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Abstract

Machine learning (ML) is revolutionizing the development and optimization of polymer 

composites by enabling data-driven insights into material design, manufacturing processes, and 

property prediction. Polymer composites, widely used in aerospace, automotive, biomedical, and 

construction industries, require precise engineering to achieve desired mechanical, thermal, and 

physical properties. Traditional methods for predicting composite behavior and optimizing 

production are often time-consuming and resource-intensive. ML techniques such as supervised, 

unsupervised, and deep learning offer an efficient alternative by analyzing large datasets, 

identifying patterns, and making accurate predictions without the need for extensive physical 

testing.  This review examines the integration of ML in polymer composite research, highlighting 

its role in material discovery, performance prediction, and manufacturing process optimization. 

Case studies illustrate how ML algorithms have successfully enhanced property estimation, 

reduced defects, and accelerated the identification of novel composite formulations. However, 

challenges such as limited standardized datasets, model interpretability, and the need for domain-

specific knowledge hinder broader adoption. Addressing these issues is crucial for advancing AI-

driven composite development. Despite its potential, the adoption of ML in polymer composite 

manufacturing remains limited. Many industries still rely on conventional trial-and-error methods, 

leading to inefficiencies in material selection, process control, and quality assurance. This review 

underscores the importance of integrating AI-driven solutions to improve cost-effectiveness, 

reduce human errors, and streamline production workflows. By overcoming current challenges, 

ML can facilitate the development of next-generation high-performance polymer composites with 

superior mechanical strength, durability, and environmental sustainability. 

Keywords: Machine Learning (ML), ML techniques, Polymer composites, Applications

1. Introduction

The capacity of polymer composites to integrate the advantageous characteristics of several 

materials into a single system has made them a vital tool in contemporary engineering and 

industrial applications.  Aircraft, automobiles, medicinal devices, and building materials are just a 
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few of the many applications for composites, which include a polymer matrix reinforced with 

fibers, fillers, and other additives 1,2.  Because of their malleability, polymer composites have a 

wide range of potential uses; for example, they may be tailored to fulfill the needs of many 

industries thanks to their high strength-to-weight ratios, excellent corrosion resistance, and 

improved thermal stability.  Because of this adaptability in design, engineers may modify the 

composite's characteristics to meet the needs of a broad variety of harsh environments 3.

 Nevertheless, there are obstacles to overcome in the process of developing and optimizing 

polymer composites.  There is a great deal of variation in the microstructures of these materials, 

and the processing techniques used to combine various matrices, fibers, and fillers all have an 

impact on the composite's ultimate characteristics 4,5.  Polymer composite behavior prediction is 

challenging due to the complex interplay between material composition, manufacturing processes, 

and the resultant characteristics.  The examination and comprehension of these materials has 

traditionally relied on experimental methods and computational technologies such as finite element 

analysis (FEA).  Although these approaches do a decent job to a certain degree, they aren't always 

suitable for capturing the whole complexity of composite behavior, and they may be expensive 

and time-consuming 6,7.

 The use of machine learning (ML) as a crucial technique for enhancing research and development 

in the area of polymer composites has lately caused a substantial shift 8.  Algorithms can learn 

from data, see patterns, and make predictions with little to no human intervention thanks to 

machine learning (ML), a branch of AI.  Polymer composites are highly sought after for their 

versatile mechanical qualities and extensive use in fields including aerospace, automotive, 

construction, and biomedical engineering. This capacity opens up new possibilities for tackling 

the difficulties of these materials 9,10.  Research on polymer composites that makes use of ML may 

significantly impact many important domains, including material discovery, process optimization, 

and precise property prediction.

 By sifting through mountains of data in search of optimal polymer and reinforcement 

combinations, ML may significantly quicken the process of discovering novel composite 

materials.  To simplify and speed up the process of material creation, generative models may 

propose new formulas depending on the required mechanical and thermal characteristics 11,12.  

When it comes to optimizing complicated manufacturing processes like injection molding, 
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extrusion, and additive manufacturing, ML algorithms are just as successful as they are when it 

comes to material discovery.  Algorithms like this assist cut down on waste, boost efficiency, and 

lower manufacturing costs by studying the effects of various process factors on product quality.  

Furthermore, by using large datasets that include various material compositions and processing 

circumstances, ML enhances the precision of mechanical property predictions 13.  Improved 

forecasts of important qualities including tensile strength, elasticity, toughness, and thermal 

stability are made possible by ML's illumination of the complex interplay between material 

composition and performance.  Composites with improved efficiency and performance are the 

result of engineers' ability to use this information to choose the most appropriate materials for each 

given application 14,15.

 By providing a more thorough understanding of the processes by which composite materials 

collapse, ML might completely transform the study of polymer composites.  More resilient 

materials and constructions may be created with the help of ML algorithms that study failure data 

in the past to find patterns and early warning indicators of impending failure 16.   In sectors where 

structural failure may lead to disastrous outcomes, like aircraft and automotive, this predictive skill 

is very useful.  By detecting and fixing problems before they worsen, predictive maintenance 

powered by ML may increase material life and safety in these industries.  There are still a number 

of obstacles that must be overcome before ML can live up to its enormous promise 17.  The 

accessibility and accuracy of data are one of the main challenges.  Standardized, high-quality 

datasets are generally in short supply when it comes to polymer composites due to their bespoke 

nature and the intricacy of the material combinations used in them.   Inadequate data makes it hard 

to train ML models and provide accurate predictions.  Making ML models interpretable is another 

major obstacle.  Model accuracy is insufficient in materials science; engineers and researchers 

must also comprehend the fundamental mechanisms behind these predictions 18.  Integrating ML 

into research on polymer composites becomes much more complicated due to the demand for 

interpretability. 

 Notwithstanding these obstacles, ML is still a formidable instrument with enormous promise.  An 

exhaustive examination of the present state of machine learning (ML) in polymer composites is 

the goal of this paper.  Polymer composites and the ways in which their characteristics are 

influenced by various material combinations and processing procedures are introduced from the 
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outset 19,20.  The overview continues by outlining major advances in the area of machine learning 

and then delves into several ML approaches, including supervised learning, unsupervised learning, 

and deep learning.  This study does more than just summarise prior work; it also takes a look 

forward and discusses the major obstacles that still stand in the way of ML's complete integration 

into polymer composites studies.  The development of sustainable and recyclable composite 

materials, autonomous experimentation, and the integration of ML with multi-scale modeling 

techniques are all promising areas for future research 21. Development of next-generation polymer 

composites can become more innovative, faster, and cost-effective by overcoming current 

limitations and utilizing the full capabilities of ML. This will ultimately drive progress across a 

range of industries.  As a whole, the polymer composite sector stands to benefit greatly from the 

use of AI in areas such as data analysis, process management, material selection, error reduction 

in human operators, and parameter selection during production.  The sad truth is that manufacturers 

are still falling short in this area in the modern day.  Research like this may help direct optimization 

efforts, which are particularly important for the polymer composite sector. 

2. ML Techniques in polymer composites

Machine learning has emerged as a powerful tool in the development and optimization of polymer 

composites, assisting researchers in addressing the complexity of these materials.  Through the 

analysis of extensive datasets and the identification of patterns, machine learning models are 

capable of predicting properties, optimizing processes, and facilitating material discovery, thereby 

significantly accelerating research and decreasing costs.  This section presents an overview of the 

primary machine learning techniques utilized in polymer composites and examines their particular 

applications 22.  Figure 1 illustrates the primary machine learning techniques.
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Figure 1. Key ML techniques.

