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The full integration of sustainable technologies to combat climate change heavily depends on the discovery

of cost-competitive, safe, and durable performative materials, specifically for electrochemical systems that

can generate energy, store energy, and produce chemicals. Due to the vast exploration space, scientists

have adapted high throughput methods, both computational and experimental, for screening, synthesis,

and testing to accelerate material discovery. In this review, we analyze such high throughput

methodologies reported in the literature that have been applied to electrochemical material discovery.

We find that most reported studies utilize computational methods, including density functional theory

and machine learning, over experimental methods. Some labs have combined computational and

experimental methods to create powerful tools for a closed loop material discovery process through

automated setups and machine learning. Either way, over 80% of the publications we reviewed focus on

catalytic materials, revealing a shortage in high throughput ionomer, membrane, electrolyte, and

substrate material research. Moreover, we find that most material screening criteria do not consider cost,

availability, and safety, all of which are crucial properties when assessing the economic feasibility of

proposed materials. In addition, we discover that high throughput electrochemical material discovery

research is only being conducted in a handful of countries, revealing the global opportunity to

collaborate and share resources and data for further acceleration of material discovery. Finally, we

acknowledge the development of autonomous labs and other initiatives as the future of high throughput

research methodologies.
1. Introduction

Rising atmospheric and oceanic levels of CO2 and other
greenhouse gases have been associated with an increase in the
average global temperature.1,2 This phenomenon negatively
impacts Earth's ecosystems, and we have already seen proof
through extreme weather and temperature anomalies world-
wide. Growing demand for energy, food, and other resources
goes hand in hand with population growth in various devel-
oping countries.3,4 Such demands contribute to our output of
these harmful gases, especially if we continue our current
practices to meet them.5,6 Scientists around the world have
proposed and researched a plethora of technologies to reduce
CO2 emissions or mitigate the existing atmospheric and oceanic
CO2 concentrations. Some of these technologies include
nuclear, wind, and solar energies, direct air capture, large-scale
batteries for excess energy storage and powering vehicles,
esearch Institutes, Skokie, Illinois, 60077,

ul.org

tion (ESI) available. See DOI:

f Chemistry 2025
hydrogen fuel cells, water splitting, and electrochemical CO2

reduction to name a few.7,8

The accelerating climate crisis and rising energy demands
require sustainable electrochemical technologies for energy
storage, generation, and chemical production. Over the past two
decades, electrochemical technologies have gained much
attention due to improved material and reactor performance
and new material discovery, propelling commercialization and
scale-up. However, key performance benchmarks (e.g., activity,
selectivity, and energy efficiency) still need to be achieved before
such emerging technologies can compete economically with
existing fossil fuel-based processes.9–13 Material bottlenecks—
such as cost, durability, and scalability, continue to limit
progress. For example, precious metal catalysts such as plat-
inum, gold, and iridium are still state of the art for many elec-
trochemical reactions. At the same time, the substrates,
ionomers, membranes, and electrolytes used in the reactors
degrade over long-term operation, posing signicant chal-
lenges. Additionally, safety concerns must be considered when
scaling up the production and handling of such materials.
Overcoming these barriers requires discovering and
J. Mater. Chem. A, 2025, 13, 26041–26066 | 26041
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introducing new materials and methods that are more cost-
effective, stable, and safer to drive feasibility.

In recent decades, many researchers have successfully
identied, synthesized, and characterized promising materials
through standard benchtop chemistries and instruments. Yet,
the conventional approach in these studies involves proposing,
synthesizing, and testing one material, meaning that the
research and discovery timescale for each material can take
months or even years. Despite the multitude of groups across
the globe committed to developing electrochemical technolo-
gies, this rate of material discovery is simply not sufficient, as
we have yet to reach the needed benchmarks for feasibility.
High-throughput (HT) computational and experimental
methods offer a transformative solution by signicantly accel-
erating material discovery to meet these global challenges.14–17

Here, HT methods involve setups or techniques designed for
fully synthesizing, characterizing, screening, or analyzing
multiple materials samples in a shorter time than traditional
benchtop chemistry and engineering.

Unsurprisingly, the advancement and availability of theo-
retical prediction methods and supercomputing in the last 20–
30 years have encouraged the use of simulated chemistry
experiments. These simulations not only predict and explain
material performance but also suggest new materials for
synthesis and testing. Reported computational chemistry
studies in the literature depict the ability to explore and screen
materials in the order of 106 in a single project using methods
such as rst-principles density functional theory (DFT) and
advanced machine learning (ML) techniques, including deep
learning and active learning (AL). Moreover, HT experimenta-
tion has expanded with new setups created to test or charac-
terize tens or hundreds of samples in days instead of months or
Fig. 1 Schematic of high-throughput platforms for electrochemical mat
computational methods to enhance accuracy and speed in material s
framework. The challenges and experimental/computational consideratio
and case studies of this review.

26042 | J. Mater. Chem. A, 2025, 13, 26041–26066
years. As shown in Fig. 1, the integration between computa-
tional and experimental HT approaches is also promising and
imperative for fast-tracking material discovery, which will help
progress sustainable electrochemical technologies. Other
researchers have stressed the need for experimental validation
in HT computational screening workows as well.18

By screening millions of material candidates computation-
ally and validating the most promising experimentally, high-
throughput workows drastically reduce discovery timelines.
This acceleration is critical for achieving key performance
benchmarks required for the commercialization of renewable
technologies, such as green hydrogen production, carbon
capture, and advanced energy storage. Here, we review high-
throughput methods—both computational and experi-
mental—from the literature dedicated to discovering materials
(catalysts, electrolytes, ionomers, etc.) for electrochemical
energy applications. The objective of this review is to provide an
overview of the popular HT techniques, state-of-the-art mate-
rials, and novel setups to serve as a reference point for scientists
currently incorporating or initiating HT approaches into their
research. We rst highlight notable efforts with exceptional
performance or unique setups, as well as common focuses and
approaches. Finally, we provide an overview and a perspective of
gaps that are worth further exploration.
2. Computational methods

Over the past few decades, the utilization of computational
methods for material discovery has typically been driven by
three major goals: (i) providing a deep understanding of the
structure and structural dynamics of materials, as well as their
relationship with properties and catalytic activity, (ii) unraveling
erials discovery: an iterative feedback loop between experimental and
election and optimization. This figure presents the general workflow
ns are addressed in detail in the accompanying methodology sections

This journal is © The Royal Society of Chemistry 2025
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the underlying structure–function relationships to facilitate the
discovery of novel materials, and (iii) enabling exploration of
large chemical spaces to predict materials with superior prop-
erties.19,20 These goals can be achieved using a variety of
methods, including quantum mechanical calculations, atom-
istic simulations, and materials informatics. Nowadays, we can
tackle more complex systems that encompass multiple
components; however, modeling multiple experimental
parameters and processes that accompany the development of
these materials poses a great challenge for virtual material
screening. HT computational methodologies can effectively
undertake such multifactorial problems. Yet two of the most
signicant drawbacks of HT computational screening are (i)
developing a robust, effective, and efficient HT workow and
associated databases and (ii) nding the balance between cost
and accuracy when dealing with complex or large-scale
systems.21 This section reviews key methodologies and
descriptors utilized in the HT computational studies examined
herein, with a particular focus on DFT and ML, two of the most
common approaches applied in HT material discovery
campaigns in electrochemistry.
2.1 Common approaches

2.1.1 Density functional theory. Thanks to its relatively low
computational cost and semiquantitative accuracy, DFT has
been widely employed in materials science to predict properties
based on the electronic structure.22,23 DFT is rooted in quantum
and statistical mechanics, relying on principles derived from
these elds to nd approximate solutions to the Schrödinger
equation and determine the ground-state electronic density of
a material.24,25 Over time, DFT has provided deeper insight into
materials' electronic structure, enabling the prediction of
properties such as bandgaps, which are crucial for classifying
new materials as metals, semiconductors or insulators. A crit-
ical factor when applying DFT is the choice of the density
functional, which determines the accuracy and predictive power
of the simulations.22,26–29 While DFT is oen employed to
provide a static view of a system and characterize its intrinsic
properties, it can also be applied to investigate dynamic
behavior and the equilibrated structures under different
conditions, such as temperature and pressure. In this regard,
DFT can be used in conjunction with classical or ab initio
molecular dynamics and Monte Carlo simulations but at the
expense of higher computational costs.30–33

To further minimize the computational cost associated with
these calculations and facilitate large-scale material screening,
DFT has been extensively used to compute descriptors—quan-
tiable representations of specic properties that connect
complex electronic structure calculations and macroscopic
properties. An effective descriptor can serve as a valuable metric
for identifying promising candidates.34,35 A relevant example is
the study of electrocatalysts, which are typically evaluated based
on their reactivity toward a particular reaction. The reactivity
descriptor that can quantify the catalyst's activity is oen rep-
resented by the Gibbs free energy (DG) associated with the rate-
limiting step (RLS) of the reaction. In many cases, the RLS is
This journal is © The Royal Society of Chemistry 2025
determined by the adsorption of one or one set of given reac-
tants or intermediates. With this and the development of the
computational hydrogen electrode model by Nørskov et al.,36

adsorption energy has become a well-studied descriptor for
predicting catalytic activity. While activity and selectivity are
crucial metrics for a successful catalyst, other essential factors,
including chemical and electrochemical stability, must be
considered. A comprehensive list of commonly used descriptors
is provided in Section 2.1.2 and Table 1, and a detailed
description of the most common methodologies in computa-
tional HT is given in ESI Table S1.† While convergence thresh-
olds are system-dependent and therefore not directly
comparable across studies, readers are directed to the original
literature for application-specic optimization details.

