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view on the thermochemical and
electrochemical stability of ruthenium oxides†

Iratxe Aguado-Ruiz, ‡ab Ricardo Urrego-Ortiz ‡ab and Federico Calle-
Vallejo *bc

Ruthenium oxides (RuOx) display suitable activities for a number of electrocatalytic reactions, such as

chlorine evolution and oxygen evolution. However, their corrosion resistance still ought to be enhanced

and the instabilities are often attributed to the transformation of one Ru oxide into another. Density

functional theory (DFT) calculations can help understand and improve the thermochemical and

electrochemical stability of RuOx. However, in this work, we show that a wide variety of exchange-

correlation functionals are visibly inaccurate for the thermochemistry of gas-phase and solid-state RuOx.

The inaccuracies can be systematically mitigated, as they grow alongside the number of oxygen atoms in

the compounds because of the repulsive interactions among Ru–O bonds. Furthermore, Pourbaix

diagrams, which are electrochemical phase diagrams outlining the conditions of electrode stability, are

shown to be significantly affected by these inaccuracies. Seamlessly, our simple correction scheme

brings computational Pourbaix diagrams close to experimental results, giving confidence in the

predictiveness of future stability studies.
1. Introduction

Ruthenium oxides (RuOx, x = 1–4) are a family of chemical
compounds in which the metal atom displays a wide range of
oxidation states, from +2 in RuO to +8 in RuO4. These oxides are
relevant in diverse branches of chemistry, from nuclear energy
to heterogeneous catalysis and electrochemistry.1–3 Among
them, ruthenium dioxide (RuO2) is of particular importance due
to its activity to electrocatalyze the chlorine and oxygen evolu-
tion reactions (CER and OER, respectively),4–8 the former being
central in the chloralkali process, the latter in water electro-
lyzers, and both in competition during seawater electrolysis.9,10

In addition, RuO2 also helps catalyze the thermocatalytic
Sumitomo process, in which HCl is oxidized to Cl2.3,11 In all
these applications, efficient use of RuOx-based materials is
crucial, as ruthenium is not particularly abundant in the Earth's
crust,12 the chloralkali electrolysis is a notorious and energy-
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intensive industrial process, and water electrolyzers are key
for producing green hydrogen.

Consequently, efforts have been directed to investigate the
factors governing the catalytic performance of RuO2, such as
facet orientation,13 ligand effects,14 crystal structure,15 and
doping.16,17 However, the chemical and structural features of
RuO2 are interconnected in such a way that disclosing their
effects on the catalytic activity is challenging from an experi-
mental standpoint. Density functional theory (DFT) calculations
coupled with thermodynamic models are valuable tools to
address this matter, as they can be used to estimate the energies
of reaction intermediates under different conditions, thus
serving as a guide, support and supplement to experiments.17–20

In this context, it is paramount to properly assess the accu-
racy of DFT-calculated thermochemistry. In particular, the
formation energies of oxides, gas-phase species, and OER
intermediates have proved challenging for DFT,21–28 leading to
inaccurate reaction energies, equilibrium potentials and
adsorption energies that deviate from experimental observa-
tions.29,30 In addition, incorrect thermochemical predictions
might lead to incorrect assessments of the stability of Ru-based
electrodes, which are critical to ensure their suitability as
catalysts, elucidate the state of the active sites under reaction
conditions, and guarantee their durability.31–34 This calls for
strategies that can swily pinpoint and rectify inaccurate results
at the early stages of computational studies on these
compounds.

In this work, we evaluate the DFT formation energies of several
RuOx using exchange-correlation functionals of increasing
This journal is © The Royal Society of Chemistry 2025
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complexity (GGAs, meta-GGAs, and hybrids) to evaluate if
systematic errors exist and whether more sophisticated func-
tionals necessarily lead to enhanced thermochemical predictions
of Ru oxides. We unveil large errors that scale linearly with the
number of oxygen atoms of the oxides and systematically prevent
accurate thermochemical predictions. Moreover, we provide
a simple but insightful model to rationalize this intriguing trend.
Finally, by means of Pourbaix diagrams35 of the Ru–water system,
we show the detrimental effects these errors have on electro-
chemical stability predictions and provide a handy procedure to
align the DFT energies with experimental values.
2. Methodology
2.1 Computational methods