2.1 Supervised learning

Supervised learning is one of the most commonly used ML techniques in polymer composites. In 

supervised learning, models are trained on labelled datasets where inputs (e.g. material 

composition, processing parameters) are mapped to known outputs (e.g. mechanical properties, 

failure data) 23. Supervised learning models play a pivotal role in the field of polymer composites, 

providing predictive capabilities and valuable insights in various applications. Figure 2 show the 

supervised learning process. 

Machine Learning 
Techniques 

Supervised 
Learning

(Labelled data)
Example:

SVM
Nueral Networks

Unsupervised 
Learning

(Unlabelled Data)
Example:
K-Means

PCA

Reinforcement 
Learning

(Agent based 
learning)
Example:

Q-Learning
Deep Q learning

Deep Learning
(Nueral based)

Examples:
CNN
RNN
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Figure 2. Process of supervised learning.

2.1.2 Property Prediction

Supervised learning models such as decision trees, support vector machines (SVMs) and 

neural networks are trained on historical data to predict key mechanical, thermal and electrical 

properties of polymer composites 24,25. This is particularly useful in materials science, where 

prediction of properties such as tensile strength, Young's modulus, fracture toughness, thermal 

conductivity and dielectric properties is essential. By learning from experimental data (e.g. fibre 

volume fraction, filler type, resin properties), these models can predict the performance of new 

composite formulations, reducing the need for time-consuming and expensive physical testing 26. 

For example, by inputting variables such as fibre type, resin and processing conditions into the 

model, researchers can predict the tensile or impact strength of hybrid composites before they are 

actually manufactured and tested.

2.1.2. Material Classification

In material classification, supervised learning algorithms categorize polymer composites 

based on their composition, performance, or specific application areas. For instance, SVMs or 

random forests can classify materials into categories such as high-performance composites for 

aerospace, automotive, or marine applications based on their mechanical or thermal properties 27,28. 
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This is useful in industrial environments where rapid identification of suitable materials for a given 

application is critical. For example, a classification model could help engineers quickly determine 

whether a composite is suitable for structural load-bearing applications or whether it's more 

suitable for thermal insulation 29,30.

2.1.3 Failure Analysis

Supervised learning can significantly improve failure analysis by predicting the failure modes of 

composites (e.g. delamination, crack propagation, matrix cracking, or fibre pullout) using 

historical experimental failure data 31. These models can help engineers identify weaknesses in 

composite structures and inform design adjustments to prevent premature failure in critical 

applications. For example, a neural network might predict that a particular fibre and resin 

combination is more susceptible to delamination under high-stress conditions, allowing 

researchers to modify the material composition or lay-up design to improve performance and 

longevity 32. This approach is highly beneficial for industries such as aerospace, automotive, and 

marine, where material failure can lead to catastrophic consequences 33. In all these cases, 

supervised learning reduces reliance on physical trials, allowing researchers to make faster, data-

driven decisions when developing and optimizing polymer composites. This leads to cost and time 

efficiencies, along with more innovative material designs 34.

2.1.4 Common algorithms in supervised learning 

In supervised learning, various algorithms are applied based on the complexity and nature of the 

data involved. Here's a more detailed look at the common algorithms used in predicting properties 

and behaviors of polymer composites 35. The figure 3 shows the Algorithms of supervised learning.
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Figure 3. Algorithms of supervised learning.

1. Random Forests: A collection of decision trees used to improve prediction accuracy by 

aggregating outputs from multiple models.

2. Neural Networks: Models that capture complex, nonlinear relationships between inputs 

and outputs, useful for predicting multifaceted composite behaviors.

3. Linear Regression and SVMs: Simpler models that are often used for predicting properties 

like stress and strain under specific conditions.

2.2 Unsupervised Learning

Unsupervised learning techniques are used to analyze datasets without pre-defined labels, allowing 

models to uncover hidden patterns and relationships within the data. In polymer composites, 

unsupervised learning is useful for the followings 31,36. Process of the unsupervised learning is 

presented in Figure 4.

Random Forests

Neural Networks

Linear Regression and SVMs
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Figure 4. Process of unsupervised leaning.

2.2.1. Material Discovery

Clustering algorithms are used to group materials based on shared properties or performance 

characteristics, especially when researchers don't have predefined labels or classifications 37,38. 

This technique is invaluable for discovering new composite formulations by revealing patterns in 

the data. For example, clustering can identify groups of materials with high strength-to-weight 

ratios, making them ideal candidates for aerospace or automotive applications where lightweight 

yet strong materials are critical. By grouping composites with similar mechanical, thermal, or 

electrical properties, clustering helps researchers focus on promising material combinations, 

reducing the time and effort required for experimental testing 39.

2.2.2. Anomaly Detection

In manufacturing, unsupervised learning techniques such as clustering can be used to detect 

anomalies in processing data or material properties. These methods can identify unusual patterns 

or outliers in the data, signalling potential defects in the composite structure, such as delamination, 

voids or improper curing. For example, clustering methods such as k-means can highlight data 

points that deviate significantly from the norm, ensuring that these deviations are addressed before 

they lead to major problems 40. This improves quality control, ensures production consistency and 

minimizes material waste, which is vital for industries that demand high reliability and safety.
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2.3 Reinforcement Learning

Reinforcement learning (RL) is a type of ML in which agents learn to make decisions by 

interacting with an environment and receiving feedback in the form of rewards or penalties. In 

polymer composites 41. Figure 5 shows the application of RL. 

Figure 5. Reinforcement learning (RL) uses.

Reinforcement Learning (RL) plays a crucial role in both process optimization and composite 

design. In process optimization, RL algorithms can dynamically adjust parameters such as 

temperature, pressure, and time in manufacturing processes such as curing, molding, or extrusion 
42. By learning through trial and error, RL identifies the optimal set of conditions that maximize 

performance and minimize defects, making it particularly effective in complex, ever-changing 

production environments.

In composite design, RL explores a wide range of design variables including fibre orientation, 

matrix composition and filler content. Over time, RL models learn to balance competing 

performance criteria such as strength, durability and weight, leading to the development of 

optimized composites for specific applications, such as lightweight yet strong materials for 

aerospace or automotive use 43.

Reinforcement learning (RL) 

Process Optimization

Composite Design
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2.4 Deep Learning

Deep learning (DL), a subset of ML based on multi-layer artificial neural networks, excels at 

handling large, complex datasets and capturing intricate patterns 44. In polymer composites, deep 

learning is particularly effective for the following and is shown in Figure 6.

Figure 6. Deep learning application.

2.4.1. Complex Pattern Recognition

Deep learning models, such as Convolutional Neural Networks (CNNs), are highly effective at 

recognizing complex, non-linear relationships between composite microstructures and their 

properties 45. For example, CNNs can analyse micrographs or 3D images of composite structures 

and identify critical features such as fibre orientation, voids or microcracks that affect the 

mechanical performance of the material. By automatically recognizing these patterns, CNNs help 

researchers better understand how microstructural arrangement affects properties such as tensile 

strength and fatigue resistance, leading to improved material design and more accurate predictions 

of material behavior 46.

2.4.2. Prediction of Nonlinear Behaviors

Many properties of polymer composites, such as fatigue resistance, thermal expansion and creep, 

exhibit non-linear behaviour that is difficult to predict using traditional methods 47. Recurrent 

Neural Networks (RNNs), which are designed to capture sequential dependencies, are well suited 

to modelling these complex time-dependent behaviours. RNNs can be used to predict the long-

Deep Learning

Complex Pattern Recognition

Prediction of Nonlinear Behaviors

Defect Detection
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term performance of composites under varying conditions of stress, strain or temperature by 

learning from historical data. This allows engineers to predict the fatigue life or thermal stability 

of a material over extended periods of time, helping in the development of more durable and 

reliable composites 48.