2.1.2 Commonly used descriptors. Generally, descriptors
can be classied into ve categories, namely thermodynamic,
electronic, mechanical, geometric, and intrinsic structures.
Thermodynamic descriptors are the most frequently used,
relying on energetics to evaluate systems' behaviors; they oen
establish physical relationships with the target electrochemical
property, are readily calculated, and can be a good start for
quickly estimating energetic trends. Examples of such descrip-
tors include adsorption energies and theoretical overpotential
terms. These descriptors can also assess competing reactions
and their mechanisms. For instance, the adsorption-free energy
of the H atom (DGH) can describe activity towards the hydrogen
evolution reaction (HER), while DGCO, DGCHO, and DGOH

correlate with the electrochemical reduction of CO2 (eCO2RR).37

The selectivity between these reactions can be evaluated by
comparing the critical DGs of the HER and eCO2RR. Addition-
ally, thermodynamic descriptors can reect structural stability
under electrochemical conditions, including properties such as
surface energy, formation energy, segregation energy, decom-
position energies,57,66,67,78,79 dissolution potential44,60,63,78,80 and
Pourbaix diagrams.60,78

The second prominent descriptor type involves the elec-
tronic structure aspect and its derived properties, e.g., the d-
band center, band gaps, work functions, phonon spectra,
metal-induced electronic states, and charge variations. These
descriptors are typically obtained from DFT-level calculations,
unveiling atomic interaction and electronic features. However,
due to the complex impact of electronic structures on reactivity
and materials' properties, these descriptors may not indicate
the same trend when conducting structure prediction for
different systems. Mechanical descriptors, including elastic
constants, Young's modulus, and glass transition temperature,
are frequently reported in the literature, as they are used for
predicting and comparing experimentally measurable proper-
ties. Geometric descriptors are similarly valuable and can vary
based on material types. Examples include the rotation angle of
heterojunctions, the distance contribution descriptor, the
transition metal–oxygen bond length for mixed metal salts, and
the coordination number in alloys, among others.46,50 These
descriptors are oen directly calculated through structural
optimization, and no further electrochemical studies are
needed. Therefore, they are efficient in predicting the struc-
tures' properties when there is a clear structure–property
J. Mater. Chem. A, 2025, 13, 26041–26066 | 26043
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relationship. Finally, the intrinsic-structure descriptors gather
prior knowledge from either theories or experiments, and they
oen do not require DFT calculations. These descriptors vary by
material type and their respective properties such as the
number of valence electrons, dopant electronegativity, the
number of isolated d-orbital electrons, and the rst ionization
energy. These properties have been well studied and reported,
and hence these descriptors can be easily implemented in
material screening workows where the studied materials nor-
mally have well-dened structures. For HT studies and
screening, many researchers use multiple descriptors or modify
common descriptors to increase scrutiny and nd more appli-
cable materials.

2.1.3 Machine learning. ML models leverage mathematical
relationships and statistical methods to generate predictions,
oen without directly incorporating specic chemical knowl-
edge or theories. The training process involves feeding a model
a dataset (the training dataset), enabling it to recognize
patterns, trends, and relationships to then make predictions on
new, unseen data (the testing dataset).81 ML offers a diverse
array of learning algorithms; the selection depends on several
factors, such as the prediction task at hand, size and type of
data, and data quality, to name a few. Access to different algo-
rithms grants the choice of one that best suits the problem at
hand and minimizes error (e.g., root mean square error, RMSE)
while considering factors such as model interpretability,
complexity and computational efficiency.81 Table 1 highlights
several commonML algorithms employed in the computational
HT studies examined in this review, which include neural
networks (NNs), random forest regression (RFR), gradient
boosting regression (GBR) and Gaussian processes regression
(GPR). A more detailed table is available in the ESI.†

The integration of ML methods in HT material discovery
processes has already showcased multiple advantages.29

Different algorithms allow models to be trained on various data
types (graph, numeric, image, natural language, etc.) and enable
many different predictive tasks (regression, classication, data
generation, etc.). Thus, ML can be applied to a myriad of use
cases for materials discovery. For example, ML methods can
predict material synthesizability by analyzing existing experi-
mental data such as reaction conditions and time. In addition,
ML models or their key features can also accelerate DFT
calculation processes and reduce calculation workloads when
searching a vast compositional space. This is oen done by
training MLmodels using DFT data. Additionally, multiple data
sources (experimental, computational, literature, etc.) can be
integrated into ML models, making HT experiments and
calculations faster, more scalable, and more suitable for
complex multifactor-dependent material systems. Another
advantage ML methods offer is the ability to implicitly build
relationships and patterns between independent and depen-
dent variables, such as structural features (e.g., composition)
and macroscopic properties (e.g., conductivity), respectively,
within a dataset. Therefore, scientists can better understand
materials and then exploit these relationships to drive innova-
tion through inverse material design where ML models predict
hypothetical structures with targeted properties. The versatility
J. Mater. Chem. A, 2025, 13, 26041–26066 | 26047
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of ML makes it a powerful tool for creating new solutions to
computational materials discovery.

In recent years, the use of generative AI models (large
language models, diffusion models, reinforcement learning-
based generative models, etc.) in materials design has been on
the rise. Yet, generative AI is still limited to applications in
academia and research as evidence of its applications in
industry or production/manufacturing environments is lacking.
In research applications, scientists have applied generative AI to
aid in materials discovery. For example, Song et al. and Li et al.
applied inverse material design via ML to synthesize materials
with specic properties for electrochemical CO2 reduction or
high-capacity energy storage, respectively.82,83 Moreover, Alver-
son et al. utilized generative AI models such as variational auto-
encoders, generative adversarial networks, and genetic algo-
rithms as use cases for creating crystals and proposing new
structures.84 Additionally, Bang, Kim, Hong et al. expanded on
inverse design using generative AI models to discover materials
with multiple properties, rather than optimizing a single
property.85 While generative AI in materials discovery shows
promise in limited applications in electrochemical materials
discovery, it shares many of the pain points seen in other ML
methods, such as a lack of publicly available robust training
datasets and the limited ability of models to generalize outside
of training dataset distributions and to real world
experimentation.

While ML is a powerful tool that helps improve the quality
and efficiency of the HT materials discovery process in many
ways, it comes with drawbacks and challenges. First, insuffi-
cient high-quality data impede training accurate, generalizable
machine learning models.86 Data-intensive ML models such as
NNs and RFR require large, information-dense datasets for
suitable performance. Creating datasets from experimental
work, especially when traversing all possibilities of a material
database, is demanding as experiments are expensive and time-
consuming, require highly skilled experts, and are oen
proprietary. A lack of quality data can lead to poor model
predictions when exploring beyond a model's training dataset
distributions. Second, integrating multiple data sources (such
as experimental work and DFT simulations) to train ML models
lacks standardization, making collaborative efforts to solve
problems in the eld more challenging.87 Third, many ML
algorithms behave as a “black box”, making their predictions
challenging to trust and their proposed structure–property
relationships impossible to explain explicitly. Nevertheless,
these challenges can be addressed by building more robust and
interpretive models and placing an emphasis on standardizing
data handling practices.87

2.1.4 Density functional theory versus machine learning.
Both DFT and ML are useful methods for HTmaterial screening
and discovery. Yet, each has its own advantages that make one
more suitable for certain applications than the other. For
instance, DFT simulations tend to be computationally intensive
especially whenmodelling complex systems and large unit cells,
or exploring a large chemical search space, limiting their
feasibility for large scale screening. However, ML models, once
trained on reliable datasets, can enable rapid predictions of
26048 | J. Mater. Chem. A, 2025, 13, 26041–26066
properties at a fraction of the cost. This ability to scale easily
makes ML attractive for large scale screening tasks.

In contrast, the quality of ML models relies heavily on the
amount and diversity of high-quality datasets, and their
predictive ability oen degrades when predicting beyond the
distribution of the training sets. As a result, real-world appli-
cations of ML in HT discovery of materials require careful
consideration when curating a training dataset and can be
aided by uncertainty quantication and ongoing benchmarking
against DFT calculations and real-world experiments.

