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ge models predict the
hydrophobicity of metal–organic frameworks?†

Xiaoyu Wu and Jianwen Jiang *

Recent advances in large language models (LLMs) offer a transformative paradigm for data-driven materials

discovery. Herein, we exploit the potential of LLMs in predicting the hydrophobicity of metal–organic

frameworks (MOFs). By fine-tuning the state-of-the-art Gemini-1.5 model exclusively on the chemical

language of MOFs, we demonstrate its capacity to deliver weighted accuracies that surpass those of

traditional machine learning approaches based on sophisticated descriptors. To further interpret the

chemical “understanding” embedded within the Gemini model, we conduct systematic moiety masking

experiments, where our fine-tuned Gemini model consistently retains robust predictive performance

even with partial information loss. Finally, we show the practical applicability of the Gemini model via

a blind test on solvent- and ion-containing MOFs. The results illustrate that Gemini, combined with

lightweight fine-tuning on chemically annotated texts, can serve as a powerful tool for rapidly screening

MOFs in pursuit of hydrophobic candidates. Taking a step forward, our work underscores the potential of

LLMs in offering robust and data-efficient approaches to accelerate the discovery of functional materials.
1. Introduction

Metal–organic Frameworks (MOFs) are a versatile class of
nanoporous materials typically synthesized under relatively
mild hydrothermal or solvothermal conditions from metal ions
and organic ligands.1 Their modular architectures enable
precise tunability of pore structures and functional properties,
rendering them attractive for a wide range of applications,
including gas storage, separation and catalysis.2 A subset of
MOFs exhibit low affinity for water and this class of hydro-
phobic MOFs has garnered increasing attention for their
potential utility under humid conditions.3 To date, over 100 000
MOFs have been experimentally produced; however, many of
them were synthesized without reporting their hydrophobicity.4

To streamline the identication of hydrophobic MOFs, Henry's
constant of water (KH) was adopted as a metric in a computa-
tional workow5 to duly benchmark against representative
hydrophobic structures (e.g., ZIF-8 6). This approach has been
integrated with high-throughput computational screening to
shortlist promising candidates for various applications (e.g.,
CO2 capture and removal of toxic gases).7,8 Nevertheless, in
principle, the combinatorial design space of MOFs is innite
due to the myriad coupling chemistries of building units as well
as their underlying topologies. As such, KH calculations to
ar Engineering, National University of
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identify hydrophobic MOFs on a trial-and-error basis are
exceedingly laborious.9

Machine learning (ML) has emerged as a powerful alterna-
tive in this regard, as it has already proven to be indispensable
in the design of functional materials.10 One of the most
compelling advances in ML is the advent of large language
models (LLMs) such as ChatGPT11 and Gemini,12 which have
been trained on massive text corpora spanning diverse disci-
plines.13 These foundational LLMs excel at generating language
textual responses from simple prompts, which in many
instances, are indistinguishable from human articulations.
Such generative capabilities have unleashed exciting opportu-
nities for digital chemistry including chemical synthesis,14–16

dataset mining,17–19 and pattern recognition.20

One of the fascinating aspects of LLMs lies in their predictive
capacity in both forward and inverse chemical discovery, relying
solely on chemical language instead of engineered molecular
descriptors.21 Though typically pretrained for general purposes,
LLMs can signicantly enhance their predictive accuracy for
chemistry-specic tasks through ne-tuning with domain
knowledge even based on light-weight LLMs (i.e., LLMs pre-
trained with fewer parameters, e.g., 8B, 70B).22 Molecular
representations including simplied molecular input line entry
systems (SMILES)23 and self-referencing embedded strings
(SELFIES)24 have facilitated chemical language modeling.25,26

These chemical notations can be further augmented with metal
information, thereby capturing both the inorganic and organic
constituents of MOFs.27,28 As exemplied in Scheme 1, a typical
MOF named Cu-BTC29 can be rendered in augmented SMILES
and SELFIES notations, each meticulously tokenized into
J. Mater. Chem. A, 2025, 13, 19307–19315 | 19307
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Scheme 1 Tokenized SMILES and SELFIES strings encoding Cu-BTC for Gemini. The tokenization is visualized via LLM-text-tokenization:
https://github.com/glaforge/llm-text-tokenization.
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smaller units carrying unique IDs for LLM ingestion. Notably,
variably pretrained LLMs may adopt different tokenization
approaches, and the default tokenizer of Gemini is employed
here.