2.4.3. Defect Detection

In composite manufacturing, deep learning models are transforming defect detection through their 

ability to analyse image data from non-destructive testing methods such as X-ray, ultrasound or 

thermography 49. Trained deep learning algorithms can automatically detect defects such as 

delamination, voids or inclusions within the material, ensuring higher accuracy and consistency 

than manual inspection. This significantly improves quality assurance by identifying defects in 

real-time during production, reducing the likelihood of defective material entering the supply chain 

and improving overall product reliability and performance 50. Deep learning's ability to model 

high-dimensional data makes it a powerful tool for analyzing the complex behaviour of polymer 

composites. However, these models require large amounts of data and computational resources, 

which can be limiting in some cases 51.

2.5 Hybrid Models

Hybrid models combine ML techniques with traditional computational methods, such as FEA, to 

improve the accuracy and efficiency of predictions in polymer composites. These models leverage 

the strengths of both approaches: ML's data-driven pattern recognition and FEA's physics-based 

simulations 52. Figure 7 shows models in the ML.

Figure 7. Models in ML.

Models in 
Machine Lerning

ML-Augmented FEA Surrogate Models

Page 13 of 55 Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 4

/2
4/

20
25

 2
:5

9:
43

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5TA00982K

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta00982k


2.5.1. ML-Augmented FEA

ML can significantly enhance FEA by integrating predictive models to reduce computational costs 

and time. In this hybrid approach, ML algorithms can predict material properties or behaviors for 

specific configurations, which minimizes the need for extensive repeated simulations in FEA 53. 

For instance, instead of running multiple simulations to determine how a composite material will 

respond under different loading conditions, ML can quickly provide estimates based on historical 

data, effectively streamlining the simulation process 54. This is particularly beneficial in multi-

scale modelling, where the behaviour of composites is analysed at different length scales - from 

microstructural features to macroscopic properties. By combining the detailed analysis capabilities 

of FEA with the speed and efficiency of ML, researchers can achieve a more comprehensive 

understanding of composite behavior while significantly reducing the time and resources typically 

required for extensive simulations 55.

2.5.2. Surrogate models

Hybrid models frequently utilize ML to create surrogate models that approximate complex FEA 

simulations. Surrogate models act as simplified representations of the intricate relationships and 

behaviors captured by FEA, allowing for rapid evaluation of different design parameters without 

the need for full-scale simulations 56. This is particularly useful during the optimization of 

composite designs, where numerous configurations need to be assessed to identify the best-

performing options. By using surrogate models, engineers can quickly explore the design space, 

testing different combinations of materials, geometries and loading conditions, while significantly 

reducing the computational burden 57. This approach not only accelerates the design process, but 

also improves the predictive accuracy of polymer composite analysis, enabling faster innovation 

and more efficient development cycles. Overall, the integration of ML with traditional FEA and 

surrogate modelling represents a promising way to improve the efficiency and effectiveness of 

polymer composite analysis, ultimately leading to better designed materials with optimised 

properties 58.

ML is revolutionizing the way polymer composites are developed and optimized. By harnessing a 

variety of ML techniques, researchers can more effectively navigate the complexities of these 

materials, enabling faster discovery, improved performance and reduced costs. In the next section, 

we will discuss specific case studies where ML has been successfully applied to polymer 
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composites, showcasing its transformative potential 59. Table 1 shows the comparative analysis 

between different ML techniques with quantitative metrics 60.

Table 1 The comparative analysis between different ML techniques with quantitative metrics

ML 
Technique

Key 
Applications in 

Polymer 
Composites

Advantages Limitations Accuracy Computational 
Efficiency

Supervised 
Learning

Property 
prediction 
(e.g., tensile 
strength, 
elasticity)

High 
predictive 
accuracy (85-
95%)

Requires large 
labeled datasets 85-95% Moderate

Artificial 
Neural 
Networks 
(ANN)

Mechanical 
property 
estimation

Can model 
complex, 
nonlinear 
relationships

Prone to 
overfitting with 
small datasets

90-95% Moderate

Support 
Vector 
Machines 
(SVM)

Classification 
of composite 
types

Effective with 
small datasets

Computationally 
expensive for 
large datasets

85-92% Low (for large 
datasets)

Random 
Forest (RF)

Material 
selection and 
property 
prediction

Robust against 
overfitting

Requires careful 
parameter 
tuning

88-93% Moderate
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Unsupervised 
Learning

Clustering 
materials based 
on properties

No need for 
labeled data

Limited for 
direct property 
prediction

N/A High

Principal 
Component 
Analysis 
(PCA)

Feature 
reduction for 
composite 
datasets

Reduces 
dimensionality 
and improves 
efficiency

Can lose critical 
information N/A Very High

K-Means 
Clustering

Grouping 
materials based 
on similarities

Fast and 
scalable

Requires 
predefined 
cluster number

N/A High

Deep 
Learning

Microstructural 
analysis, 
failure 
prediction

High accuracy 
with large 
datasets

Requires 
significant 
computational 
resources

92-98%
Low (for 
training), High 
(for inference)

Convolutional 
Neural 
Networks 
(CNN)

Microstructure 
and defect 
detection

Excellent at 
image-based 
analysis

Computationally 
expensive 95-98%

Low (for 
training), High 
(for inference)

Recurrent 
Neural 
Networks 
(RNN)

Time-series 
prediction for 
material 
degradation

Captures 
sequential 
dependencies

Difficult to 
train, prone to 
vanishing 
gradient

90-95% Low
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Reinforcement 
Learning (RL)

Process 
optimization 
(e.g., injection 
molding, 
extrusion)

Learns 
optimal 
process 
parameters 
over time

Requires 
significant trial-
and-error data

N/A

Low 
(training), 
High (real-
time use)

This table provides a structured comparison of ML techniques in polymer composite research, 

helping researchers and industry professionals choose the most suitable approach based on 

accuracy, efficiency, and application needs.

3. Applications of ML in polymer composites

Machine learning has advanced considerably in the domain of polymer composites, offering 

innovative solutions throughout multiple phases of material development, including design, 

discovery, manufacturing, and failure prediction.  This section examines the practical applications 

of machine learning in polymer composites, emphasizing its role in accelerating material 

discovery, improving manufacturing processes, and predicting composite behavior 61,62.  Figure 8 

illustrates the applications of machine learning in polymer composites.
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Figure 8. Significant application of ML in polymer compsites.

3.1 Material design and discovery

One of the most promising applications of ML in polymer composites is material design and 

discovery. Traditional methods for discovering new composites involve extensive experimentation 

and trial-and-error, which can be both time-consuming and expensive. ML models, trained on large 

datasets of existing materials, can predict the properties of new composites before they are even 

synthesized [58].

3.1.1 Tailoring properties

By analyzing patterns in the relationships between composite compositions and their 

properties, ML algorithms can predict the outcomes of new combinations of polymers, fibres, and 

•Thermal Properties,
•Mechanical Properties
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•Failure mode prediction
•Monitoring Health

•Injection Molding
•Extrusion and Additive 
Manufacturing
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fillers. For instance, ML can help identify the optimal ratio of reinforcement to matrix material 

that maximizes tensile strength, thermal conductivity, or other desired properties while minimizing 

weight [59]. This predictive capability is particularly useful in industries such as aerospace and 

automotive, where material performance is critical, and optimizing compositions can lead to 

significant advantages [60]. For example, in the automotive industry, ML-driven simulations have 

helped determine the best fiber-matrix ratio for high-impact-resistant composites, enhancing 

vehicle safety while maintaining lightweight characteristics. Similarly, in aerospace, ML models 

have been employed to design carbon fiber composites that optimize stiffness and strength while 

ensuring manufacturability 65.