The total energies of the Ru-based species (Ru(g), Ru(s), RuO(g),
RuO2(g), RuO2(s), RuO3(g) and RuO4(g)) in Fig. 1 were obtained with
the Vienna Ab initio Simulation Package (VASP)36 using the
Projector Augmented-Wave (PAW) method to describe ion–elec-
tron interactions.37 For that, we used three functionals at the level
of the generalized gradient approximation (GGA): PBE,38 PW91,39

and RPBE;40 three meta-GGAs:41 SCAN,42 TPSS,43 and R2SCAN;44

and three hybrid functionals: PBE0,45 HSEsol,46 and HSE06.47

All atoms in the compounds were allowed to relax in all
directions until all the residual forces on them were below 0.01
eV Å−1. The reciprocal space was sampled using Monkhorst–
Pack grids48 and only the G-point was considered for the
molecules. Gaussian smearing was used at an electronic
temperature of 0.001 eV to facilitate the convergence of the self-
consistent cycles and all energies were extrapolated to 0 K. Spin
unrestricted calculations were performed when necessary,
namely for O2(g), Ru(g), and RuO(g). The molecules were simu-
lated in cells of 15.00 Å × 15.10 Å × 15.20 Å, which ensured no
interaction between the periodically repeated images.

Ru(s) was modelled in its hexagonal close-packed (hcp)
structure while RuO2(s) was simulated in its rutile form. For the
bulk calculations, all atoms were free to relax in all directions
until all residual forces were below 0.05 eV Å−1. Test calcula-
tions using a tighter force criterion (0.01 eV Å−1) showed total
energy differences for Ru(s) and RuO2(s) smaller than 0.0001 eV.
The smearing was made using the Methfessel–Paxton method49
Fig. 1 Schematics of (a) the gas-phase species and (b) the solids
analyzed in this work. Green spheres represent ruthenium, and oxygen
atoms are shown in red.

This journal is © The Royal Society of Chemistry 2025
at an electronic temperature of 0.2 eV and all energies were
subsequently extrapolated to 0 K. Based on the convergence test
in Section S7,† we used a plane-wave energy cutoff of 450 eV for
all calculations of molecules and solids.
2.2 Thermochemical calculations

The formation reaction of the compounds under study is
dened in eqn (1), where all species are in their standard states
and x = {0, 1, 2, 3, 4}.

RuðsÞ þ x

2
O2ðgÞ/RuOx (1)

The free energy of formation for each compound ðDfGXC
RuOx

Þ
can be approximated using DFT-calculated data as follows:

DfG
XC
RuOx

zDfE
XC þ DfZPE

XC � TDfS (2)

where DfE
XC is the difference between the ground-state energies

of the products and reactants considering the stoichiometric
coefficients calculated with a given (XC) functional, and DfZPE

XC

is the respective difference of zero-point energies calculated
on the basis of DFT vibrational frequencies using the
harmonic oscillator approximation. Finally, the term TDfS is
an entropic correction and the individual standard entropies of
the reactants and products are retrieved from thermodynamic
tables at T = 298.15 K.50–53
2.3 Evaluating DFT errors

For a given compound RuOx, the deviation between the exper-
imental ðDfG

exp
RuOx

Þ and DFT formation energies computed with
a particular functional ðDfGXC

RuOx
Þ corresponds to the total error

3
T;XC
RuOx

. Importantly, 3T;XCRuOx
includes the errors in RuOx ð3XCRuOx

Þ and
in the reactants of eqn (1) (3XCRuðsÞand 3XCO2

), as shown in eqn
(3).27,54–57

3
T;XC
RuOx

¼ DfG
XC
RuOx

� DfG
exp
RuOx

¼ 3XC
RuOx

�
�
3XC
RuðsÞ þ

x

2
3XC
O2ðgÞ

�
(3)

In particular, the triplet state of O2(g) is commonly mis-
calculated by DFT, yielding substantial 3XCO2

values.21,25,58,59

Furthermore, previous studies have unveiled DFT errors above
0.5 eV in oxygen-containing gaseous species,60–62 such that large
values of 3XCRuOx

are also expected. As GGAs usually describe
metals better than molecules,27 it is customary to assume
3XCRuðsÞ z 0 as a rst approximation, which might be reconsidered
for hybrid functionals. Thus, reorganizing eqn (3) we have:

3XCRuOx
¼ 3

T;XC
RuOx

þ x
2
3XCO2

, which indicates that the specic DFT error

of each RuOx can be evaluated once the O2(g) errors are known.
In practice, 3XCO2

is usually calculated semiempirically using the

experimental water formation energy�
1
2
O2 þH2/H2O

�
.21,25,26,54,55 The DFT total errors and the

individual molecular errors calculated for all functionals in this
work are shown in Tables S2 and S3.†
J. Mater. Chem. A, 2025, 13, 12482–12491 | 12483
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Fig. 2 DFT-calculated formation energies of ruthenium oxides (DfGRuOx
) as a function of the number of oxygen atoms (x) and Ru oxidation state

using several functionals when (a) no corrections are included, and (b) the energy of O2(g) is corrected. In both cases, the experimental trend is
included. Circles correspond to GGAs, squares to meta-GGAs, triangles to hybrids, and diamonds to the experimental data.
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3. Results and discussion
3.1 Energy–structure relationship