In this work, we embark on the ne-tuning of a cutting-edge
LLM, Gemini-1.5,30 leveraging the latest CoRE-2024 database
with thousands of “computation-ready” experimental MOFs.28

Particularly, we focus on MOFs from the all-solvents-removed
(ASR) subset of single metal and single linker type to ne-tune
the base model. For both binary and quaternary classica-
tions of hydrophobicity, the ne-tuned Gemini achieves
comparable overall accuracy and notably excels in weighted
accuracy—a critical advantage given the class imbalance
inherent in the large dataset. Furthermore, we assess the
robustness and transferability of the model through moiety
masking experiments and a rigorous blind test on distinct
MOFs. These ndings demonstrate the coherence between
LLMs and digital chemistry, potentially shedding light on har-
nessing the power of Gemini as a useful agent for open ques-
tions in the broader physical sciences.

2. Methodology
2.1. Dataset

We started with the ASR subset from the CoRE-MOF-2024 data-
base, which contains 8857 meticulously curated experimental
MOFs with computed water affinity (i.e., KH) via the Widom
insertion method.28 Considering synthetic accessibility, we
adapted a similar decomposition-based protocol by Pouya et al.,31

which narrowed down the dataset to 2642 MOFs of single metal
and single linker type. As depicted in Fig. S1a and 1a†, 2642MOFs
can be categorized using binary classication with two labels:
strong hydrophobic (Strong) and weak hydrophobic (Weak), as
well as quaternary classication with four labels: super strong
hydrophobic (SS), strong hydrophobic (S), weak hydrophobic (W),
and super weak hydrophobic (SW). The resulting dataset spans
diverse pore geometric properties (Fig. S2 and S3†). For both
binary and quaternary classications, the dataset was split into
an 80 : 20 ratio, with the former as a training set for model
development and the latter as a hold-out test set for model eval-
uation. Despite non-signicant bias across any other labels in the
19308 | J. Mater. Chem. A, 2025, 13, 19307–19315
training set compared to the test set, we noticed a notable
imbalance in the distribution of labels, with SS being the least
populated (Fig. 1b). This is not unexpected due to the challenging
water-repelling nature of MOFs,32whichmay pose difficulty in the
model prediction. Generally, class imbalance remains a core
challenge in applying ML to diverse research topics in physical
sciences, including MOF discovery33 and photocatalyst design,34

as such tasks are not always exhaustively addressed with solely
hand-craed descriptors.35
2.2. Fine-tuning gemini

Fine-tuning refers to the process of adapting a base model,
which has already been pre-trained on a vast corpora of gener-
alized data, to perform better on a more specic task. During
this process, parameters in the model are adjusted to minimize
errors for a new task. This allows the model to tailor its domain
knowledge and enhances its task-specic performance. Gemini-
1.5 is a state-of-the-art foundational LLM developed by Google.30

It is characterized by its signicantly enhanced processing
speed and long-text effectiveness, making it a valuable LLM for
ne-tuning where iterative adjustments and accurate predic-
tions are benecial. Gemini has demonstrated ne-tuning
capability in the medical domain.36

In this work, we ne-tuned the “gemini-1.5-ash-001-tuning”
base model in Google AI Studio. The training dataset comprised
labeled MOFs, alongside two molecular representations:
SMILES and SELFIES, both augmented with inorganic motifs
(hereaer referred to simply as SMILES and SELFIES). During
ne-tuning, the training data were structured as prompt and
response pairs: (“Representation”, “Label”). In such a format,
SMILES or SELFIES served as prompts and were completed with
corresponding hydrophobicity labels, which were categorized as
[0, 1] and [0, 1, 2, 3] for binary and quaternary classications,
respectively. For computational feasibility and model stability,
the model was tuned with 3 epochs and a batch size of 16 with
a learning rate of 2 × 10−4 to reach a minimum loss. Due to the
general knowledge stored in Gemini, a predicted response from
an out-of-sample prompted MOF may not always be expected to
predict an ideal label. For these MOFs, augmented prompts
were utilized, as detailed in Section S2 in the ESI.†
This journal is © The Royal Society of Chemistry 2025
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Fig. 1 (a) Kernel density estimations of quaternary classification (SS, S, W and SW) versus density. The vertical axis denotes probability. (b) Data
distribution in training and test sets.
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The ne-tuned Gemini for prediction of MOF hydrophobicity
was benchmarked against descriptor-based supervised ML
models. Global pore descriptors (e.g., pore size) computed via
Zeo++37 and the revised autocorrelations (RACs)38,39 were adop-
ted for featurizing MOFs (detailed in Tables S1 and S2†). All the
baseline models were trained using Support Vector Machine
(SVM), with hyperparameters: {‘C’: [0.1, 1, 10], ‘kernel’: [‘linear’,
‘rbf’]} tuned through 10-fold cross-validations on the same
training set as in the ne-tuned Gemini, with the identical hold-
out test set and blind test set to ensure fair comparison.
Table 1 Performance on the test set for binary and quaternary
classifications