3.1.2. Accelerating discovery

ML enables the discovery of new materials that may not have been considered using 

traditional methods. Algorithms such as Bayesian optimization and genetic algorithms can explore 

vast design spaces more efficiently than manual approaches, identifying high-performance 

composites for specific applications [62]. This efficiency allows researchers to focus on the most 

promising material candidates, reducing the overall time and cost associated with material 

development.

Advanced ML algorithms, such as Bayesian optimization and genetic algorithms, 

efficiently explore large design spaces to identify high-performance polymer composites. 

Bayesian optimization, in particular, has proven effective in refining composite compositions to 

enhance mechanical properties such as tensile strength and flexural modulus 63.

A recent study demonstrated how genetic algorithms were applied to develop hybrid bio-

based composites with superior mechanical characteristics while maintaining environmental 

sustainability 64. These models significantly reduce material discovery time, allowing researchers 

to focus on promising candidates rather than relying solely on experimental synthesis.

3.2 Optimization of manufacturing processes

Manufacturing processes for polymer composites, such as injection molding, extrusion, and 

additive manufacturing (3D printing), involve complex variables such as temperature, pressure, 

and processing time. ML has been successfully applied to optimize these processes, reducing 

waste, improving efficiency, and ensuring consistent material quality [66].
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For example, ML-based predictive models have enabled defect reduction in glass fiber-reinforced 

composites by optimizing cooling rates and mold flow dynamics, leading to improved component 

durability and reduced production costs 59.

3.2.1 Injection molding

ML models can optimize critical injection moulding parameters such as mould 

temperature, cooling rate and pressure. By analysing historical production data, ML can predict 

settings that minimise defects such as warpage, voids or incomplete fills. This optimization ensures 

that the final product consistently meets stringent quality standards, ultimately enhancing 

production efficiency and reducing material waste [67].

For example, ML-based predictive models have enabled defect reduction in glass fiber-

reinforced composites by optimizing cooling rates and mold flow dynamics, leading to improved 

component durability and reduced production costs 68.

3.2.2 Extrusion and additive manufacturing

In extrusion processes, ML can help control variables such as die shape and extrusion speed 

to achieve desired fibre alignment or material density. In additive manufacturing, ML models can 

predict the effects of layer thickness, print speed, and material feed rate on the mechanical 

properties of finished composites. By optimizing these parameters, manufacturers can produce 

parts with consistent quality and minimize the need for costly post-processing steps [69].

In additive manufacturing (3D printing), ML plays a crucial role in predicting the effects 

of process parameters such as layer thickness, print speed, and material feed rate. These predictions 

help mitigate defects like porosity, layer delamination, and uneven fiber distribution.

For example, in thermoplastic-based composites, ML models have successfully identified 

ideal printing parameters to maximize interlayer adhesion and overall mechanical integrity, 

significantly improving the reliability of printed composite parts 70.

3.3 Predicting mechanical, thermal, and chemical properties

Predicting the mechanical, thermal, and chemical properties of polymer composites is a 

critical step in ensuring their suitability for specific applications [71]. ML has been used to develop 

models that can accurately predioct these properties based on material composition and processing 
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parameters. Accurate prediction of polymer composite properties is essential for their application 

in structural, thermal, and chemically harsh environments. 

3.3.1 Mechanical properties

ML models are widely used to predict key mechanical properties such as tensile strength, 

fracture toughness and fatigue resistance. By training the algorithms on experimental data, 

researchers can predict how a composite will behave under different loading conditions, 

eliminating the need for extensive physical testing [72]. This predictive capability not only speeds 

up the material evaluation process, but also increases the reliability of performance predictions.

For example, in hybrid natural fiber-reinforced composites, ML models have been used to 

assess the impact of fiber orientation and fiber-matrix bonding on tensile and flexural strength. 

Researchers have utilized support vector regression (SVR) and deep learning models to estimate 

impact resistance under various loading conditions, streamlining material selection processes in 

structural applications 73.

3.3.2 Thermal properties

In industries such as electronics or aerospace, predicting thermal properties such as thermal 

conductivity and expansion is essential [74]. ML algorithms trained on datasets of composite 

formulations can provide insight into how different reinforcement materials and matrix 

compositions affect thermal stability. This capability can assist designers in selecting appropriate 

materials for high-temperature environments, ensuring optimal performance and safety [75].

In aerospace and electronics applications, predicting thermal conductivity and expansion 

behavior is crucial. ML models trained on composite formulations and thermal cycling data have 

been used to develop high-temperature-resistant composites for jet engine components 76,77.

For instance, convolutional neural networks (CNNs) have been employed to analyze the 

effects of nanoparticle fillers on thermal stability in polymer composites, identifying optimal filler 

loadings that maximize heat dissipation while maintaining mechanical integrity 78. Additionally, 

decision tree algorithms have assisted in selecting polymer matrices that provide superior thermal 

insulation for aerospace applications, preventing thermal degradation under extreme conditions 79.

3.3.3 Chemical resistance
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ML models can also predict the chemical resistance of polymer composites, which is 

crucial for applications in harsh environments. By analyzing the molecular structures of polymers 

and reinforcements, ML can prediıct how a composite will react to exposure to chemicals, 

moisture, or UV radiation. This predictive capability helps in the selection of materials that will 

maintain integrity and performance under adverse conditions [79].

For example, an ML model trained on experimental data for bio-based epoxy composites 

successfully predicted long-term resistance to acidic and alkaline environments, assisting 

industries such as marine and chemical processing in selecting durable materials for extreme 

operating conditions 80.

3.4 Failure prediction and health monitoring

Polymer composites are often used in critical applications where material failure can have severe 

consequences. ML has been used to predict failure modes such as delamination, cracking, or fibre-

matrix debonding, allowing for preventive maintenance and improved safety 80. ML-driven failure 

prediction and health monitoring techniques improve reliability and enable predictive maintenance 
81.

3.4.1 Failure mode prediction

ML models can analyze data from nondestructive testing (NDT) methods, such as 

ultrasound or X-ray, to predict when and how a composite will fail. By identifying early signs of 

damage or degradation, these models can estimate the remaining useful life of the composite, 

enabling proactive maintenance and reducing the risk of catastrophic failures. ML-based 

nondestructive testing (NDT) techniques, such as X-ray and ultrasound image analysis, detect 

early-stage defects in composites.

For instance, deep learning models trained on ultrasonic inspection datasets have 

successfully classified delamination patterns in fiber-reinforced composites with over 95% 

accuracy, allowing for early maintenance interventions. Additionally, reinforcement learning 

algorithms have been used to predict microcrack initiation and propagation in aerospace 

composites, preventing in-service failures and ensuring structural integrity 82.

Page 22 of 55Journal of Materials Chemistry A

Jo
ur

na
lo

fM
at

er
ia

ls
C

he
m

is
tr

y
A

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
A

pr
il 

20
25

. D
ow

nl
oa

de
d 

on
 4

/2
4/

20
25

 2
:5

9:
43

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5TA00982K

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta00982k


3.4.2 Health monitoring 

Real-time health monitoring systems use sensors embedded in composite structures (such as wind 

turbine blades or aircraft wings) to collect continuous data on stresses, strains and environmental 

conditions83. ML algorithms process this data to detect anomalies, providing early warning of 

potential failures and facilitating timely intervention. This capability increases the overall safety 

and reliability of composites in critical applications.

Embedded sensor networks in composite structures collect real-time data on stress, strain, and 

environmental conditions. ML algorithms process this data to detect anomalies indicative of 

impending failure 84.