A hybrid approach that combines DFT and ML leverages the
complementary strengths of both methods to overcome their
individual limitations. DFT calculations provide high-delity,
physics-based training data with reliable energetics and elec-
tronic properties for well-dened material systems, serving as
the foundation for accurate ML model development. Quantum
chemical calculations ensure that the training dataset captures
the fundamental physical relationships between structures and
properties. Conversely, ML models trained on these high-
quality DFT data can rapidly screen candidate materials at
a larger scale with a fraction of the computational cost, enabling
exploration of vast chemical spaces that would be prohibitively
expensive using DFT alone. Readers are referred to Section 4 for
examples of the combinatorial approaches.

2.1.5 Limitations and considerations in computational
methods. While theoretical calculations have enabled signi-
cant advances in electrochemical materials discovery, several
fundamental limitations affect their application in high-
throughput screening.88 First, accuracy-efficiency trade-offs are
inherent to all computational methods. DFT functional selec-
tion signicantly impacts results, with different functionals
yielding distinct trends that can affect screening outcomes.
Second, reaction condition complexity presents major chal-
lenges, as electrochemical processes involve multiple variables
(electrolytes, pH, applied potentials, temperature, etc.) that are
computationally expensive to model explicitly. Many studies
rely on simplied models that may not capture realistic oper-
ating conditions, such as using DFT energies rather than free
energies, which are unable to obtain energetics at experimental
temperatures. Third, kinetic limitations are oen overlooked,
as most screening approaches use thermodynamic descriptors
rather than kinetic parameters, potentially missing important
rate-determining factors and complex reaction mechanisms.
Finally, transferability issues arise when force elds or ML
models trained on specic systems are applied to broader
materials classes without adequate validation.

Data reproducibility remains a major bottleneck in compu-
tational materials discovery. Experiments from which training
datasets are derived may have similar product compositions but
differ in the structure or properties due to changes in process
parameters. Reproducibility can be improved by thorough
capture of metadata and tracking key information such as
ingredient lots, sample storage conditions, equipment calibra-
tion logs, etc. Initiatives such as the Materials Genome Initia-
tive, Materials Acceleration Platform, and, for computational
datasets, Novel Materials Discovery aim to improve reproduc-
ibility by hosting datasets that have detailed metadata, thus
This journal is © The Royal Society of Chemistry 2025
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permitting multi-organizational validation of workows.89–91

Reproducibility is also aided by laboratory information
management systems that can assist in capturing metadata,
process parameters, and equipment information, which allow
more systematic and comprehensive experimentation records.
Traditional lab equipment with automated data logging capa-
bilities (e.g., ThermoFisher and HeiDolph) also helps reduce
data noise and user input errors, which benets experimental
reproducibility. Automated chemistry platforms with end-to-
end logging, such as Chemspeed and Unchained Labs auto-
mated platforms, are also helping to reduce human-caused
variability to ensure reproducibility. Additionally, performing
replicate analysis under controlled conditions will aid in
improving reproducibility, allowing researchers to identify
outliers. Replicate analysis must be balanced with resource
limitations carefully as it is expensive and can be out of reach
for many groups.

Standardized procedures enhance reproducibility as using
agreed upon standards makes collaborative efforts and experi-
mental validation simpler.92 Inconsistencies in procedures for
characterization, calibration, or sample storage demand
correction through standardization. Adopting community
standards for experimental work can help reduce noise within
experimental datasets and improve reproducibility.

In addition to improving experimental data quality via noise
reduction, researchers can use data curation and ltration
techniques. For example, anomaly detection using statistical
thresholds and certain ML techniques (e.g., clustering or
isolation forests) can reduce outliers from experimental data.
Moreover, validating experimental data with computational
results allows researchers to identify experiments that may have
strayed from theoretical expectations. This technique could also
be used to reduce the cost of replicate analysis as only samples
that deviate from theoretical expectations would require such
analysis.

Experiment reproducibility also affects ML, a data-driven
technique. The usefulness of ML models depends on how well
their predictions can generalize to physical experiments. Thus,
if ML models are trained on non-reproduceable experimental
datasets, their predictions may not generalize.

Limited sharing of experimental data in publications also
acts as a bottleneck for the reproducibility and validation of
results within the research community. Therefore, researchers
practice data (i.e., datasets, methodologies, and metadata)
sharing on platforms such as Zenodo, Figshare, Kaggle, or
GitHub to promote reproducing experiments. When sharing
information on data-driven methods such as ML, not only is it
important to provide model weights, but also information such
as training and testing datasets, the source of the datasets,
dataset metadata, data cleaning procedures, data preprocessing
steps, and training procedures (e.g., feature selection and
hyperparameter optimization).
2.2 Notable computational studies

2.2.1 Water, CO2, and nitrogen electrolysis. Water elec-
trolysis is a potentially greener alternative to steam reforming
This journal is © The Royal Society of Chemistry 2025
and coal gasication for making hydrogen fuel.11,93 In the HER,
protons from split water are reduced to produce H2 gas.94 The
electrochemical reduction of CO2, eCO2RR, can produce
a variety of carbon products such as hydrocarbons and alcohols,
therefore being a possible closed-loop, chemical production
process.95 Nitrogen electrolysis or the nitrogen reduction reac-
tion (NRR) refers to breaking the N2 triple bond to make
ammonia as an alternative to the Haber–Bosch method.96 A big
challenge with water electrolysis and eCO2RR is nding mate-
rials that are less expensive and more stable so that their
respective products can become more cost-competitive. As for
the NRR, breaking the triple bond requires a highly active
catalyst and a lot of energy. However, most reported materials
have yet to produce signicant current densities to make this
alternative attractive.97 Hence, applying HT methods for these
elds greatly benets their advancement.

At rst, Mao et al. used the aforementioned H adsorption
energy (DGH) as the descriptor for the HER activity of Cu-based
alloy nanoclusters with varying dopant concentrations.56 The
DFT study depicted that changing the dopant concentration
evolved the structure of the alloy, which affected the excess
energy (structure stability), the number of active sites, and the
DGH. From here, the authors gured that doping created
a signicant charge difference between the Cu vertex and edge
sites and associated that with DGH. Therefore, the researchers
proposed the average partial atomic charge difference between
these two adjacent sites, DQCu–Cu, as a new descriptor that is
easier to compute than DGH. Finding a more accessible
descriptor to compute reduces the costs of computational
material discovery via DFT, thus making this method more
accessible to all researchers.

Yohannes et al. evaluated transition metal nitrides as
eCO2RR catalysts using activity, selectivity, and stability DFT
descriptors.37 Again, adsorption energies, DGCO and DGCHO, are
used as descriptors to mark activity toward C1 products. Addi-
tionally, the authors uncommonly applied the adsorption
energy of hydroxyl, DGOH, to predict the stability of the catalyst
against –OH poisoning. If bound too strongly, the *OH can stay
on the surface and hinder active sites for eCO2RR or reduce to
water, thus stealing electrons and decreasing efficiency. More-
over, the HER is parasitic to eCO2RR, so the authors again used
H adsorption energy, DGH, to predict eCO2RR selectivity on
a catalyst surface over the HER. High selectivity (Faradaic effi-
ciency) for eCO2RR reduces downstream separation costs,
making the HER an undesired side reaction. With these
descriptors, several Co-, Cr-, and Ti-based nitrides were sug-
gested as catalysts worth further eCO2RR experimentation. This
study showcases how adsorption energy can be applied in
unique ways to probe properties outside of activity.

While most researchers funnel down materials with each
step having a new criterion (single-objective approach), Kaval-
sky et al. performed a multiobjective optimization combining
DFT and ML methods to discover single-atom alloy (SAA) elec-
trocatalysts for the NRR.57 The researchers rst employed
sequential learning to train an ML model and build their full
catalyst design space, which was then evaluated using DFT as
implemented in the Autocat workow shown in Fig. 2.98 The
J. Mater. Chem. A, 2025, 13, 26041–26066 | 26049
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Fig. 2 Closed-loop workflow for discovery of SAA electrocatalysts.
Theworkflow starts from selection of amaterial from the design space,
followed by structure geometry optimization and the subsequent N-
atom adsorption calculation. The calculated results are used to retrain
the ML surrogate model, which encodes activity, cost, and stability
metrics and outputs the candidate scores. The highest scoring
candidate is selected for evaluation. Reproduced with permission from
ref. 98. Copyright 2024 Royal Society of Chemistry.
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scores of three crucial performance metrics, stability, cost, and
activity, were evaluated simultaneously to help discover elec-
trocatalysts for nitrogen reduction. The chosen multiobjective
descriptors were segregation energy (stability), the Herndahl–
Hirschman index (material cost), and DGN (activity), which
presented Zr1Cr, Au1Re, Ag1Re, Ti1Fe, and Hf1Cr as promising
performers (note that X1Y denotes a single dopant of species X
into a host of species Y in the context of an SAA as shown in
Table 1). The authors stated that this tactic catches suitable
materials that single-objective screening would typically omit.
This work indicated that considering small compromises in
specic material properties when constructing such models can
strengthen discovery.