Model

Binary
classication

Quaternary
classication

Accuracya F1-scoreb Accuracy F1-score

Gemini (SMILES) 0.78 0.74 0.73 0.70
Gemini (SELFIES) 0.73 0.73 0.71 0.67
Porec 0.76 0.66 0.72 0.62
Pore + RACs 0.77 0.71 0.75 0.64

a For binary classication, the accuracy metric reects the model's
ability to correctly classify instances into two labels (Strong and
Weak). For quaternary classication, the accuracy metric aggregates
the overall correct four labels (SS, S, W and SW). b The weighted F1-
score combines precision and recall into a single metric, accounting
for class imbalance by weighing each class's F1-score by the
proportion of instances in that class. c The descriptor-based models
were trained using the SVM classier in scikit-learn, with
hyperparameters: [‘C’: [0.1, 1, 10], ‘kernel’: [‘linear’, ‘rbf’]] tuned
through 10-fold cross-validation.
3. Results and discussion
3.1. Fine-tuning results

The ne-tuned Gemini was evaluated on the hold-out test set
using the overall accuracy and weighted F1-score, which
accounts for data imbalance as discussed in Section 2.1. As
summarized in Table 1, for binary classication, the ne-tuned
Gemini based on SMILES achieves exemplary performance,
with an overall accuracy of 0.78 and a weighted F1-score of 0.74,
respectively. However, when shied to quaternary classication,
its predictive capacity drops slightly, achieving 0.73 overall
accuracy and 0.70 weighted F1-score, respectively. A similar
trend is observed for the ne-tuned Gemini with SELFIES, albeit
with less predictive performance. Though SELFIES has
demonstrated a certain capacity in representing reticular
chemistry,40 its generic tokenization appears to dilute addi-
tional chemical information compared to SMILES.41 Moreover,
while Gemini is a closed-source LLM, its stored cut-off knowl-
edge likely encompasses public datasets with diverse chemical
information, including SMILES notations.42 In contrast, data-
sets incorporating SELFIES remain scanty, which leads to less
compatibility of Gemini with property prediction based on
This journal is © The Royal Society of Chemistry 2025
SELFIES. We anticipate that as chemically-rich datasets
including SELFIES notations become more prevalent, LLMs like
Gemini may demonstrate improved performance in future
SELFIES-based classication tasks. Here, the ne-tuned Gemini
with SMILES stands out as the optimal approximator for both
binary and quaternary classications.