For example, in wind turbine blades, recurrent neural networks (RNNs) have been used to analyze 

vibration and load data, predicting material degradation trends and enabling proactive 

maintenance. This approach has extended the operational lifespan of composite blades and reduced 

maintenance costs significantly. Similarly, ML-driven anomaly detection in aircraft fuselage 

composites has improved safety by identifying stress concentration points that could lead to 

structural failures 85.

4.0 Recent advancements in ML-IAPs for macromolecular/polymer systems

Machine learning has significantly enhanced the field of polymer composites by expediting 

material discovery, optimizing manufacturing processes, accurately predicting properties, and 

improving failure detection 8,59,83. With ongoing advancements in ML algorithms and data 

availability, the integration of ML in composite research and manufacturing will continue to drive 

innovation and efficiency in various industries, including aerospace, automotive, and biomedical 

applications.

Recent advancements in machine learning-based interatomic potentials (ML-IAPs) have 

significantly enhanced the simulation and analysis of macromolecular and polymer systems. These 

developments bridge the gap between quantum mechanical accuracy and computational efficiency, 

enabling the exploration of complex molecular behaviors that were previously computationally 

prohibitive 86.

Key developments:
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1. Integration of long-range interactions: Traditional ML-IAPs often focused on short-range 

interactions, neglecting long-range effects crucial for accurate simulations of polymers and 

macromolecules. Recent approaches, such as the Sum-of-Gaussians Neural Network 

(SOG-Net), integrate long-range interactions by employing a latent-variable learning 

network and efficient Fourier convolution layers. This method adaptively captures diverse 

long-range decay behaviors while maintaining computational efficiency, making it 

effective for large-scale simulations 87. 

2. Equivariant neural networks: To enhance the robustness and accuracy of ML-IAPs, 

researchers have developed equivariant graph neural networks that respect the symmetries 

of Euclidean space. These networks improve sample efficiency and model robustness, 

addressing challenges related to data scarcity and model generalization. Notable 

contributions include E(3)-equivariant models that have demonstrated data-efficient 

learning and high accuracy in predicting molecular properties 88. 

3. Deep learning for structural-property relationships: Deep learning models have been 

employed to connect molecular structural ordering to macroscopic properties. For instance, 

studies have demonstrated that deep-learning interatomic potentials can link the structural 

ordering of polyacrylonitrile at the molecular level to its macroscopic properties, providing 

insights into polymer design and performance 89. 

4. Incorporation of nonlocal Interactions: Accurately modeling nonlocal interactions, such as 

dispersion and electrostatic effects, is essential for realistic simulations of polymer systems. 

Recent ML-IAPs incorporate these interactions by augmenting traditional models with 

dispersion corrections and electrostatic calculations derived from atomic environment 

descriptors. These enhancements improve the predictive power of ML-IAPs for complex 

molecular systems 90.

Despite significant progress, challenges remain in developing ML-IAPs for polymer systems. 

Accurately modeling the hierarchical structures and diverse topologies of polymers requires 

sophisticated descriptors and comprehensive training datasets. Ensuring the physical 

interpretability of ML-IAPs is also crucial for their acceptance in the scientific community. Future 

research is directed towards refining these models, enhancing data diversity, and improving the 
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integration of long-range interactions to fully harness the potential of ML-IAPs in polymer science 
91.

These advancements position ML-IAPs as powerful tools for simulating and understanding the 

complex behaviors of macromolecular and polymer systems, paving the way for accelerated 

discovery and design of novel polymer materials with tailored properties.

5.0 Machine learning for sustainable polymer composites

Sustainable polymer composites focus on utilizing bio-based, biodegradable, and recyclable 

materials to mitigate environmental impact. These materials play a crucial role in advancing green 

manufacturing and reducing dependency on petroleum-based polymers. However, their 

development poses challenges such as optimizing mechanical properties, ensuring durability, and 

predicting degradation behavior 92. Machine Learning (ML) offers powerful tools to accelerate 

research and development in sustainable polymer composites by analyzing large datasets, 

predicting material behavior, and optimizing formulations for better performance 8,93.

5.1 Biodegradable and bio-based composites

Biodegradable and bio-based polymer composites are derived from renewable resources such as 

natural fibers (e.g., jute, flax, hemp, kenaf, banana), biopolymers (e.g., polylactic acid (PLA), 

polyhydroxyalkanoates (PHA)), and plant-derived resins 94. ML algorithms are instrumental in 

selecting and optimizing these materials by predicting their mechanical, thermal, and degradation 

properties.

• ML-driven material selection: Traditional trial-and-error methods for material selection are 

time-consuming and costly. ML models trained on extensive databases of natural fibers 

and bio-polymers help researchers predict the best fiber-matrix combinations for specific 

applications 95.

• Example: A deep learning model trained on datasets of flax-reinforced bio-epoxy 

composites accurately predicted their tensile strength, impact resistance, and 

biodegradability, reducing the need for extensive experimental testing.
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• Case study: A random forest algorithm successfully identified optimal processing 

conditions for kenaf fiber-reinforced PLA composites, improving their mechanical 

properties while maintaining biodegradability.

5.2 Waste polymer recycling and reusability

Recycling polymer waste into high-performance composites is a sustainable alternative to landfill 

disposal. However, maintaining mechanical properties while reusing polymer waste is 

challenging. ML helps optimize formulations of recycled polymer blends by predicting the best 

mixing ratios and identifying potential property enhancements 96.

• Optimizing recycled polymer blends: ML models predict the impact of recycled polymer 

content on strength, elasticity, and durability by analyzing large datasets of experimental 

results.

• Example: Researchers used a neural network to optimize the formulation of recycled PET-

based composites, achieving a balance between mechanical performance and 

environmental sustainability.

• Hybrid ML approaches: Combining genetic algorithms and artificial neural networks 

(ANNs) has enabled the design of recycled HDPE composites with enhanced toughness 

and reduced brittleness.

• Industrial application: Companies leveraging ML have developed recycled polypropylene 

(PP) composites reinforced with cellulose fibers, successfully competing with virgin PP 

composites in mechanical performance.

1.3 Predicting the lifespan of sustainable composites

One of the major concerns with sustainable composites is their long-term stability and degradation 

behavior. ML-based predictive models assess aging behavior and mechanical deterioration, 

reducing the need for extensive long-term testing 97.

• Failure and degradation analysis: ML models analyze historical data on degradation 

pathways, enabling more accurate predictions of composite durability.
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• Example: ML algorithms trained on biocomposites made from PLA and natural fibers 

predicted their aging behavior under different environmental conditions (humidity, 

temperature, UV exposure).

• Predictive maintenance: In industries such as automotive and construction, ML-powered 

monitoring systems analyze composite wear and fatigue patterns, predicting failure points 

before they occur.

• Case study: A support vector machine (SVM) model was used to forecast the degradation 

of PHA-based marine biodegradable composites, ensuring their structural integrity in 

underwater applications.

By integrating ML-driven optimization, predictive analytics, and failure modeling, the 

development of sustainable polymer composites becomes more efficient, cost-effective, and 

environmentally friendly, paving the way for next-generation green materials 98.

6.0 Machine learning in energy storage materials

Energy storage materials, such as batteries and super capacitors, play a crucial role in advancing 

renewable energy technologies and electrification. The efficiency, longevity, and sustainability of 

these materials are essential for developing high-performance energy storage systems 99. Machine 

learning (ML) accelerates the discovery, characterization, and optimization of these materials by 

enabling predictive modeling of their electrochemical behavior, stability, and environmental 

impact. By leveraging vast datasets and complex algorithms, ML-driven approaches reduce 

experimental trial-and-error efforts and enhance material selection and processing techniques. 