Ru displays increasing oxidation states as the number of oxygen
atoms in the compound (x) grows from +2 in RuO(g) to +8 in
RuO4(g). The experimental and DFT-calculated formation ener-
gies, with and without O2(g) corrections, show a strong correla-
tion with x (or the oxidation state of Ru), as shown in Fig. 2. This
suggests the existence of a systematic connection between
chemical composition and energy for RuOx. In the following, we
provide an energy-decomposition model63–65 to rationalize the
linear relationships in Fig. 2. The model is based on three
considerations:

(1) The free energy of eqn (1) is DfGRuOx ¼
GRuOx �

x
2
GO2 � GRuðsÞ, and the free energies of the species

include their internal energy, ZPE and entropic corrections, in
line with eqn (2).

(2) The total energy of the oxide (ERuOx(g)
) can be decomposed

into the sum of the energy of Ru–O bonds plus an interaction
energy Eint(x) between different Ru–Omoieties: ERuOx(g)

= xERu–O
+ Eint(x). As shown in Table S5,† the energy of the Ru–O bonds in
RuOx can be approximated to the energy of RuO(g). Therefore
ERuOx(g)

z xERuO(g) + Eint(x).
(3) Eint(x) is observed in Section S3† to scale linearly with x

for all functionals, such that E(x)int z ax + b, where a and b are
functional-specic constants.

These three considerations lead to eqn (4):

DfGRuOxðgÞ z

�
ERuOðgÞ þ a� 1

2
GO2

�
x

þ
�
bþ ZPERuOx

� TSRuOx
� GRuðsÞ

�
(4)

When the terms in eqn (4) are calculated using DFT and
a specic functional, eqn (5) is obtained, where
12484 | J. Mater. Chem. A, 2025, 13, 12482–12491
mXC
RuOx

¼
�
EXC
RuOðgÞ þ aXC � 1

2
GXC
O2

�
and bXCRuOx

¼ bXC þ ZPERuOx

�TSRuOx � GXC
RuðsÞ .

DfG
XC
RuOxðgÞ zmXC

RuOx
xþ bXC

RuOx
(5)

Eqn (5) explains the linear trends in Fig. 2a, in which free
energies and oxygen content are shown to vary proportionally.
Importantly, GXC

O2
is the uncorrected free energy of O2(g). When

O2(g) is corrected, GXC
O2

is replaced by GXC;OC
O2

¼ GXC
O2

� 3XCO2
(“OC”

stands for oxygen corrected), as shown in Fig. 2b. Table S1†
shows the experimental and DFT-calculated formation energies
obtained using eqn (2), without and with the O2(g) correction

(DfGXC
RuOxðgÞ and DfG

XC;OC
RuOxðgÞ , respectively), for all scrutinized func-

tionals. Table S9† contains the parameters of the ts in Fig. 2b
and those obtained with the O2(g)-corrected version of eqn (5).
Section S3† contains further details of the model.

3.2 Trends in the gas-phase errors of RuOx

The total errors in the DFT-calculated energies of RuOx ð3T;XCRuOx
Þ

were calculated using eqn (3) for all the examined functionals.
Upon correcting O2(g), the individual errors ð3XCRuOx

Þ were also
computed. Both 3

T;XC
RuOx

and 3XCRuOx
scale with the number of oxygen

atoms in the oxide, as shown in Fig. 3a and b for the GGAs and
meta-GGAs, and in Fig. 3c and d for hybrid functionals,
respectively.

