparing the Gmax

OER(U
= 1.40 V) values for the mononuclear (cf. eqn (1)–(4)) and
Walden-type (cf. eqn (5)–(8)) mechanisms for the twelve
different M2X-SAC structures, as shown in Fig. 4. While for the
one-branch MXene-SAC motif (cf. Fig. 1a) a Walden-type
description is energetically favored over the conventional
mononuclear mechanism,46 a different situation is encountered
with the two-branch MXene-SAC motif (cf. Fig. 1b): a few
MXenes follows the traditional mononuclear mechanism, while
for somematerials (Ta2C, V2C, V2N) both pathways can proceed,
and for othermaterials (Ti2C, Ti2N, Zr2N) theWalden pathway is
preferred due to a lower Gmax

OER(U = 1.40 V) value. This nding
suggests that the presence of the second branch modulates the
surface chemistry of the SAC site, and this might also have
implications for CER activity, evaluated by determining Gmax-
CER(U) based on to eqn (9) and (10), and CER selectivity, which is
discussed next.

Knowledge of the activity descriptors Gmax
OER(U = 1.40 V)

and Gmax
CER(U = 1.40 V) for the M2X-SAC structures allows the

determination of the CER selectivity following previous works
on this topic:63
Fig. 4 Comparison of Gmax
OER(U) values for the mononuclear and Walde

at U = 1.40 V vs. RHE to identify the preferred OER mechanism.

This journal is © The Royal Society of Chemistry 2025
Gsel(U) = Gmax
OER(U) − Gmax

CER(U) (14)

CER selectivityðUÞ ¼ 1

1þ exp

��GselðUÞ
kBT

� (15)

The results are summarized in Fig. 5, where we provide an
activity-selectivity map for the competing CER and OER over
two-branch MXene-SAC at U = 1.40 V vs. RHE. Considering that
we calculated the energetics for twelve different MXene-SAC
motifs and that there are four different possibilities for the
CER for each structure (cf. Fig. 3), we arrive at a total of 48
different surface states, which are grouped according to their
activity and selectivity in the CER. Relating to selectivity, we
distinguish between highly selective (CER selectivity = 1) and
non-selective (CER selectivity = 0) motifs, while for CER activity
we use Gmax

CER(U = 1.40 V) < 0.50 eV or Gmax
CER(U = 1.40 V) $

0.50 eV as a threshold criterion to identify active and inactive
surface states, respectively. Note that the selection of these
criteria follows previous works on the same topic.46

Fig. 5 shows that about 48% (23 out of 48) of all surface states
considered are located in the most relevant region with high
CER selectivity and high activity (region 1). It becomes clear that
in particular the presence of the non-conventional *OO adsor-
bate on the OER branch enables selective CER, which under-
lines the similarity of the MXene-SACmotif to archetypal single-
atom catalysts in terms of their chemical reactivity. Almost 30%
(14 out of 48) of all surface states considered are found in region
2, indicating highly selective CER but reduced CER activity. In
particular, the *OH and *OOH adsorbates on the OER branch
facilitate selective CER (motif in region 1 or region 2), although
the presence of *OH and *OOH is oen detrimental to high CER
activity (motif in region 2). This is in contrast to the *O and *OO
adsorbates, which lead to high CER activity (motif in region 1).
n mechanisms (cf. Fig. 3) of twelve double-branch MXene-SAC motifs

J. Mater. Chem. A, 2025, 13, 16481–16490 | 16485
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Fig. 5 Activity-selectivity map for the competing chlorine evolution
(CER) and oxygen evolution (OER) reactions over two-branch MXene-
SAC at U = 1.40 V vs. RHE. (a) Classification of four regions with
different CER activity and selectivity. (b) Categorization of 48 different
structures based on the double-branch MXene-SAC motif (cf. Fig. 1b)
according to their CER activity and selectivity.
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On the other hand, the presence of the *O and *OO adsorbates
at the OER branch can also result in low CER activity and
selectivity (motif in region 4) compared to the *OH and *OOH
intermediates. Overall, the selectivity is only in favor of OER
over CER in about 23% (11 of 48) of all surface states consid-
ered. While the above analysis refers to U = 1.40 V vs. RHE, we
refer to section 5 of the SI for a potential-dependent analysis of
the CER selectivity (cf. Fig. S18†). There, we demonstrate that
the general trends discussed for U = 1.40 V vs. RHE (cf. Fig. 5)
are not affected in the potential regime where the MXene-SAC is
reported to be stable.26

Regarding the metal atom in the twelve different MXene-SAC
motifs, we emphasize that there are seven MXenes — V2C,
Nb2C, Ta2C, V2N, Zr2N, Nb2N, and Ta2N — that maintain high
CER selectivity throughout the catalytic cycle regardless of the
adsorbate on the OER branch. On the other hand, for the other
six MXenes — Ti2C, Hf2C, Ti2N, Hf2N, V2N, and Mo2N — we
observe that some of the surface states are selective for the CER,
16486 | J. Mater. Chem. A, 2025, 13, 16481–16490
while others favor the OER. This limits the application of the
electrochemically formed SAC-like sites of the latter MXenes for
selective CER, while especially group V-based MXenes (V2X,
Nb2X, and Ta2X) appear as promising candidates for experi-
mental testing.

Finally, we comment on the structural properties of the
double-branch MXene-SAC motif (cf. Fig. 1b) with regard to
previous studies in the literature. As shown by previous work, it
is important to consider the stacking and oxygen coverage of
MXenes to properly describe thermal catalytic and electro-
catalytic processes.64 Single-atom catalysis on the oxygen-
covered surface of MXenes has been largely realized by the
doping with foreign metal atoms.65,66 While single atoms on the
surface of MXenes have shown to be a realistic description for
thermal catalytic processes at the solid/gas interface,67

a different situation is encountered in electrocatalysis, where
the solid/liquid interface causes reconstruction of the oxygen-
covered surface of MXenes under formation of the MXene-SAC
motif (cf. Fig. 1). While the use of simplied SAC models
based on doping with foreign metal atoms is still widely used in
the theoretical description of electrocatalytic processes,14,15

these models are likely not tenable under the harsh anodic
conditions of CER and OER due to the reconstruction of the
MXene surface. Therefore, the reported MXene-SAC motif not
only refrains from rare noble metal atoms to enable efficient
and selective catalysis similar to the actual functioning of SAC,
but also is a better representation of MXenes in an electro-
chemical environment.

Conclusions

In summary, we have provided trends in the competing CER and
OER at two-branch MXene-SAC sites by using electronic structure
theory calculation in the DFT framework coupled with
a descriptor-based analysis. Although previous works have out-
lined the application of MXenes in the form of composite cata-
lysts with transition-metal oxides for selective CER or seawater
splitting,68–70 we demonstrate herein that in situ formed SAC sites
of group V-based MXenes (V2X, Nb2X, and Ta2X) are potential
candidates for CER. While single-atom catalysts based on tradi-
tional synthesis routes are considered a game changer for selec-
tive chlorine evolution in slightly acidic media,71–74 we propose
the application of electrochemically formed SAC-like sites based
on low-cost two-dimensional materials such as MXenes. This
could help to overcome the dependence on rare precious metals,
such as Pt and Ir in SAC catalysts or Ru and Ir in conventional
heterogeneous catalysts, for energy conversion processes relevant
to the chemical industry.
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