Some of the key ML Applications in Energy Storage 100:

6.1 Lithium-ion and next-generation batteries

• Electrode Material Discovery: ML models analyze extensive databases of electrode 

materials, identifying promising candidates with high energy density, fast charge/discharge 

rates, and long cycle life. Deep learning models, trained on first-principles and 

experimental data, provide insights into electronic structure, phase stability, and diffusion 

properties of battery materials 101.
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• Example: A neural network trained on thousands of battery materials successfully 

predicted new lithium-rich cathode compositions with a 20% higher energy density and 

improved thermal stability, reducing degradation over multiple charge cycles. Researchers 

also applied reinforcement learning techniques to optimize the composition of high-

capacity silicon anodes, enhancing mechanical stability and charge retention 102.

6.2 Sustainable super capacitors and bio-based electrodes

• Bio-Based Carbon Electrodes: ML aids in optimizing the synthesis of supercapacitor 

electrodes from biomass-derived carbon sources (e.g., lignin, cellulose, coconut shell, and 

algae-based precursors) 103. By modeling the relationships between pyrolysis conditions, 

pore structures, and electrochemical performance, ML can predict the optimal processing 

parameters for high-performance bio-based electrodes 104,105.

• Example: ML-driven optimization of lignin-derived activated carbon led to the 

development of high-surface-area electrodes with exceptional capacitance retention and 

low internal resistance. These sustainable electrodes improved the energy and power 

density of supercapacitors while reducing reliance on petroleum-derived carbon materials 
106.

6.3 Electrolyte and binder optimization

• Predicting green electrolytes: ML models facilitate the discovery of environmentally 

friendly electrolytes by screening potential solid-state or bio-derived electrolyte 

formulations. These models assess ionic conductivity, thermal stability, and 

electrochemical window, enabling the replacement of hazardous organic solvents with 

safer alternatives 107.

• Example: A random forest model identified novel ionic liquid-based electrolytes with high 

conductivity and low toxicity, making them ideal for next-generation batteries and 

supercapacitors. Additionally, ML-assisted molecular simulations helped design polymer-

based electrolytes with improved ionic transport and mechanical flexibility, paving the way 

for flexible and wearable energy storage devices 108.
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By integrating ML into energy storage material research, scientists and engineers can accelerate 

the transition toward more efficient, sustainable, and eco-friendly energy storage solutions. ML-

driven insights not only expedite material discovery but also improve the recyclability and 

environmental footprint of batteries and supercapacitors, contributing to a greener energy future 
109.

7. Machine learning for green manufacturing

Green manufacturing aims to improve efficiency while minimizing environmental impact by 

reducing energy consumption, material waste, and pollution in industrial production. ML has 

emerged as a transformative tool for optimizing manufacturing processes, enabling real-time 

monitoring, predictive analytics, and sustainability assessments 110. By integrating ML into green 

manufacturing, industries can achieve higher efficiency, lower costs, and a reduced carbon 

footprint.

7.1 Process optimization in polymer production

Manufacturing polymer-based materials involves complex processes such as injection molding, 

extrusion, and additive manufacturing, requiring precise control over parameters like temperature, 

pressure, and cooling rates to ensure product quality and energy efficiency. Traditionally, process 

optimization relies on trial-and-error experimentation, which is time-consuming and resource-

intensive 111. ML provides a data-driven approach to dynamically optimize these processes, 

improving efficiency and reducing waste. Key applications of ML in polymer manufacturing 

include real-time process monitoring, where ML algorithms analyze sensor data to predict 

deviations and suggest immediate adjustments; adaptive process control, where reinforcement 

learning models continuously learn from production data to automatically adjust process 

parameters for improved quality and energy savings; and defect detection and correction, where 

computer vision and deep learning models identify defects in polymer production, minimizing the 

need for post-production inspections and rework 112.

Example:

• An ML-powered predictive control system implemented in an industrial polymer extrusion 

plant optimized temperature and pressure parameters, reducing energy consumption by 

15% while maintaining high product quality 113.
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• A convolutional neural network (CNN) was used to detect surface defects in polymer film 

production, minimizing material rejection rates and enhancing product consistency 114.

7.2 Carbon footprint reduction and life cycle assessment (LCA)

Life Cycle Assessment (LCA) is a crucial method for evaluating the environmental impact of 

materials and processes from raw material extraction to end-of-life disposal. However, traditional 

LCA approaches are computationally expensive and time consuming due to the complexity of 

materials, energy flows, and emissions data 115. ML significantly enhances LCA by rapidly 

predicting environmental impacts based on material composition, processing methods, and energy 

consumption patterns, making sustainability assessments more efficient. Key ML applications in 

carbon footprint reduction include AI-powered sustainability assessments, where ML models 

analyze historical LCA datasets to estimate environmental impact without extensive manual 

calculations; eco-friendly material selection, where ML predicts the carbon footprint of different 

polymer formulations, enabling manufacturers to choose sustainable alternatives; and process 

emission optimization, where ML-based simulations refine production methods to minimize 

greenhouse gas emissions and improve overall environmental sustainability 116.

Example:

• A deep learning model analyzed over 200 polymer manufacturing pathways, identifying 

process modifications that reduced carbon emissions by 30% without compromising 

material properties 117.

• ML was used to predict the environmental impact of bio-based polymer composites, 

guiding industries toward low-carbon alternatives in automotive and packaging 

applications 118.

7.3 Predictive maintenance for sustainable manufacturing

Equipment failures in polymer manufacturing result in unplanned downtime, material waste, and 

increased energy consumption. Predictive maintenance, powered by ML, mitigates these issues by 

identifying potential failures before they occur 119. By analyzing historical performance data, real-
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time sensor readings, and machine operating conditions, ML models predict breakdowns and 

recommend preventive actions. Key ML applications in predictive maintenance include failure 

prediction, where time-series analysis detects early signs of machine wear, minimizing unexpected 

failures; intelligent scheduling, where AI-driven models optimize maintenance timing to reduce 

production disruptions; and defect minimization, where ML detects anomalies in production 

processes, enabling corrective actions before defective products are manufactured, ultimately 

improving efficiency and sustainability 120.

Example:

• A deep learning-based predictive maintenance system in a polymer injection molding plant 

detected early signs of machine failure, reducing unplanned downtime by 40% and material 

waste by 25% 121.

• ML was used in 3D printing of polymer composites to predict and correct print defects in 

real-time, reducing the need for failed print iterations and minimizing material waste 122.

5. Challenges and future directions

While machine learning (ML) has shown great potential in revolutionizing polymer 

composite research, several challenges need to be addressed for its widespread adoption and 

effective implementation. These challenges include data-related limitations, model 

interpretability, integration with traditional computational methods, and the necessity of physics 

informed ML models. Additionally, ensuring sustainability in polymer composite development 

remains a key concern 123. This section discusses these obstacles and proposes future research 

directions to improve the reliability, accuracy, and applicability of ML models in this field. Figure 

9 illustrates the challenges in the ML.
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Figure 9. Challenges in ML.

5.1 Data-related challenges

5.1.1 Scarcity of high-quality data

One of the most significant challenges in applying ML to polymer composites is the limited 

availability of high-quality datasets. Polymer composites encompass a wide range of materials 

with diverse compositions and properties, making data collection complex. Furthermore, many 

composite formulations are developed for niche applications, resulting in a lack of publicly 

available data. Insufficient datasets can lead to overfitting, where ML models perform well on 

training data but fail to generalize to new cases 124.
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5.1.2 Data standardization and quality

The lack of standardized data formats across industries and research domains further complicates 

ML applications. Inconsistencies in measurement units, experimental methods, and data recording 

practices hinder the development of robust ML models 125. Moreover, experimental data may 

contain noise or inconsistencies, reducing the accuracy of ML predictions. Establishing 

comprehensive, high-quality, and standardized datasets is crucial for advancing ML applications 

in polymer composites.