2.2.2 Fuel cells and batteries. The use of fuel cells has been
proposed as an alternative to electricity production from fossil
fuel-based methods, especially for commercial vehicles and
transit. Although there are many different types, the hydrogen
fuel cell is the most popular since its only emission is water and
its fuel, hydrogen, is the single most abundant molecule on
earth. In a hydrogen fuel cell, the hydrogen oxidation reaction
(HOR) occurs at the anode, where hydrogen is oxidized to
protons, which are then transported to the cathode side. At the
cathode, the oxygen reduction reaction (ORR) takes place,
where oxygen reacts with the protons and is reduced to water.
The most common complementary reactions in a fuel cell are
the oxygen evolution reaction (OER) and HER. The OER is also
used as the oxidation half-reaction for water and CO2 electrol-
ysis. All these reactions—the HOR, HER, ORR, and OER—typi-
cally require precious metal catalysts such as Pt, Ru, Pd, and Ir.
This necessity makes these reactions attractive for study using
HT methods to discover cheaper, high-performing electro-
catalyst materials.

Unlike most materials science labs focused on HT screening
catalysts, Tran et al. used ML to explore polymers for ionomers
and membranes in fuel cells.69 This study aimed to nd alter-
natives to Naon, the state-of-the-art polymeric material for fuel
26050 | J. Mater. Chem. A, 2025, 13, 26041–26066
cells and electrolyzers. Although proven effective in many
circumstances, Naon, a cation exchange ionomer, is expensive
and not always best suited for its application. Replacing Naon
could also address safety concerns. Naon is classied as a per-
and polyuoroalkyl substance, PFAS, which presents health
effects due to its slow break down and persistence in the envi-
ronment; traces of PFASs have been found in the blood of
people and animals globally.99,100 In any case, the authors used
eight key properties (e.g., ion conductivity, gas permeability,
band gap, etc.) of Naon as a benchmark for screening 30 000
previously reported polymers using multiple ML models. The
authors identied 60 new polymers as possible replacements
because their predicted properties outperformed those of
Naon. Yet, this study did not include any safety-centered
metrics to evaluate candidates for health effects and
handling, identifying a need to improve this method. This
work's strategy is enabled by polymer informatics, hoping to
further leverage ML for future studies in discovering unen-
countered polymers.

Large-scale batteries, both solid-state and redox ow, can
function as electrical grid stabilizers during periods of low
demand by storing excess energy supply for later use. This
application requires battery materials to be resilient against
multiple charges and discharges during their lifetime. There-
fore, researchers have employed HT methods to scope out new
battery electrolytes with multiple oxidation states for charge
storage, high ionic conductivity, wide potential ranges for
stability, and high earth abundance for costs.

Researchers oen use the so-called HOMO–LUMO gap,
which is an electronic property calculated as the difference
between the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO), to assess the
stability descriptor of battery electrolytes' solvents. Generally,
a larger HOMO–LUMO gap is associated with more stable
materials. This approach enables rapid assessment without
requiring the optimization of oxidized or reduced electrolyte
molecules. However, the Knap lab indicated the impact of
molecular geometry relaxation during electrolyte oxidation,
providing evidence by screening the electrochemical stability of
100 carbonate and 300 phosphate molecules as solvents for Li
battery electrolytes.70 Initially, the Knap lab's HT screening
model focused on the oxidation and reduction potentials of
isolated solvent molecules to determine their stability windows.
Additionally, the model involved geometry optimization as
some less stable (smaller gap) molecular formations of the
electrolyte decomposed under different conditions. Aer pre-
senting these results, the authors commented on their initial
method and stated the importance of also including intermo-
lecular interactions with other solvent molecules as well as Li
ions. To enhance the prediction of the electrochemical stability
of isolated electrolyte, the authors explicitly incorporated
solvent molecules into their models. This approach allowed the
authors to simulate H-abstraction and Li+ semi-uorination
scenarios more accurately. While preferred DFT models typi-
cally center on simple representations and minimal intermo-
lecular interactions, making them a straightforward yet
insightful tool, Knap et al. noted that more accurate results
This journal is © The Royal Society of Chemistry 2025
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Table 2 Summary of experimental HT methods for electrochemical material discovery, production, synthesis, characterization, and analysis. All
acronyms not previously mentioned in the text are defined in table footnotes

Material Rxn(s) HT application Cell(s) Deposition method Best material(s) Year Ref.

Catalyst eCO2RR Electroanalysis 3-Electrode Automated liquid
handler deposition
robot

Au6Ag2Cu2 2021 101

Catalyst eCO2RR Electroanalysis SECMa Polishing Sn/SnO2 2020 102
Catalyst eCO2RR Synthesis H-cell Spin cast Cu0.8In0.2 2017 103
Catalyst eCO2RR Material ID SFC Magnetron

sputtering
Pd–Zn 2019 104

Electroanalysis
Catalyst HER Production 3-Electrode Dip coating HC–MoS2/Mo2C 2020 105
Catalyst HER Electroanalysis 3-Electrode Sputtering Pd63Ni16Fe21 2023 106
Catalyst HER Electroanalysis 3-Electrode Sputtering Ni56.5Co35Ti8.5 2022 107
Catalyst HER Synthesis SDC Sputtering Co56Cr8Fe19Mo7Ni10 2022 108

Characterization
Electroanalysis

Catalyst HER Material ID SDC Co-sputtering Co23Cu34Mo17Pd14Re12 2024 109
Flow cell Spray-coating

Catalyst HER Synthesis PEMb and MEAc Spark ablation IrO2 2022 110
OER

Catalyst OER Synthesis Flow cell Drop casted CoO 2022 111
Electroanalysis 3-Electrode Co(50%)Ni(50%)

CoNiFe (up to 12.5%)
Catalyst OER Electroanalysis SDC Drop casted Not stated 2013 112
Catalyst OER Material ID SDC Ink jet printing-

assisted co-op
assembly

FeO.3Ni0.7Ox 2013 113
Electroanalysis Fe0.23C0.13Ni0.07Ti0.57Ox

Characterization
Catalyst OER Material ID SDC Inkjet printing Ni30Fe7Co20Ce43Ox 2014 114

Electroanalysis RDEd

Catalyst OER Material ID SDC Inkjet printing (Ni0.1La0.1Co0.3Ce0.5)Ox 2014 115
Electroanalysis RDE

Catalyst OER Material ID SDC Reactive co-sputtering Mn0.4Sb0.22Sn0.08Ti0.3 2023 116
Electroanalysis

Catalyst OER Synthesis 25 compartment
3 electrode cell

Automated
pipetting robot

La0.2Sr0.8Fe1−yCoyO3 2023 117
Electroanalysis

Catalyst OER Characterization SDC Combinatorial reactive
magnetron
co-sputtering

Ni1−y−zFeyCrzOx 2017 118
Electroanalysis

Catalyst OER Synthesis Joule heating method
(synthesis)

Not stated Fe–CoO 2023 119

ORR 3-Electrode cell
Catalyst ORR Electroanalysis SFC N/A Not stated 2012 120
Catalyst ORR Synthesis SDC Drop cast printing PtPdRhNi 2020 121

Electroanalysis RDE PtPdFeCoNi
RRDE

Catalyst ORR Electroanalysis Scanning gas diffusion
electrode half cell

Ultrasonic
spray coating

Pt/C 2024 122

Catalyst ORR Material ID SDC Co-sputtering Ti14Ni17Cu16Zr21Pd17Hf15
(ORR)

2022 123

HER Electroanalysis Ti11Ni13Cu18Zr17Pd19Hf22
(HER)

Catalyst HER Synthesis Customized PEM
electrolyzer

Spark ablation NiFe 2020 124
OER Ni(O)OH
IPA oxidation

Catalyst IPA oxidation Electroanalysis SDC Combinatorial
magnetron
co-sputtering

Pt1Ru1Ir1.5/C 2023 125

Drop cast
Catalyst MOR Electroanalysis Customized 25

compartment MEA
Not stated PtRu 2002 126

Gas diffusion
electrode

eCO2RR Electroanalysis AutoGDE (SFC) Evaporation N/A 2024 127

Multiple eCO2RR Electroanalysis SFC N/A Cu foil 2014 128
HER

a Scanning electrochemical microscopy cell. b Proton exchange membrane. c Membrane electrode assembly cell. d Rotating disk electrode cell.

