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nated polyphenylenes:
overcoming the performance–gas permeation–
stability trilemma in water electrolyzers†
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Thermal crosslinking of Pemion®, a highly sulfonated polyphenylene

membrane, is used as a viable route to combine high proton

conductivity, low gas permeability and mechanical robustness.

Crosslinked Pemion® not only outperforms any other membrane

reported so far, as a PFAS-free membrane, it is also considered to be

environmentally more benign.
The prospect of high voltage efficiency and dynamic load
operation renders proton exchange membrane (PEM) electrol-
ysis highly attractive for future green hydrogen production. To
meet the U.S. Department of Energy (DOE) cost target of only $1
per kg of green hydrogen, an efficiency of 3 A cm−2 at 1.6 V must
be reached. Decreasing the area specic resistance (ASR) of the
membrane is a major lever for achieving this goal.

State-of-the-art PEM water electrolyzers utilize PFSA-
membranes, which are well established for other electro-
chemical technologies such as PEM fuel cells and chlorine-
alkaline electrolysis. Unfortunately, in the presence of high
gas partial pressure gradients (for hydrogen and oxygen) that
are characteristic of electrolyzer operation, high inherent gas
crossover leads to severe safety issues.1 Increasing the
membrane thickness diminishes this hazard by reducing the
gas crossover but also increases the ASR and with that, reduces
performance. Other mitigation strategies like recombination
catalysts2 are discussed controversially, as they are expensive,
do not improve faradaic efficiency3 and might accelerate
degradation.4 Moreover, there is a global aspiration to substi-
tute so-called ‘forever chemicals’ such as PFSAs.
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Hydrocarbon membranes offer a promising alternative since
rst, they characteristically exhibit a higher ionic conductivity
to gas permeability ratio compared to PFSAs5,6 and second, they
are not subject to potential restrictions for per- and poly-
uoroalkyl substances (PFAS). However, severe swelling up to
disintegration of these membranes under electrolysis condi-
tions negatively affects durability.

So far, remediation measures like introducing a mechanical
reinforcement have not been able to resolve the issue entirely.
For instance, Qelibari et al. reduced in-plane swelling of
a sulfonated polyphenylene sulfone (sPPS) membrane by
introducing a PEEK mesh (Fig. 1 PEEK sPPS). Thereby a stable
voltage (dV/dt: 80 mV h−1) over more than 600 h at 1 A cm−2 and
80 °C was reached. Nevertheless, using such type of reinforce-
ment layer comes with restrictions in terms of minimum viable
membrane thickness and hence resistance.7 Recently, Noh
et al.8 and Kang et al.9 successfully introduced other reinforce-
ments (expanded polytetrauoroethylene, Fig. 1 5L-5/S50 and
Fig. 1 Overview of current densities at 1.8 V, hydrogen in oxygen
contents in the anode gas stream at 1 A cm−2 and degradation rates
achieved with hydrocarbon membranes in PEM water electrolyzers. A
H2 in O2 content below 1% (25% of lower explosion limit) and
a degradation rate below 50 mV h−1 were defined as acceptable and
highlighted in green. Apart from Klose et al.6 PFSA was used as the
ionomer binder in the catalyst layer.7–14 For more details see ESI
(Table S1).†

This journal is © The Royal Society of Chemistry 2025
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Scheme 1 Schematic of the presumed crosslinking reaction of
sulfonated phenylated polyphenylenes during the heat treatment step.
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liquid crystal polymer fabric, Fig. 1 L-SP50) into hydrocarbon
based ionomers, realizing high performance (∼6.9 A cm−2 and
∼4.25 A cm−2 at 1.8 V, loading >2mg cm−2) but still falling short
of state-of-the-art degradation rates (330 mV h−1 and 290 mV h−1

@ 2 A cm−2).
A promising alternative to integrating reinforcements into

the membrane is molecular modication of the ionomer by
thermal crosslinking. Di Vona et al.15,16 demonstrated thermal
formation of sulfone (SO2) bridges from sulfonic acid groups.
The onset of this reaction depends on the reactivity of the
sulfonic acid groups and the nature of the polymer backbone,17

but once crosslinking occurs, swelling decreases as a direct
consequence of an increased mechanical strength.15,17

Despite its high proton conductivity, low gas crossover and
chemical stability, the sulfonated phenylated polyphenylene
Pemion®18 is limited by its mechanical weakness under elec-
trolyzer conditions,10 which makes it a good candidate for
applying thermal crosslinking. In the following, we explain how
this simple and economically feasible treatment enables stable
electrolyzer operation with low gas crossover while virtually
meeting the DOE performance target.