5.2 Model interpretability and physical understanding

5.2.1 Trade-off between accuracy and interpretability

Many ML models, especially deep learning algorithms, function as "black boxes," offering high 

accuracy but limited interpretability. This lack of transparency poses a challenge in polymer 

science, where understanding the underlying material behavior is crucial. Researchers must strike 

a balance between model accuracy and interpretability to ensure that ML predictions provide 

meaningful scientific insights 126.

5.2.2 Physics-informed ML models

Integrating physics-based knowledge into ML models is essential for ensuring reliable and 

physically consistent predictions. Traditional ML approaches rely solely on data-driven learning, 

which may lead to physically implausible results 127. By incorporating first-principles calculations, 

such as density functional theory (DFT) or molecular dynamics (MD) simulations, ML models can 

enhance their predictive capabilities while maintaining adherence to established physical laws.

5.3 Integration with traditional computational methods

5.3.1 Hybrid Approaches for efficiency

Traditional computational techniques, such as finite element analysis (FEA) and computational 

fluid dynamics (CFD), provide high-fidelity simulations but are computationally expensive. ML 

models can accelerate these simulations by serving as surrogate models, significantly reducing 

computational costs 128. For example, ML models trained on a subset of FEA simulations can 

predict stress distributions in composites without running full simulations, expediting the design 

and optimization process.
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5.3.2 Enhancing ML with synthetic data

In scenarios where experimental data is scarce, physics-based simulations, including finite element 

analysis (FEA) and molecular dynamics (MD), can produce high-fidelity synthetic datasets that 

serve to enhance machine learning training 129.  This hybrid approach improves model 

generalization by integrating fundamental material behavior and physical laws, thereby 

minimizing dependence on extensive experimental datasets.  Furthermore, physics-informed 

machine learning models have the capability to enhance predictions by applying constraints based 

on established scientific principles, thereby ensuring alignment with real-world phenomena 130.  

Researchers can enhance the reliability and interpretability of machine learning models for 

polymer composites and related materials by integrating data-driven learning with first-principles 

calculations.

5.4 Promoting sustainability and environmentally friendly composites

5.4.1 Eco-friendly material discovery

ML can facilitate the discovery of biodegradable and recyclable polymer composites by predicting 

their environmental impact based on chemical composition and processing methods. By screening 

vast material libraries, ML can identify sustainable alternatives that balance performance with 

ecological benefits 131.

5.4.2 Optimizing recycling and circular economy processes

ML algorithms can optimize polymer composite recycling by identifying the best conditions for 

material recovery and reuse. For instance, ML models can predict the mechanical properties of 

recycled polymers, allowing manufacturers to adjust processing conditions accordingly 132. This 

approach reduces waste, promotes circular economy principles, and minimizes reliance on virgin 

raw materials.

5.5 Integration with traditional computational methods

The FEA computational fluid dynamics (CFD), and other traditional computational methods have 

long been used to simulate the behavior of polymer composites. However, these methods can be 

computationally expensive and time-consuming, especially for complex, large-scale problems. 
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Integrating ML with traditional methods can offer a more efficient and comprehensive approach 

to composite analysis 133.

5.5.1 Speed and efficiency

ML models can be trained to predict the outcomes of computational methods like FEA 

much more quickly, reducing the time required for simulations. For example, a trained ML model 

could predict stress distributions in composite materials without running a full FEA simulation, 

allowing for rapid optimization during the design process 134.

5.5.2 Accuracy enhancement

Conversely, traditional computational methods can enhance ML models by providing high-

fidelity synthetic data. This data can be used to train ML algorithms when experimental data is 

unavailable or insufficient 135.

5.6 Promoting sustainability and environmentally friendly composites

Sustainability is an increasingly important consideration in materials science, and polymer 

composites are no exception. The development of eco-friendly composites, efficient recycling 

methods, and sustainable manufacturing processes is essential to reduce the environmental impact 

of polymer composites. ML can play a critical role in achieving these goals 136.

5.6.1 Eco-friendly material discovery

ML can accelerate the discovery of biodegradable or recyclable composites by identifying 

material formulations that combine high performance with environmental sustainability. 

Algorithms can predict the environmental impact of different composites based on their chemical 

compositions and manufacturing processes, guiding researchers toward greener alternatives 137.

5.6.2 Optimizing recycling processes

ML models can also optimize the recycling of polymer composites by identifying the best 

processing conditions for recovering valuable materials such as fibres or polymers. This will 

enable more efficient reuse of composite materials, reducing waste and the need for virgin raw 

materials137.

6. Case studies on ml-guided experimental validation
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6.1. ML-driven discovery of high-performance polymers

6.1.1 ML prediction and experimental validation

A research team aimed to develop a high-performance polymer blend for aerospace applications. 

They trained a machine learning model on large datasets of polymer properties, including 

molecular weight, chain structure, and cross-linking density. The model predicted polymer 

formulations with high strength and thermal stability 138. Several polymer blends were synthesized 

and subjected to mechanical testing (e.g., tensile strength, elongation at break) and thermal analysis 

(e.g., thermogravimetric analysis and differential scanning calorimetry).

6.1.2 Experimental feedback and model refinement

Despite initial ML predictions, some synthesized blends exhibited inconsistent thermal stability in 

real-world tests. The ML model underestimated polymer chain rigidity and cross-linking behavior, 

leading to suboptimal performance. To improve accuracy, the model was retrained with additional 

features such as polymer chain stiffness and cross-linking density 139. After refinement, the updated 

model successfully predicted a new polymer blend that met strength requirements and 

demonstrated superior thermal stability, resulting in an advanced composite material for aerospace 

applications 79.

6.2. ML for high-energy lithium-ion batteries

6.2.1 ML prediction and experimental validation

A deep learning model was trained on a dataset of known cathode materials, focusing on chemical 

composition and electrochemical behavior. The goal was to predict materials with higher energy 

density and longer cycle life. Several ML-predicted cathode materials were synthesized and tested 

in coin cell batteries for charge/discharge capacity, cycle life, and rate capability 140.

6.2.2 Experimental feedback and model refinement

Although some materials exhibited high energy densities, they degraded quickly after a few 

hundred charge cycles due to structural instability. This issue was not fully accounted for by the 

initial ML model 141. The model was refined by incorporating additional descriptors related to 
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structural stability, ionic conductivity, and crystallographic properties. With these refinements, the 

updated ML model successfully predicted a new cathode material that demonstrated both higher 

energy density and improved cycle life, outperforming traditional lithium cobalt oxide (LiCoO₂).

6.3. ML-driven discovery of sustainable biodegradable composites

6.3.1 ML prediction and experimental validation

Researchers used an ML model to predict optimal fiber-resin combinations for sustainable 

biodegradable composites. The model suggested several fiber (e.g., flax, hemp) and resin (e.g., 

PLA, PHA) combinations, which were synthesized and tested for mechanical strength (tensile, 

flexural) and biodegradability in soil and marine environments 142.

6.3.2 Experimental feedback and model refinement

While some composites showed strong mechanical performance, their biodegradation rates were 

inconsistent due to fiber-resin interactions affecting water absorption. The ML model was refined 

by incorporating additional factors like fiber-resin bonding and environmental exposure 

conditions. After retraining, the updated model identified a fiber-resin combination with both high 

strength and rapid biodegradation, making it ideal for eco-friendly packaging materials 143,144.