This journal is © The Royal Society of Chemistry 2025 J. Mater. Chem. A, 2025, 13, 26041–26066 | 26051
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require more extensive and computationally intensive DFT
calculations that may be beyond the reach of most researchers.
Fig. 3 Examples of scanning cells for HT material screening. (a)
Scanning droplet developed at the JCAP. Reproduced with permission
from ref. 112. Copyright 2023 Royal Society of Chemistry. (b) Scanning
droplet cell with expanded views of (top) droplet contacting the
sample and (bottom) compositional library deposited on a Cu foil
substrate. Reproduced with permission from ref. 121. Copyright 2020
National Academy of Sciences. Scanning flow cells with (c) an incor-
porated channel for inline ICP-MS and (d) an outlet for online EC-MS
measurements and surrounding argon to block air diffusion. Repro-
duced with permission from ref. 122. Copyright 2014 AIP Publishing
LLC.
3. Experimental methods

The methodology for most experimental electrochemical tests
involves material synthesis or preparation, material deposition
or casting, electroanalysis, and pre- and post-testing charac-
terization. The step-by-step process very much depends on the
reaction and the type of material being tested. Therefore, unlike
computational studies, setups across labs can vary vastly,
leading to many customized setups for both benchtop and HT
experimentation. While insightful, this variety in experimental
setups hinders data comparison across research labs. Yet,
researchers thoroughly detailing their methods and custom
setups in publications stimulate more similarities as others
incorporate proven procedures into their own setups. Mean-
while, continuous efforts to commercialize HT experimental
setups will drive method standardization, thus minimizing
differences in procedures from lab to lab. Table 2 summarizes
the experimental literature we evaluated in this review,
including the material type, the cell used, and the top-
performing material(s). Table S2† provides more details about
the methods including substrates and electrolytes. This section
highlights notable experimental setups and methods for elec-
trochemical applications.
3.1 Scanning cells

The use of scanning cells (ow, droplet, and electrochemical
microscopy) may be the most effective approach for HT elec-
troanalysis of electrochemical materials. Various labs have
established this technique where a motorized, programmable
stage hosting samples of materials is moved to electrically come
into contact with a stationary cell.102,109,112–116,118,120,121,123,125 A few
examples of scanning cells for HT screening are depicted in
Fig. 3. Although typically catalysts, other sample materials for
testing may be different membranes, substrates, or ionomers.
At each sample, the cell can conduct a myriad of electro-
chemical tests before moving on. The number of samples
depends on the size and reach of the stage (size of the setup)
and the individual sample size, meaning that tens or hundreds
of compositions can be screened in the time it traditionally
takes to test two or three. Researchers who have built custom
scanning cells initially performed repeatability experiments (at
least 3) to ensure good reproducibility, validate their setups,
and minimize error before collecting data.112,127,128 Small devia-
tions may arise from problems such as bubble formation and
material degradation, but overall, these researchers claim high
reproducibility when testing with scanning cells, possibly due to
lowered human error. Gregoire et al. concluded that the smaller
droplet size, and thus a smaller working electrode area, leads to
this improved reproducibility.112

The Joint Center for Articial Photosynthesis, JCAP,
designed and built its own scanning droplet cell (SDC) to
conduct HT screening and mapping mainly of OER
catalysts.112–116 This setup, displayed in Fig. 3a, invokes
26052 | J. Mater. Chem. A, 2025, 13, 26041–26066
a stationary 3-electrode cell, equipped with counter and refer-
ence electrodes, that comes in electrical contact with the
working electrode via a controlled-area electrolyte droplet.
Again, the working electrode sits on a motorized X–Y stage,
which moves to change the sample. The cell does not press
down on the working electrode substrate and thus is an open
system exposed to the atmosphere, which is not a concern for
studying the OER. The researchers created compositional
libraries of catalysts using inkjet printing or co-sputtering and
then mapped them with the SDC. The publications from this
group boast automated screening of anywhere from 100 to 5400
different catalyst compositions and the creation of their corre-
sponding activity maps (current vs. composition). Their work
has led to the proposal of several different candidate materials
for OER catalysis that are worth exploring further.

Unlike a SDC, a scanning ow cell (SFC), equipped with
a gasket, touches down onto the working electrode surface to
create a seal and thus a closed system.104,120,122,127,128 The elec-
trolyte is ushered to and from the surface while tests are con-
ducted instead of staying stationary in a droplet. SFCs are better
for reactions where purity or oxygen reactivity may be a concern
or reactions that require product quantication, like eCO2RR.
Mayrhofer et al. reported a customized SFC for testing ORR
catalysts.120 Their initial reported design had argon surrounding
the cell tip to discourage air diffusion, and they conducted
proof-of-concept experiments to determine catalyst geometric
area, O2 saturation time, and any aws in the design. This SFC
was improved upon by adding online product analysis via
electrochemical mass spectroscopy (EC-MS)128 and later gas ow
and dissolution analysis via inductively coupled plasma-mass
This journal is © The Royal Society of Chemistry 2025
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spectrometer (ICP-MS), as shown in Fig. 3c and d.122 Screening
with SFCs typically takes longer than that with SDCs because of
the extra time needed to properly make contact and to clean the
surface aer detaching. Even so, SFCs are an imperative tool for
materials screening and discovery as many reactions, including
those discussed here (e.g., the HER eCO2RR), require closed
systems for proper electroanalysis.

Although not consistent with the scope of this review, we
would like to highlight that many labs have developed
successful electrochemical scanning cells for other studies,
such as corrosion or photoelectrochemistry, which are also
pertinent to material development and mitigation efforts.129–137

3.2 Multi-compartmental and optical setups

Up to this point, we have discussed HT experimental methods
conducted sequentially. One aer another, a cell comes into
contact with a sample and then evaluates the material's
Fig. 5 Schematic of the VSParticle nanoparticle printing technology. A c
ablate and particles to detach. The particles agglomerate to form nanopa
are printed via a nozzle onto a substrate of choice held by an XYZ-stage

Fig. 4 (a) HT bubble screening setup for measuring HER activity with
an example of the camera view below. The camera below the working
electrode allows for visualization of the H2 bubbles forming on the
catalyst compositional library. WE: working electrode; CE: counter
electrode; RE: reference electrode. Reproduced with permission from
ref. 106. Copyright 2023 Elsevier B.V. (b) An exploded (top) and live
(bottom) view of a custom, 72-sample HT cell for measuring eCO2RR
activity based on color change with a pH indicator. The authors vali-
dated the setup by depositing the same catalyst in each location and
ensuring that the pH color did not vary. Reproduced with permission
from ref. 101. Copyright 2021 Springer Nature Ltd.

This journal is © The Royal Society of Chemistry 2025
performance. Nevertheless, some laboratories have transitioned
from single cell setups to advanced HT systems to assess
samples in parallel, commonly referred to as multi-
compartmental setups.

One example of these setups is the one developed and
patented by Smotkin et al., which consists of a segmented MEA-
type fuel cell capable of screening 25 catalyst samples at
once.126,138–140 While the samples shared a common counter
electrode and the reactant owed to each in series, each catalyst
in the array was isolated using a Teon gasket and equipped
with its own sensor to control potential and measure current.
Instead of a multi-channel potentiostat, this study utilizes
a voltage follower, a current follower, a programmable
computer card, and LabView to set the potential output and
acquire the current. The authors commented on their initial
design and pointed out areas of improvement, such as the need
to make sample preparation scalable. Although their reports
focus mainly on bimetallic PtRu catalysts, their setup can easily
be adapted to screen a library of different materials
simultaneously.

Certain setups rely on optical techniques to screen samples
for electrolysis. These optical methods incorporate cameras to
visualize all samples simultaneously and interpret their reac-
tion kinetics. For instance, Zou et al. designed a HT bubble
screening tool to study Pd–Ni–Fe alloys for the HER.106 Co-
sputtering all metals at once created a compositional library
on a Cu electrode, which was later submerged in a glass 3-
electrode cell for testing. The researchers positioned a camera
at the bottom of the cell to record the gaseous H2 bubbles
forming from the HER across the electrode. Then, the authors
associated the bubble diameter (volume) with the activity at that
position and composition, as shown in Fig. 4a. Hence, the larger
the bubble, the better the activity, resulting in an activity map.
The authors discovered Pd63Ni16Fe21 to be the optimal compo-
sition for their proposed alloy. Moreover, Hitt et al. observed
eCO2RR activity of an array of 72 different catalyst compositions
using a camera positioned over a customized gas-fed 3-elec-
trode cell with an optically transparent window (Fig. 4b).101

Here, the authors added a pH indicator to the electrolyte and
le it unstirred. Thus, as eCO2RR proceeded, over all catalyst
samples at various applied potentials and protons were
consumed, the pH increased, and the color of the electrolyte
ertain wattage is applied to metal electrodes which causes the metal to
rticles as they are carried by inert Ar to a vacuum chamber where they
. Reproduced with permission from ref. 110. Copyright 2022 MDPI.
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changed. The onset of the color change was related to the onset
potential of eCO2RR for that catalyst. Lower values suggested
a more active catalyst, and the authors created an activity map
with their data. Au6Ag2Cu2 was the most active catalyst for CO
production from eCO2RR. Although both examples, the bubble
screening and pH sensing, demonstrate rapid catalyst
screening, they cannot perform product quantication and
assume uniform potential distribution across the electrode. Yet,
these studies aimed to quickly identify the best material, which
they succeeded in and followed up with a full electroanalysis of
that material in a traditional single cell.
3.3 Other notable efforts