Descriptor-based ML models were used to benchmark the
performance of the ne-tuned Gemini. For effective featuriza-
tion, we adopted pore descriptors and RACs. Leveraging non-
weighted molecular graphs to derive the products or differ-
ences of atomic heuristics, RACs have been used to effectively
map the chemical space of MOFs, encompassing linker and
metal chemistry.43,44 Combined with pore descriptors, RACs
J. Mater. Chem. A, 2025, 13, 19307–19315 | 19309
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have been shown to be effective and robust in predicting various
properties of MOFs.45–49 As illustrated in Table 1, despite being
trained upon a simple text-based representation like SMILES,
the ne-tuned Gemini has predictive capability comparable
with that of sophisticated descriptor-basedmodels, with a slight
underestimation of overall accuracy for quaternary classica-
tion. This is expected, to a certain extent, as RACs embed both
similarities and dissimilarities, thus better encapsulating
chemical topology and connectivity as well.47 Signicantly, our
ne-tuned Gemini exhibits commendable weighted accuracy,
maintaining a weighted F1-score of 0.70 even as the classica-
tion complexity increases from binary to quaternary. As depic-
ted in Fig. 2a, the ne-tuned Gemini correctly distinguishes
most of the “Strong” labels (376 in the bottom-le cell), which is
slightly less predicted than Pore + RACs (Fig. S5a†). Conversely,
Pore + RACs fail to predict their counterparts labelled as
“Weak”, with only 15 correct predictions and 111 samples
overpredicted as “Strong”. Such mislabeling in “Weak” hydro-
phobic MOFs is more pronounced for quaternary classication
(Fig. S5b†). Despite offering a ner-grained picture of misclas-
sication across the four labels, the ne-tuned Gemini outper-
forms in predictions of “SS”, “W” and “SW” (Fig. 2b), leading to
a higher weighted F1-score. To further evaluate the consistency
of ne-tuning results, we examined the effect of a random state
in the training/test split of the dataset, all of which yielded
stable model performance (±0.01), as summarized in Table S3.†
These results position the ne-tuned Gemini as an efficient tool
for sorting a large number of MOFs for subsequent, time-
consuming computations (e.g., via rst-principles molecular
dynamics simulation50) to more precisely determine hydro-
phobicity. While descriptor-based ML models demonstrate
better predictive capability through advanced feature engi-
neering, they typically necessitate extensive preprocessing or
the derivation of specialized property-specic descriptors that
rely heavily on precise atomic positions. In contrast, our LLM-
based method exclusively leverages text-based chemical repre-
sentations (i.e., SMILES/SELFIES) that encode the building
units in MOFs. These engineering-free string-based represen-
tations require no structural optimization, thus facilitating
rapid screening across a diverse and potentially unexplored
topology space without exhaustive structural validation. We
should note that our method is not intended to replace direct
KH calculations (e.g., via the Widom insertion method); rather,
it serves as a rapid, surrogate screening tool capable of
Fig. 2 Confusionmatrices on the test set by the fine-tuned Gemini. (a)
Binary classification and (b) quaternary classification.

19310 | J. Mater. Chem. A, 2025, 13, 19307–19315
efficiently narrowing down a large candidate pool. Nevertheless,
we note that such a LLM based model may not be ideal for near-
quantitative predictions, where regressionmodels might deliver
higher accuracy.51,52

Acquiring high-delity data through an experimental or
computational approach can be time-consuming and costly.
Ideally, a model should maintain data efficiency, even trained
on a limited budget of data.53,54 In this context, we ne-tuned
Gemini using various training set ratios, ranging from 0.2 to
0.8 out of 2112 total training data points to assess its data
efficiency. For fair comparison, the ML model with Pore + RACs
was also trained on the same classication tasks using the same
training data as in Gemini. The learning curves on the test set by
the ne-tuned Gemini and the ML model are presented in
Fig. 3a. Intriguingly, both models demonstrate similar accuracy
across a wide range of training set ratios, with predictive
performance signicantly compromised when trained on less
than 845 data points (i.e., 0.4 training set ratio). Such an effect is
markedly amplied for quaternary classication, where the
model performance drops below random guessing (<0.5 accu-
racy). The accuracy of both models saturates at a training set
ratio of 0.6, with marginal improvement aerwards. The
optimal accuracy scores of 0.78 and 0.73 are achieved by the
ne-tuned Gemini for binary and quaternary classications,
respectively. Such an early performance ceiling likely stems
from the complexity of the hydrophobic nature in reticular
chemistry, a subtle property governed by a complex interplay
that is difficult to fully encapsulate. Discretizing hydrophobicity
into binary or quaternary classication may also introduce
discontinuous boundaries for KH that challenge the capability
of model prediction.55