According to the reaction suggested by Di Vona et al.,16 the
formation of each crosslink from a sulfonic group and an
unsulfonated phenyl ring eliminates one xed ionic group
(Scheme 1). Therefore, the density of SO2-crosslinks is esti-
mated to be around 0.4 per repeat unit. Since each SO2-group
connects two repeat units, almost every repeat unit is involved
in cross-linking.16,19

At high water content in the membrane, which is typical
under electrolyzer conditions, conductivity remains relatively
Table 1 IEC, water uptake, number of water molecules per sulfonic acid
Pemion® and crosslinked Pemion® (XL-Pemion®)

IEC in meq. g−1 Water uptake @ 80 °

Pemion® 3.1 � 0.1 225 � 15
XL-Pemion® 2.8 � 0.1 120 � 5

This journal is © The Royal Society of Chemistry 2025
unaffected by the number of water molecules per sulfonic acid
group (l) because the mobility of charge carriers and dilution
effects almost compensate each other. However, gas perme-
ability, exclusively taking place within the aqueous phase of
hydrocarbon ionomers,20 strongly increases with the
membrane's water content. Therefore, reducing l is crucial for
achieving a high ionic conductivity to gas permeability ratio.
Hydrocarbon membranes generally have high ion exchange
capacities (IEC) compared to PFSAs in order to reach similar
specic conductivities. For a given value of l, this automatically
leads to a higher uptake of water. Beyond this expected effect,
hydrocarbon membranes in contact with water take up even
more water per sulfonic acid group (i.e. higher l). In the case of
Pemion® with an IEC of 3.1 meq. g−1, water uptake is as high as
225 wt% corresponding to l = 40 at T = 80 °C.

Heat treatment of a 20 ± 5 mm thick Pemion® membrane
reduces the water uptake by a factor of two, which translates
into a decrease of l by 40% compared to the water uptake before
the heat treatment. At the same time, the IEC of the treated
membrane (further named XL-Pemion®) is reduced by only
10% (Table 1).

A natural consequence of crosslinking is an increase of
mechanical strength (Table 1 and Fig. S1†) leading to a higher
internal swelling pressure corresponding to a lower value for l.21

While the emerging insolubility of XL-Pemion® in the corre-
sponding solvents (dimethyl sulfoxide or ethanol) provides
qualitative evidence for the formation of sulfone crosslinks,
their characteristic symmetric and asymmetric S]O stretching
signals can be observed in FTIR (Fig. S2†).

For electrochemical characterization, catalyst coated
membranes (CCMs) were fabricated by ultrasonic spray-
coating electrodes onto a Naon N212 and a self-cast
Pemion® membrane using Naon as the binding ionomer
with an IrO2 anode (1 mgIr cm−2) and a Pt/C cathode (0.5 mgPt
cm−2). The Pemion® containing CCM (Pemion®-CCM) was
heat-treated for 1 h at 175 °C under vacuum to thermally
crosslink the ionomer. The electrolysis cell setup includes on
the anode side platinized titanium ber felts (Bekaert), and on
the cathode side a carbon bre gas diffusion layer with a micro
porous layer on top from Freudenberg (H24C5). More details
can be found in the ESI.†

The two key-metrics of performance are ohmic losses and
hydrogen crossover. The former is closely related to the ASR of
the membrane material while the latter to its gas permeability.
Since the dependence of both key-metrics on membrane
thickness is just opposite, i.e. ohmic losses increase with
membrane thickness while gas crossover decreases, the thick-
ness of each membrane is chosen to optimize the overall
group l (at 80 °C) and Young's modulus E (wet samples, at 25 °C) for

C in % l @ 80 °C E @ 25 °C, from water in MPa

∼40 79
∼24 222

J. Mater. Chem. A, 2025, 13, 19292–19296 | 19293
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Fig. 2 (a) HFR over current density and H2 in O2-concentration in the
anode gas stream at 1 A cm−2 (red) for XL-Pemion®- (squares) and
N212-CCM (circles). (b) Cell polarization for XL- Pemion®- (squares)
and N212-CCM (circles). Themeasurements were conducted at 80 °C.

Fig. 3 (a) Voltage evolution and (b) H2 in O2-concentration in the
anode gas stream during a constant current hold at 1 A cm−2 and 80 °C
of the XL-Pemion®-CCM (black) and N212-CCM (green).
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performance prole. Of course, this is only possible within the
limits of sufficient mechanical robustness.

Therefore, the thickness of the Naon reference membrane
was chosen to be 50 mm, more than double the thickness of XL-
Pemion (20 ± 5 mm). For Naon, this thickness yields
a hydrogen concentration close to the lower explosion limit in
the anode compartment even at 1 A cm−2 (Fig. 2a).