Many material deposition methods listed in Table 2 involve
a liquid phase by which the material is rst formulated into an
ink, solution, or dispersion (e.g., drop-casting and spray
coating). Sputtering, a type of physical vapor deposition, is
another common method for depositing metal particles,
specically, but does not require rst dispersing the metal in
a solvent. The advantages of sputtering include greater control
of particle size, composition, thickness, and loading than wet
deposition methods, and it is possible to create compositional
libraries with this technique.141 As an alternative to sputtering
and other deposition methods, a Dutch company, VSParticle,
designed a nano-printer for printing (semi)conductive particles.
This innovative technology, depicted in Fig. 5, employs spark
ablation followed by impaction to form and deposit nano-
particles.110,124 While sputtering typically requires the target
material and a high-energy ion source by way of ionizing Ar to
Ar+, spark ablation only requires the target metal, electricity,
and an inert gas and thus is a “chemical-free” deposition. With
adjustable parameters such as voltage, current, ow rate, and
nozzle size, this nano-printer boasts the ability to make highly
tunable nanoparticle lms of varying compositions, thick-
nesses, loadings, and particle sizes in a matter of hours. In fact,
Becker et al. printed 64 (8 × 8) NiFe electrodes of various
compositions to test in their customized cell, with each elec-
trode only taking 1–320 seconds to print.124 In a different study,
Sapountzi et al. fabricated IrO2-coated membranes using spark
ablation for conducting the OER at a h of the loading (cost)
compared to commercially available catalyst coated membranes
(CCMs),110 underscoring the importance of the deposition
method when designing cost-competitive materials.

The materials listed in Table 2 have potential for use in
a myriad of electrochemical applications, yet most were studied
at the lab scale. If a certain catalyst or electrolyte, for example,
proves performative and cost-effective, then the next step would
be scaling up its production. Zhang et al. took that next step by
reporting HT production of two-dimensional MoS2 akes for
fabricating thermally treated MoS2/Mo2C (HC–MoS2/Mo2C)
catalyst for the HER.105 The reportedmethod involved extracting
raw Mo concentrates (MoS2, MoO2, MoO3, and others) from an
active open pit mine and exfoliating it with Mo2C to form two-
dimensional MoS2 akes. These MoS2 akes were then
dispersed in water to make an ink for dip-coating a high-surface
area Cu foam substrate in. Lastly, the dipped substrate was
26054 | J. Mater. Chem. A, 2025, 13, 26041–26066
heated in a CH4/H2 mixture to form the nal electrode which
exhibited a high activity of 1 A cm−2 at an overpotential of
347 mV. While HC–MoS2/Mo2C's performance is comparable to
that of state-of-the-art Pt/C, the authors determined that the
price of the Mo concentrate precursor is 5× cheaper than that of
Pt. This reduction in material cost plus their HT method made
HC–MoS2/Mo2C ∼30× cheaper than commercial Pt/C.
Choosing to omit any purication steps helped reduce the
cost of production while showing the resilience of the catalyst
even with the existence of impurities originating from the mine.
The authors anticipate their method being extended to other
natural materials for HT electrocatalyst production.
3.4 Analytical characterization

Physical characterization performed before and aer electro-
analysis plays an imperative role in scientic methods of HT
material discovery. Researchers incorporate analytical charac-
terization (morphology, composition, crystallization, etc.) in
traditional benchtop studies to answer questions about
a material's performance. Thus, HT experimental methods also
require HT characterization techniques to identify the most
feasible materials for electrochemical applications. Scientists
have innovated new techniques to address speed-related
bottlenecks in common analytical methods such as X-ray
diffraction (XRD) and X-ray uorescence.142,143 Incorporating
multi-sample and automated stages into instruments increases
the number of samples that can be characterized while reducing
analysis time. Parallel chambers in systems for Fourier-
transform infrared spectroscopy, ultraviolet-visible spectros-
copy, and N2 adsorption/desorption allow for samples to be
loaded and analyzed simultaneously. Various labs [and manu-
facturers] have also employed robotic arms for machine tending
to automate menial measurements such as mass loading to
increase process efficiency.144 Machine manufacturers for these
common techniques have already rolled out their HT versions of
their instruments.145–148 Taking it a step further, researchers
have gone so far as to start incorporating ML into physical
characterization techniques to improve their efficacy. Szy-
manski et al. developed an autonomous and adaptive XRD by
coupling ML with a physical diffractor to hasten phase detec-
tion, leading to in situ identication of short-lived intermediates
during solid-state reactions.149 This application serves as a nice
segue into the following section where we discuss combined
computational and experimental methods.
4. Combined methods

Synergistic approaches that integrate both computational and
experimental methods are essential for accelerating material
discovery. While conducting studies that employ both tech-
niques requires greater effort, the resulting insights are oen
signicantly deeper and more insightful. There are several
approaches to combining these techniques, rather than a single
recipe. For instance, experiments can be performed rst to
generate datasets that train ML models through supervised
learning. Additionally, a ML or DFT model can suggest
This journal is © The Royal Society of Chemistry 2025
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materials for subsequent synthesis and testing to validate their
effectiveness. This new data can then be reintroduced into the
ML model, enhancing its capabilities. Hence, by combining
computational and experimental methods, researchers can also
develop iterative processes to design and discover materials.
This section discusses remarkable work reported in the litera-
ture in which computational methods are incorporated into
experimental setups. Table 3 summarizes all the literature with
combined computational and experimental methods we evalu-
ated in this review with information such as the model,
descriptor, material type, cell, and the top performing mate-
rial(s). A more detailed version of this table is provided in the
ESI.†
4.1 Computational screening followed by synthesis

Recently, Microso, in collaboration with a research group from
the Pacic Northwest National Laboratory (PNNL), reported the
discovery of electrolytes for solid state batteries driven by high-
performance, cloud-based computing.161 Starting with known
crystal structures, the authors chose 54 elements and obtained
their common oxidation states to perform ionic substitution in
the pre-existing materials. All in all, over 32.5 million initial
structural candidates were generated for screening. From here,
the study moves to a 10-step funneling method to evaluate the
selected candidates. The rst step narrowed down materials
using their phase stability Ehull < 50 meV per atom (Ehull is the
relative energy above the convex hull and obtained by using ML-
based potentials166), bringing the number down to under 6 ×

105 (Fig. 6a and b). The following levels encompassed criteria
pertaining to solid electrolytes such as Li conductivity, redox
potential, and cost. Distinctively though, each criterion step is
performed with either ML or DFT based on the need for quicker
(cheaper) screening or higher accuracy, respectively. Essentially,
this strategy demonstrates using ML for a large dataset because
it requires less computing time and then switching to DFT once
the dataset has been tapered down for more reliable but not
excessively expensive analysis. Consequently, the authors
identied 18 electrolytes that had not been previously reported
and focused on four to further investigate through synthesis
and characterization. The top candidate was NaxLi3−xYCl6
based on its structures and conductivities, making it a suitable
choice for a solid electrolyte (Fig. 6c and d). Even with such an
expansive search and a detailed screening, the authors
concluded that relaxing the criteria for the lters could help
detect additional candidates, which echoes Kavalsky et al.'s call
to consider small compromises when screening materials.57

Sarwar et al. recently performed HT-DFT calculations to
study the electrocatalytic activity and stability of over 2000 Pt3M
bimetallic alloys for the ORR, where M represents a list of 21
metals.159 The researchers evaluated the effectiveness of
descriptors such as the surface d-band center and DGO and
investigated the impact of M surface segregation under vacuum
and O- and OH-induced conditions. By conducting experi-
mental studies, the authors were then able to correlate the O-
induced segregation energy with the percentage of M metal
loss (leaching). Moreover, the computational ndings indicated
This journal is © The Royal Society of Chemistry 2025
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Fig. 6 (a) Material screening based on phase stability. (b) Workflow of discovering solid electrolytes with miscellaneous screening criteria. (c)
Ionic conductivities of NaxLi3−xYCl6 measured at different temperatures. (d) Relationship between the crystal structure and ionic conductivity.
Reproduced with permission from ref. 161. Copyright 2024 American Chemical Society.
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that the d-band center might not be a reliable descriptor once
surface segregation effects occur as the d-band center could not
predict the decrease in ORR activity once the M metal migrated
to the surface (leaching). This phenomenon was conrmed with
the electroanalysis data as ORR activity displayed an enhanced
correlation with DGO compared with the d-band center. There-
fore, the authors concluded that DGO could serve as a better
descriptor when considering the surface and binding energy
changes post-segregation. This discovery suggests that some
descriptors may be suited for certain catalyst morphologies,
which could motivate more tailored DFT calculations for
specic material congurations.