Prompted by the proven data efficiency, we examined the
dissimilarity of the feature space encoded by Pore + RACs and
SMILES, respectively, through t-distributed stochastic neighbor
embedding (t-SNE).56 In a t-SNE map, points are spatially
arranged such that the closer the two points, the more similar
the two structures are, as described by the encoding nger-
prints. The SMILES representation, as text-based input, was
tokenized through the BERT model57 to emulate the enclosed
dimensions captured by the ne-tuned Gemini. As evidenced in
Fig. 3b and c, increasing the training set ratio leads to
a progressively denser and more saturated feature space. The
dense pattern stabilizes aer a training set ratio of 0.6, high-
lighting an optimal balance between training set size and
predictive performance. We acknowledge the challenge pre-
sented by the SS label in the quaternary classication even with
a full training set (1.0), which notably yields several misclassi-
cations in the ne-tuned Gemini model predictions. To
interpret this difficulty, we examined the chemical space in both
trained and tested MOFs labeled as SS and S. As clearly illus-
trated in Fig. S6,† the chemical space coverage for SS in the
training set is signicantly diluted compared to that for S. This
limited chemical diversity contributes to the difficulty of the
ne-tuned Gemini in accurately distinguishing closely over-
lapping chemical syntax, leading to multiple SS-labeled MOFs
being misclassied as S in the test set. We anticipate that
enriching the chemical diversity, particularly for the
This journal is © The Royal Society of Chemistry 2025
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Fig. 3 (a) Learning curves on the test set by the fine-tuned Gemini and the ML model with Pore + RACs. Spatial variations of trained MOFs
encoded by (b) Pore + RACs and (c) transformer-embedded SMILES, as a function of training set ratio.
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underrepresented SS label, could substantially enhance the
predictive accuracy of the ne-tuned Gemini for these chal-
lenging instances. As such, the ne-tuned Gemini appears to be
an effective approach for data-driven discovery of MOFs, as it
requires minimal efforts in preparing input (simple as a string-
based representation as SMILES), compared to laborious
feature engineering efforts for descriptor-based ML models.
Despite this simplicity, the ne-tuned Gemini is on par with
descriptor-based ML in terms of overall accuracy but achieves
higher weighted accuracy, underscoring its potential to balance
predictive power with practical implementations.

3.2. Moiety masking experiments

We have demonstrated the data-efficiency and prediction
capability of the ne-tuned Gemini. Nevertheless, LLMs like
Gemini, oen perceived as “black boxes”, do not facilitate
interpretability and tunable hyperparameters like ML models
trained on carefully engineered descriptors. To interpret the
captured inner sense as well as the robustness against infor-
mation loss of the ne-tuned Gemini, we conducted a series of
moiety masking experiments, systematically masking or
‘ablating’ sections representing specic chemical moieties
within the SMILES prompts. As exemplied in such a moiety
masking experiment for Cu-BTC (Fig. 4), we replaced one of the
Cu identities with a <missing> annotation. By deliberately
attacking chemical substructures within the SMILES
This journal is © The Royal Society of Chemistry 2025
representation, we assessed whether the ne-tuned Gemini
could distinguish solid and meaningful chemical patterns,
rather than merely “memorized” training data.

Unlike a metal identity, a linker chemical moiety may exhibit
varied forms in a SMILES representation; we thus adopted
SMILES arbitrary target specication (SMARTS)58 to locate and
identify the substructures of intended linker chemical moieties
in SMILES strings. As illustrated in Table 2 and Fig. 5, we
considered a list of 9 linkers, which were identied by SMARTS
substructure matching using the RDKit package.59 Each of these
linker chemical moieties was subsequently subjected to
a moiety masking experiment to assess model robustness. As
previously discussed, the ne-tuned Gemini maintains both
data efficiency and accuracy at a training set ratio of 0.6. To
ensure a diverse coverage of linker chemistry, the base model
was ne-tuned anew using 1268 data points from the full
training data set (i.e., at a training set ratio of 0.6), with the
remaining 845 data points combined with 529 data points from
the original test set for out-of-sample predictions. The moiety
masking experiments were conducted on the data points
correctly predicted in this new out-of-sample test, resulting in
1019 and 962 SMILES representations to be tested for binary
and quaternary classications, respectively.

As captured in Table 2, across 10 probed chemical moieties,
the ne-tuned Gemini retains the majority of its predictive
capacity, achieving a total accuracy of 0.96 for binary
J. Mater. Chem. A, 2025, 13, 19307–19315 | 19311
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Fig. 4 Schematic illustration of a moiety masking experiment, where Cu is replaced with a <missing> annotation. Color scheme: Cu, brown; O,
red; C, grey; H, white.