6. Future research directions

The application of ML in polymer composites is still in its early stages, and there are numerous 

opportunities for future research that can significantly enhance its impact in this field. The 

following areas highlight key research directions that can pave the way for more advanced 

applications of the ML in polymer composites 145.

6.1 Development of more robust ML models

Future research should focus on the development of more sophisticated ML models that can handle 

the complexity inherent in polymer composites. This includes:

6.1.1 Multi-scale modeling
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Research should prioritize the development of ML models that can operate across different 

scales, from atomic and molecular levels to macroscopic properties. By integrating multi-scale 

modeling techniques, researchers can capture the hierarchical structure of composites, thereby 

improving the prediction of composite behaviors that depend on microstructural features 146.

6.1.2 Nonlinear behavior handling

Many polymer composites exhibit nonlinear mechanical behaviors, particularly under 

varying loading conditions. Future models should incorporate algorithms capable of recognizing 

and accurately predicting these nonlinear responses, providing insights into how materials will 

perform under different stress and strain conditions 147.

6.1.3 Adaptive learning

Incorporating adaptive learning techniques can enhance the ability of ML models to update 

themselves as new data becomes available. This can be particularly useful in dynamic applications 

where material performance may change over time or in response to different environmental 

conditions 148.

6.2 Better Data generation techniques

The creation of high quality, standardized datasets remains a priority for the advancement of ML 

applications in polymer composites. Key areas of focus include:

6.2.1 High-throughput experimentation

Advances in experimental techniques that allow for the simultaneous testing of multiple 

composite formulations will be crucial. High-throughput experimentation enables researchers to 

quickly collect large datasets covering a wide range of material compositions and processing 

parameters, providing a solid foundation for training accurate ML models 149.

6.2.2 Synthetic data generation

In scenarios where experimental data is limited or difficult to obtain, the development of 

advanced simulation techniques to generate synthetic data can be beneficial. Researchers should 

focus on improving computational models that can simulate the behavior of composites under 

different conditions, creating a robust dataset that complements experimental findings 8,150.
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6.2.3 Data augmentation techniques

Exploring data augmentation strategies, such as using generative adversarial networks 

(GANs) or other statistical methods, can enhance the diversity and robustness of training datasets. 

This will help mitigate issues related to overfitting and improve the generalizability of ML models 
151.

6.3 Interdisciplinary collaboration

Collaboration between materials scientists, computer scientists, engineers and domain 

experts is essential to advance the application of ML in polymer composites. Interdisciplinary 

teams can achieve the following:

6.3.1 Bridging Expertise gaps

By bringing together experts from different fields, teams can combine their knowledge of 

material behavior, computational methods, and ML techniques 152. This collaboration will lead to 

the development of more effective ML models that consider both material science principles and 

advanced computational methods.

6.3.2 Innovative solutions

Interdisciplinary collaboration can foster creativity and innovation, leading to the 

discovery of novel approaches to complex problems in polymer composites. The integration of 

different perspectives can lead to breakthrough solutions that address pressing challenges in 

materials design, manufacturing and application 153.

6.3.3 Education and training

Promoting interdisciplinary education and training programs will help equip the next 

generation of researchers with the necessary skills to work effectively in cross-functional teams. 

This will enhance the capacity for collaboration and innovation in the field 154.

7. ML for new manufacturing techniques

As advanced manufacturing techniques such as 4D printing and smart materials develop, ML will 

be instrumental in optimizing these processes. Research opportunities in this area include:

7.1 Smart materials development
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ML can help design composites that respond to environmental stimuli such as temperature, 

humidity or mechanical stress. This could lead to the creation of materials that can adapt their 

properties or configurations in real time, improving their functionality and performance 155.

7.2 Self-healing composites

The design and development of self-healing polymer composites can benefit from ML by 

predicting the optimal formulations and processing conditions for enhancing healing capabilities. 

By analyzing the underlying mechanisms of self-healing, ML can guide the synthesis of materials 

that repair damage autonomously, thereby extending their service life 156.

7.3 Process optimization for additive manufacturing

In additive manufacturing, ML can be used to optimize process parameters such as print 

speed, layer thickness, and material feed rates. By predicting the effects of these parameters on the 

mechanical properties of finished parts, ML can help manufacturers produce high-quality 

composites with reduced waste and improved efficiency 24,157.

7.4 Real-time monitoring and control

The implementation of ML techniques for real-time monitoring and control of 

manufacturing processes can improve the quality assurance of polymer composites. ML 

algorithms can analyze sensor data during manufacturing to identify anomalies and adjust 

parameters on the fly to ensure consistent product quality 158. In conclusion, the integration of ML 

into the field of polymer composites offers a wealth of opportunities for advancing material design, 

manufacturing, and performance prediction 8,159. By addressing the challenges identified and 

pursuing the proposed research directions, the potential of ML can be fully realized, leading to 

innovative and sustainable solutions in polymer composite applications 160.

8. Conclusions

The incorporation of machine learning into polymer composites presents a significant opportunity 

to enhance the design, manufacturing processes, and performance forecasting of these materials.  

As the field develops, several key conclusions can be drawn:

• Machine learning can significantly enhance the performance of polymer composites 

through the discovery of novel material formulations and the optimization of their 
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properties.  Neural networks, support vector machines, and random forests are techniques 

utilized for the analysis of complex datasets. These methods are capable of identifying 

patterns and correlations that may not be detectable through traditional analytical 

approaches.  This facilitates the development of advanced composite solutions designed 

for particular applications, including lightweight structures in aerospace and biocompatible 

materials in medical devices.

• The effective implementation of machine learning in polymer composites depends on 

overcoming several challenges, such as data scarcity, standardization, and model 

interpretability.  Joint initiatives aimed at producing thorough, high-quality datasets, 

coupled with the advancement of interpretable models via explainable AI (XAI) and 

physics-informed machine learning, will improve the dependability and usability of 

machine learning in this field. 

• The intricate nature of polymer composites necessitates cooperation among various fields, 

such as materials science, computer science, and engineering.  Interdisciplinary 

partnerships will facilitate the exchange of knowledge and expertise, resulting in enhanced 

ML models and novel strategies for material development and processing.  Multi-fidelity 

modeling techniques can enhance collaboration by integrating high-fidelity simulations 

with machine learning predictions.

• ML-IAPs have revolutionized polymer simulations by enhancing accuracy and efficiency. 

Advances in long-range interactions, equivariant networks, and deep learning have 

improved material design and property prediction. Challenges remain in data availability 

and model interpretability, but continued research will unlock ML-IAPs' full potential, 

accelerating polymer discovery and optimization.

• The increasing importance of sustainability in materials science highlights the potential of 

machine learning to advance eco-friendly composites and recycling methods. Techniques 

such as life cycle analysis (LCA) and optimization algorithms play a crucial role in 

identifying biodegradable materials and improving recycling strategies, thus contributing 

to the reduction of the environmental impact linked to polymer composites.

• Future research should focus on the advancement of robust machine learning models that 

can effectively capture the complexities inherent in polymer composites. Additionally, 

there is a need to enhance data generation techniques, including high-throughput 
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experimentation and synthetic data generation.  The investigation of advanced 

manufacturing methods, such as 4D printing and smart materials, presents significant 

opportunities for future research that may result in innovative applications across multiple 

industries. 

 The convergence of machine learning and polymer composites presents significant potential for 

advancing innovation and promoting sustainability within the field of materials science.  

Addressing current challenges, leveraging advanced techniques, and pursuing future research 

directions will enable the field to harness the full potential of machine learning. This approach 

aims to create high-performance, environmentally friendly composite materials that satisfy the 

requirements of contemporary applications.
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