Coupling experimentation and computation for Karim et al.
involved conducting experiments not only aer but also before
creating their ML model.156 At rst, the researchers prepared 36
different catalyst samples using a HT automated synthesis
platform and followed up by testing them all for ORR activity.
The electrochemical cell for running the ORR was a customized
multi-channel ow cell capable of screening four catalyst
samples at a time. Out of the resulting dataset, 60–80% were
used to train ve ML models with the synthesis parameters (Fe
atomic%, pyrolysis T, and Fe precursor) as inputs. Each ML
model utilized a different algorithm to help nd the minimal
(optimal) RMSE and mean absolute percentage error. The best-
performing algorithms were gradient boosting and support
vector regressions. From here, the authors used these two
optimal models to predict ORR activity as a function of the
synthesis parameters, which represents outputting new cata-
lysts. Taking it a step further, the researchers synthesized new
catalysts using these predicted parameters and tested them for
This journal is © The Royal Society of Chemistry 2025
ORR activity to validate the model. The new material not only
met but exceeded its modeled performance. Continuing this
method of synthesis, testing, training, and predicting could
allow the authors to iteratively improve their model and nd the
next best materials for the ORR before expanding it to other
reactions.
4.2 Integrated robotic platforms

Robotic platforms have been introduced in various applications
to increase experimental throughput, minimize human error,
and improve researchers' safety regarding hazardous materials.
Moreover, robotic platforms' speed provides larger initial
datasets for training ML models and allows suggested materials
to be synthesized, tested, and fed back into the model simul-
taneously in batches rather than one by one with traditional
benchtop chemistry.

To nd the optimal solvent for electrolytes in redox ow
batteries, researchers at PNNL and Argonne National Labora-
tory developed an automated workow that linked robotic HT
synthesis and analysis with ML, as shown in Fig. 7.163 In short,
they built a closed-loop, ML-guided HT experimentation setup
to further speed up screening. To start their study, the authors
listed 22 possible solvent candidates and then created an
additional 2079 candidates based on binary mixtures of various
volume ratios of the original 22. Next, their automated robotic
platform synthesized 58 of these candidates (both singular and
binary solvents) for model training at a rate of ∼39 min per
sample. Each electrolyte sample was prepped for nuclear
magnetic resonance (NMR) and then manually transported to
J. Mater. Chem. A, 2025, 13, 26041–26066 | 26057
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Fig. 7 Schematic of the closed-loop electrolyte screening process
based on an ML-guided HT experimentation platform. Reproduced
with permission from ref. 163. Copyright 2024 Springer Nature Ltd.
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an auto-sampling NMR machine for quantitative analysis of 1H
NMR spectra. The integrated peak areas were used to calculate
solubility. The results from these 58 samples rst trained
a surrogate model to determine whether Bayesian Optimization
(BO), a type of AL, would be effective with this dataset. The
surrogate model training was then validated with 40 additional
solvent candidates and then it was asked to identify the solvent
with the highest solubility out of its 98 samples. Once the
surrogate model was veried, the authors deployed BO to
complete their ML-guided, closed-loop setup and then ran three
cycles. Each cycle started with (1) the model suggesting 40
solvent samples, (2) synthesis and evaluation as described
above, and (3) feeding the results back into the model. BO only
took one cycle to identify dioxane : dimethyl sulfoxide @ 0.8 :
0.2 vol% as the solvent with the highest solubility. Since the
subsequent cycles did not detect a better solvent, the authors
halted their evaluation meaning that their model only needed
218 measurements from the >2000 sample dataset to output the
optimal solvents and solvent ratio. The detailed automated HTE
system for solubility measurement is given in Fig. 8. This
demonstration of BO underscores how active (machine)
learning can drive experimentation toward minimizing the time
and calculations (cost) needed to screen larger datasets and
discover materials.
Fig. 8 (a) Schematic representation of the automated HTE system for so
and solvent (c) dispensing, (d) saturated sample monitoring, and nuclear
experimental time per sample for different solubilitymeasurementmetho
Nature Ltd.

26058 | J. Mater. Chem. A, 2025, 13, 26041–26066
Understanding that the search space for catalyst multi-
element electrocatalysts is too vast even for automated HT
robotic platforms, Kodera and Sayama also incorporated ML
into their robot system to explore catalysts for the OER and
HClO production using seawater.153 Their fully automatic robot
was able to conduct synthesis and electroanalysis of 88 catalyst
samples per day. The authors started by setting their system to
synthesize and analyze different combinations of four elements
(Co, Mn, Fe, and Ni), chosen based on their reported perfor-
mance, to obtain 286 data entries. With these data, the authors
investigated composition optimization using BO by having the
ML model and robot run cycles; the model suggested 10 mate-
rials which the robot system then synthesized and analyzed.
The cycles were halted aer four loops when the model identi-
ed the top 10 performing materials of the 286 original
samples. Thus, only 40 samples were needed to validate and
optimize the model. The authors stress that, as stated in the
previous paragraph, BO-guided experiments reduce the time
needed to evaluate datasets and optimize materials. In addi-
tion, the authors proposed choosing more elements, expanding
the abilities of their robot platform, and using multi-objective
optimization such as that by Kavalsky et al.57
5. Discussion

The methods reviewed here show much promise for material
discovery to advance electrochemical technologies for energy
and chemical applications. Computational methods present the
opportunity to explore not-yet-synthesized materials and screen
high volumes of data, while HT experimental methods make
and test a myriad of samples. Table 4 compares the pros and
cons of computational and experimental methods to sum up
some of the points we've discussed in this review. Learning from
these approaches and setups will hopefully allow more labs and
researchers to adopt HT practices and thus nd solutions to the
roadblocks for implementation at scale. While collecting and
summarizing these data, we identied some trends and new
focus areas worth capturing and noting in this section.

The distribution of methods reviewed in this article is
depicted in Fig. 9a as a bar graph. We can see that most reports
lubility measurement. The automation process consists of powder (b)
magnetic resonance (NMR) sampling (e) and analysis (f). (g) Evaluated
ds. Reproduced with permission from ref. 163. Copyright 2024 Springer

This journal is © The Royal Society of Chemistry 2025
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Table 4 List of pros and cons of computational and experimental HT methods

HT method Pros Cons

Experimental Physical observations & real-world results Spatial and time limits
High data reliability More resource intensive
Accounts for synthesis conditions Safety/environmental constraints

Computational Massive screening (>103 materials) Model accuracy limitations
Cost-effective and rapid testing Requires experimental validation
Safe exploration Difficulty in capturing synthesizability
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conducted HT studies via computation, which we expect since it
is faster, safer, and less resource-intensive than experiments.
There is a signicant discrepancy, however, in the material type
(Fig. 9b). Of all the publications we discovered and analyzed for
this review, over 80% focused on catalysts no matter the reac-
tion. Although responsible for driving the reaction, the catalyst
is not the only component of an electrochemical reactor. These
percentages in Fig. 9b are only based on the thorough search we
conducted in the literature space and thus not representative of
the entire eld; yet we still suggest that critical components
such as membranes, ionomers, and substrates remain under-
explored using high-throughput methods although they are
necessary in such systems. These components are critical to the
long-term operation, durability, and efficiency of electro-
chemical systems. Many degradation mechanisms that lead to
failure and insufficient lifetimes in electrochemical systems are
associated with not only the catalyst but also the substrate (or
membrane) it is deposited on and/or the ionomer that binds
them together, if applicable.167 The development of polymer
informatics platforms could facilitate the discovery of next-
generation ionomer and membrane materials that rival or
outperform current standards such as Naon and other PFAS
polymers that also present environmental liabilities. Moreover,
highly conductive electrolytes provide ion transport but may be
corrosive or detrimental to all components in the system in the
long term. Although ∼12% of the reports investigated electro-
lytes, most pertain to batteries and not those for fuel cells and
electrolyzers. Therefore, this review underscores the need for
broader HT efforts that investigate all materials involved in
Fig. 9 Analysis of HT literature reviewed. (a) Bar graph depicting the num
methods, or a combination of both for HT material discovery. (b) Pie char
the percentage of papers that focused on that material. Catalyst materia

This journal is © The Royal Society of Chemistry 2025
electrochemical reactors to address performance bottlenecks
effectively. Nevertheless, we understand that constructing
compositional libraries and datasets for materials such as
polymers and substrates is more complex than for catalysts.
Polymers for ionomers and membranes are not as simple to
model as metal catalysts due to their larger size, intricate
structures, and heterogeneous nature.168 These macrostructures
generally feature complex arrangements with numerous
degrees of freedom, which increases the computational
demand of simulations. Like polymers, substrates–materials
onto which catalysts are deposited—are also macrostructures
and generally heterogeneous. Accurately capturing complex
interactions and dynamic behavior of these polymers and
substrates with their surroundings requires advanced compu-
tational techniques and a considerable number of resources.