Table 2 Moiety masking experiments on the fine-tuned Gemini

Moiety SMARTS

Binary Quaternary

No. of tests Accuracy No. of tests Accuracy

Metal — 1019 0.96 962 0.92
Aromatic N [n; a] 317 0.97 299 0.94
Alkyne [C#C] 10 1.00 10 1.00
Imine [$([CX3]([#6])[#6]),$([CX3H][#6])] = [$([NX2][#6]),$([NX2H])] 18 1.00 14 1.00
Halogen [F,Cl,Br,I] 69 0.99 63 0.95
Ether [$([CX4]),$([cX3])]O[$([CX4]),$([cX3])] 75 0.97 70 0.92
Amino [OX1] = CN 30 1.00 22 0.87
Enamine [NX3][$(C]C),$(cc)] 76 0.93 71 0.89
Ketone [#6][CX3](=O)[#6] 16 1.00 15 1.00
Alkene [C]C] 59 0.92 49 0.88
Total — 1689 0.96 1576 0.92
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classication. For quaternary classication, a slightly lower
accuracy of 0.92 is observed, which aligns with the challenging
nature of skewed data distributions as discussed in Section 2.1.
Among the chemical moieties, masking amino and alkene
groups results in the greatest prediction disagreement for
quaternary classication, indicating a relatively high impor-
tance attributed by the ne-tuned Gemini. However, these
moieties have a relatively small sample size (22 and 49 for
amino and alkene groups, respectively), suggesting that the low
agreement could partially stem from the limited data diversity
of the test set. One plausible interpretation is that functional-
ities such as amino groups exert a notable inuence on MOF
hydrophobicity. It is essential to acknowledge that the outcome
of moiety masking experiments might vary depending on the
dataset utilized for ne-tuning, thus making our conclusions
dataset-specic. Nevertheless, these ndings imply that the
ne-tuned Gemini is capable of withstanding minor informa-
tion disruptions in text prompts, reecting its robustness.
3.3. Blind test

We further assess the potential of the ne-tuned Gemini in
a real-world application by predicting hydrophobicity in an
unseen (or blind test) set of MOFs, randomly selected from the
19312 | J. Mater. Chem. A, 2025, 13, 19307–19315
free-solvent-removed (FSR) and ion-containing (ION) subsets in
the CoRE-MOF-2024 database, comprising 150 MOFs in each
subset. To facilitate full external validation, we retained only
unique MOFs in the blind test set by discarding those with
identical molecular identiers (as represented by SMILES)
compared to the trained MOFs. As illustrated in Fig. 6, the ne-
tuned Gemini achieves predictive accuracy scores of 0.66 and
0.57 for binary and quaternary classications, respectively, in
the blind test set. It is worthwhile to note that the residual
solvents and ions included in these MOFs pose signicant
interference in simulating host–guest interactions.60,61 Zhao
et al. also highlighted that the removal of strongly bound
solvent molecules in the ASR subset (employed as the training
set in ne-tuning) could yield MOFs with signicantly stronger
water affinity, causing substantial variations in predicted
hydrophobicity in FSR and ION subsets.28 This effect is reected
by the predictions in individual subsets (Fig. S7–S8†), with less
accuracy in the ION subset compared to the FSR subset.
Nevertheless, this more rigorous test reinforces that ne-tuning
Gemini provides a reliable and effective approach for predicting
MOF properties, thus facilitating large-scale, high-throughput
computational screening. For instance, the ne-tuned Gemini
can be effortlessly deployed with solely SMILES input to swily
This journal is © The Royal Society of Chemistry 2025
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Fig. 5 Representative linkers in moiety masking experiments.

Fig. 6 Confusion matrices by the fine-tuned Gemini on 300 randomly
selected MOFs from (a) FSR subset and (b) ION subset.
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deprioritize potentially less hydrophobic MOFs from time-
consuming computations.
4. Conclusions

This study illustrates the promise of LLMs in effectively pre-
dicting the hydrophobicity of MOFs. By ne-tuning Gemini
solely on SMILES and label pairs, we bypass the laborious
process of feature engineering and yet achieve accuracy on par
with or exceeding descriptor-based ML benchmarks. Moiety
masking experiments and a stringent blind test demonstrate
the robustness and transferability of the ne-tuned Gemini,
which can serve as a powerful screening tool for rapidly iden-
tifying hydrophobic MOFs. We anticipate that continued
renement of LLM architectures, expanded training sets, and
This journal is © The Royal Society of Chemistry 2025
closer integration with domain-specic knowledge will further
advance data-driven discovery of MOFs and other emerging
materials.
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