The data for a Naon N212-CCM (blue circles) and XL-
Pemion®-CCM (black squares) recorded under electrolyzer
conditions impressively demonstrate that for the chosen
thicknesses, all relevant key gures are signicantly better for
the latter: ohmic losses are lower by a factor of about 2 with
a corresponding decrease of high-frequency resistance (HFR)
while the hydrogen (H2) in oxygen (O2) concentration is lower by
more than a factor of 7 (Fig. 2a). In numbers, this gives a note-
worthy low H2-concentration measured in the anode O2 stream
of only 0.3% (red square) compared to 2.2% (red circle) for the
thicker N212-CCM at a current density of 1 A cm−2 (Fig. 2a).
Lower gas permeation of hydrocarbon vs. PFSA membranes is
reported throughout the literature,6,11,20 but the permeation
ratios are generally smaller than observed in the present work. A
possible reason could be the relatively low water uptake of XL-
Pemion® (l = 24 at T = 80 °C) compared to other hydrocarbon
membranes. Note that in hydrocarbon membranes residual gas
permeation is constrained to the aqueous ionic domain.20

Additionally, the XL-Pemion®-CCM shows the highest
voltage efficiency for hydrocarbon CCMs, reported so far
(Fig. 1). Almost identical iR-free voltages and comparable Tafel
slopes for the XL-Pemion®- and N212-CCM (Fig. S3†) indicate
that the high voltage efficiency is the immediate consequence of
the low HFR of 23 mOhm cm2 vs. 46 mOhm cm2. The low HFR
19294 | J. Mater. Chem. A, 2025, 13, 19292–19296
reects the high specic conductivity of XL-Pemion®, the low
membrane thickness and good contact between the membrane
and electrodes. Apparently, the heat treatment neither nega-
tively affects the membrane–electrode contact, nor kinetics and
gas transport within the electrodes.

As a side note, it is worth mentioning that the presented H2

in O2 contents are in line with values reported in the literature
for non-optimized catalyst layers22,23 or cell congurations24 on
the cathode side (for details see ESI†).

During a 100 hour constant current hold at 1 A cm−2, the XL-
Pemion®-CCM and N212-CCM show stable performance with
degradation rates of 40 mV h−1 and 27 mV h−1 (Fig. 3a). These
degradation rates are within the lower range of degradation
rates reported in the literature for Naon-CCMs with N212
membranes,25 and the degradation rate for the XL-Pemion®-
CCM appears to be the lowest reported for hydrocarbon CCMs,
so far (Fig. 1). The polarization curves at the beginning and end
of the test can be found in the ESI (Fig. S4).† The virtually
constant H2-crossover over time (Fig. 3b) underlines the
stability of both CCMs, furthermore supported by no changes in
the IEC and thickness of the XL-Pemion® membrane before and
aer the 100 h operation (see Fig. S5†).

For the XL-Pemion®-CCM, stable performance is observed
only aer heat treatment. An untreated Pemion membrane with
similar thickness showed only a stable performance for the rst
two hours and disintegrated during the following 6 hours under
electrolysis conditions (Fig. S6†). This can be underlined by the
results from Wang et al.,10 reporting a lifetime of less than 86
hours for an untreated sulfonated phenylated polyphenylene
membrane that is accompanied by an increase in H2 in O2-
content from 0.55% to 1.17% during the rst 40 hours of the
test.10
This journal is © The Royal Society of Chemistry 2025
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Thermal crosslinking of highly sulfonated polyphenylene
Pemion® membranes leads to a combination of properties,
which is outstanding for application in PEM water electrolysis.
Swelling and gas permeability are signicantly reduced while
conductivity remains high. The easy treatment also improves
membrane durability. In electrolyzer tests, these properties
translate into very high voltage and faradaic efficiencies: at
a voltage of only 1.61 V, the current density reaches 3 A cm−2,
exceeding state-of-the-art voltage efficiency for any type of
membrane. At a current density of 1 A cm−2, a stable hydrogen
concentration in the oxygen stream of 0.3%, well below the
explosion limit, is recorded. Stable performance over 100 h is
demonstrated with a degradation rate of <50 mV h−1. These
results are obtained without any PFAS in the membrane.
Considering the possibility that PFSAs may fall under a future
PFAS ban, the suggested approach gains further relevance for
the next generation of PEM electrolyzers. Extending the
approach to larger areas, longer testing times under various
conditions and high pressures are next obvious steps for
implementing thermally crosslinked sulfonated polyphenylene
membranes in commercial PEM electrolyzers.
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