Another potentially critical direction involves extending HT
methodologies beyond material-level screening to capture
device-level performance metrics. Current HT platforms typi-
cally evaluate properties such as onset potential, overpotential,
or adsorption energy in simplied environments. However, real-
world performance is governed by how materials function
within integrated systems. Developing modular experimental
platforms that can vary multiple components simultaneously—
for instance, testing combinations of catalysts, ionomers, and
membranes within the same electrochemical cell—would allow
for the co-optimization of interdependent variables. Incorpo-
rating accelerated stress tests and diagnostics into HT setups
could also provide early insights into material degradation
ber of publications using either experimental methods, computational
t detailing the type of material studied in the literature we reviewed and
ls dominate the HT literature found.
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Table 5 Roughly estimated costs of some types of HT equipment for both experimental and computational methods. This list does not cover all
instruments that may exist in a HT laboratory. Costs were sourced from vendor quotes and websites

Experimental Computational

HT equipment Method Average cost (USD) HT equipment Average cost (USD)

Scanning ow/droplet
cell169,170

Electroanalysis $110 000–$150 000 1-Rack high performance
computing cluster with 10
CPU nodes171–173

$200 000–$400 000

X-ray diffraction147 Characterization $300 000
X-ray uorescence146,174 Characterization $100 000
Confocal microscopy175,176 Characterization $70 000–$250 000
Nanoprinter177 Synthesis $350 000 Supercomputing time178–181 $0.005–$0.0625 per hour
Automated synthesis
platform182,183

Synthesis $70 000–$500 000

Robotic arm184,185 Versatile $25 000–$100 000
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pathways and lifetime expectations, enabling more predictive
screening of materials for industrial relevance.

As mentioned in Section 2.1, many DFT studies successfully
utilize activity descriptors, whether DG or partial atomic
charges, and stability descriptors to screen catalyst materials.
While activity and stability are imperative, many of the
computational methods reviewed here do not consider the cost,
availability, safety, both environmental and personal, and
complexity of synthesis when proposing newmaterials. Some of
these suggested materials are dangerous, expensive, and
synthetically impractical, which makes their window for scale-
up very slim and complicated. In addition, some materials
may be sourced from carbon-intensive processes, which defeats
the purpose of green technologies and calls for carbon
neutrality analysis when discovering and proposing new mate-
rials. This issue presents opportunities to discover new
descriptors that can screen for these properties, such as hazard
diamond ratings or toxicity of precursors, material biodegrad-
ability, earth abundance indices, and cost indices of metals (like
Fig. 10 Heat map highlighting the countries of the authors of the report
country has been associated with a publication via authorship. If a count
with that country. The map was generated using Microsoft Bing.

26060 | J. Mater. Chem. A, 2025, 13, 26041–26066
that used by Kavalsky et al.57). Jia et al. applied cohesive and
formation energies as descriptors for ease of synthesis which
more researchers can expand on.63 Integrating life cycle
assessment into computational models makes it possible to
evaluate the environmental impact and predict the long-term
behavior of materials.186–188 There is also the opportunity to
identify and explore other properties and descriptors not
named here that are important for a material's feasibility. These
descriptors can be extracted from databases, developed using
cheminformatics tools, or derived from techno-economic
proxies such as precursor cost or process energy intensity.
When it comes to experimental methods, more scientists can
consider comparing the cost of their suggested material(s) to
the state of the art on top of comparing the performance and
commenting on the safety of the material(s) they suggest.

In this review, we examined studies that benet from
combining ML and DFT approaches to make their HT screening
even more powerful as a tool. However, it is worth mentioning
that access to effective and signicant computational resources
s evaluated in this review. The darker the shade of blue, the more that
ry is grey, then no author from the literature we reviewed was affiliated

This journal is © The Royal Society of Chemistry 2025
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applicable to the generation of databases required to train ML
models is a challenge for many researchers around the world.
The same can be said for experimentation, as fully equipped,
functioning labs are expensive to build, let alone automated HT
systems. In fact, Table 5 roughly estimates and compares the
cost of HT experimental equipment, HT supercomputers, and
supercomputing time. The price of a fully functioning HT lab
can easily reach $100 000 USD in equipment alone, not
considering overhead, utilities, maintenance, etc., to keep it up
and running. Access to well-equipped shared facilities such as
those found at universities and national labs would remove the
burden of procuring such equipment, making HT experiments
cheaper. Yet, access to such facilities can be limited to specic
users and user rates may apply, which can add to cost over time
as more experiments are conducted and more materials are
screened.

Going off method costs, we also examined where these HT
studies were being conducted. Looking at Fig. 10, we see that
most of the HT studies we evaluated here were performed by
researchers in only a handful of countries (19). However, the
motivation for such studies stems from a global issue. We
understand that our review, while thorough, is not exhaustive
and can only offer a glimpse of what is occurring in this eld.
Either way, we in countries with access to these resources can
push the envelope and collaborate with those in countries that
do not. To democratize participation, future work should
prioritize the development of low-cost, open-source datasets,
modelling tools and cloud-based simulation platforms that
reduce entry barriers. Similarly, the establishment of shared
robotic facilities or “HT-as-a-service” centers, where researchers
can remotely submit and analyze samples, could dramatically
broaden global engagement. Capacity-building programs,
research exchanges, and international consortia that foster
technology transfer and technical training will be particularly
important in regions where energy transitions are most urgently
needed. Such collaborations can offer more unique perspectives
on HT material discovery, leading to new and improved ideas.

Detailed information on data preprocessing steps and links
to datasets were missing in many of the papers that we analyzed
in this review. Such information is pertinent as it allows
researchers to make informed decisions about comparing
model performance and therefore nalize model use for their
own studies. Access to datasets and preprocessing steps helps
one determine model generalizability and helps improve model
interpretability, especially when it comes to “black box”models
such as neural networks or ensemble learning models.
Furthermore, sharing preprocessing steps allows the research
community to (1) validate model performance and results
through independent experimentation, leading to more robust
models and computational methods and (2) modify and build
upon these models and datasets.

We recognize that researchers have already taken steps to
make HT computational methods and experimental setups
available to everyone. Published studies may include how to
obtain the data and links to open-source code (e.g., GitHub).
Some authors go so far as to ask readers to comment or build on
their results and are open to connecting with other researchers
This journal is © The Royal Society of Chemistry 2025
about their work. For uses such as training ML models, nding
material properties, or simply comparing results, researchers
have created open datasets for people to pull from and/or
augment. One example is the Open Catalyst Datasets, which
are meant to aid in ML model training.189,190 This dataset is part
of the larger Materials Project which allows researchers to
access computed information on known and hypothetical
materials.191 Researchers at the Toyota and the Massachusetts
Institute of Technology collaborated to create a cloud platform
for sharing polymer electrolyte data.192 Many other material
databases have been designed for similar purposes that scien-
tists continue to add to and use for their research.193–195 Equally
important is the development of standardized experimental
formats and reporting guidelines that support machine read-
ability and enable cross-laboratory benchmarking. Practicing
open-source research should be continued as it is an imperative
tool for materials discovery and is becoming more prevalent
among researchers, especially in the elds we discussed here. A
coordinated community effort to develop open-access HT
datasets, curated with rich metadata including synthesis
conditions, characterization protocols, and failure modes,
would dramatically expand the reproducibility and generaliz-
ability of future research.

6. Outlook

Automated and HT methods for materials discovery can help
drive electrochemical technologies toward feasibility at scale.
Using computation and experimentation is necessary for iden-
tifying and validating materials, and combining both, although
difficult, brings about very effective methodologies. Even so,
there is room to upgrade models and tweak setups to obtain
more accurate results and uncover new chemistries. Quantum
computing, for example, could exponentially speed up molec-
ular simulations. Although challenges remain, this technology
may enable more accurate modeling of complex electro-
chemical interfaces.196 Although we did not discuss it in detail
here as it would require an in depth analysis and discussion,
scientists have begun developing fully self-driving labs that
incorporate articial intelligence like those established in the
Acceleration Consortium at the University of Toronto.197–200 The
Cronin group at the University of Glasgow has explored self-
driving labs for material discovery but also from a safety and
efficiency perspective to decrease risks for researchers and
reduce human error.201 These systems require robust data
infrastructures, including standardized ontologies, seamless
interoperability between hardware and soware, and feedback
mechanisms that enable machine learning models to learn not
only from successful trials but also from failed experiments. To
realize this vision, future research must also address challenges
around system integration, error propagation, and the real-time
decision-making capabilities of optimization algorithms such
as Bayesian frameworks. With all this in mind, we consider that
chemistry-related research toward scalable solutions, and not
just for energy applications, may be headed toward fully
autonomous laboratories where computation and experimen-
tation work hand-in-hand. The future of HT electrochemical
J. Mater. Chem. A, 2025, 13, 26041–26066 | 26061
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materials discovery lies in its ability to become more holistic,
inclusive, and application-driven. This will require concerted
effort not only to advance the tools and techniques themselves,
but also to redene what success looks like in materials
discovery—balancing performance with scalability, environ-
mental responsibility, and real-world relevance.
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This journal is © The Royal Society of Chemistry 2025

https://www.mgi.gov/
https://www.mgi.gov/
https://cordis.europa.eu/project/id/676580
https://cordis.europa.eu/project/id/676580
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ta00331h


Review Journal of Materials Chemistry A

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Ju

ly
 2

02
5.

 D
ow

nl
oa

de
d 

on
 2

/1
1/

20
26

 4
:0

1:
30

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Giasin, V. Briega-Martos, A. Kormányos, I. Katsounaros,
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