Fig. 3 unveils a striking difference between the analyzed
functionals: the trends for GGAs and meta-GGAs have negative
slopes while those of hybrid functionals display positive slopes.
Eqn (5) and the denitions of 3T;XCRuOx

and 3XCRuOx
can be used to

explain such opposing trends. Specically, the magnitude and
sign of the slopes depend on those in Fig. 2 in the way shown in
eqn (6):

3
T;XC
RuOx

z
�
mXC

RuOx
�m

exp
RuOx

�
xþ �

bXC
RuOx

� b
exp
RuOx

�
(6)
This journal is © The Royal Society of Chemistry 2025
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Fig. 3 DFT errors in the formation energies of RuOx as a function of the number of oxygen atoms (x) in the structure. (a) and (b) are for GGA
(circles) andmeta-GGA functionals (squares), while (c) and (d) are for hybrid functionals (triangles). The trends in (a) and (c) are for the total errors,

that is when no corrections are applied
�
3T ¼ 3RuOx �

x
2
3O2

�
, while the trends in (b) and (d) correspond to the isolated errors of each oxide (3RuOx

),

obtained upon correcting O2(g).
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Because mXC
RuOx

and mexp
RuOx

are negative in Fig. 2, 3T;XCRuOx
scales

positively with x when
��mXC

RuOx

��\��mexp
RuOx

�� (see Table S9).† Once
molecular oxygen has been corrected, we have:

3XC
RuOx

¼
�
mXC

RuOx
�m

exp
RuOx

þ 1

2
3XC
O2

�
xþ �

bXC
RuOx

� b
exp
RuOx

�
(7)

Again, 3XCRuOx
scales with a positive slope with x if����mXC

RuOx
þ 1

2
3XCO2

����\��mexp
RuOx

��.
3.3 Mitigating gas-phase errors

Fig. 3 shows that the uncorrected formation energies entail
large deviations from experimental values for all functionals.
The trends in Fig. 3a have similar slopes of ∼−0.20 eV per O
atom except for RPBE, which is nearly at (0.04 eV per O atom).
Meanwhile, hybrids exhibit an average slope of ∼0.66 ± 0.10 eV
per O atom in Fig. 3c.
Table 1 Slopes (dXC) and offsets (qXC) of the lines correlating 3XCRuOxðgÞ
and

Functional PBE PW91 RPBE SCAN

dXC −0.39 −0.43 −0.34 −0.47
qXC −0.07 0.08 −0.83 −0.08

This journal is © The Royal Society of Chemistry 2025
In Fig. 3b and d, correcting 3XCO2
makes all GGAs and meta-

GGAs display similar slopes of −0.46 ± 0.15 eV per O atom.
For the hybrids, the average slope is now 0.59 ± 0.04 eV per O
atom. As the oxygen error does not affect Ru(g), the intercepts
remain unchanged in Fig. 3b and d compared to those in Fig. 3a
and c. Capitalizing on the linear trends in Fig. 3b and
d provided by the inexpensive structural descriptor x, a cor-
rected DFT free energy ðDfG

XC;corr
RuOx

Þ can be obtained:66

DfG
XC;corr
RuOx

¼
�
DfG

XC
RuOx

þ x

2
3XC
O2

�
� �

dXCxþ qXC
�

(8)

where dXC and qXC are the functional-dependent slope and
intercept of the trends correlating 3XCRuOx

vs. x. In Table 1, we
report such slopes and intercepts for all scrutinized functionals.
We note that 3XCres ¼ DfG

XC;corr
RuOx

� DfG
exp
RuOx

is a residual error
stemming from the slight deviations of the calculated data-
points and the linear ts in Fig. 2. Such residual errors are
shown for all functionals in Fig. 4, where we observe unsys-
tematic, at trends around 0 eV with mean and maximum
x for all functionals under study. All values are in eV

TPSS R2SCAN PBE0 HSEsol HSE06

−0.75 −0.39 0.61 0.54 0.61
0.15 −0.35 −1.83 −1.00 −1.75

J. Mater. Chem. A, 2025, 13, 12482–12491 | 12485

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ta09213a


Fig. 4 Residual errors (3res) obtained after correcting the DFT formation energies using eqn (8). Results are shown for (a) GGAs and meta-GGAs
(circles and squares, respectively) and (b) hybrid functionals (triangles). The gray region spans ±0.1 eV around zero. The final MAE/MAX values (in
eV) are reported for all scrutinized functionals.
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absolute errors (MAE and MAX) close to chemical accuracy
(∼0.04 eV). For instance, the uncorrected SCAN energy of
formation for RuO4(g) entails an initial error of −2.12 eV, and
aer correcting with eqn (8), the residual error is only −0.14 eV.
Fig. 5 (a) Mean absolute error (MAE) and (b) maximum absolute error
(MAX) for different functionals when no gas-phase corrections are
applied (blue), when only the O2(g) energy is corrected (green), and
when O2(g) and RuOx are corrected using eqn (8) and Table 1 (orange).
The red dashed lines mark the chemical accuracy (1 kcal mol−1z 0.04
eV).

12486 | J. Mater. Chem. A, 2025, 13, 12482–12491
In addition, the average of the MAEs is 0.06 eV and the average
of the MAXs is 0.11 eV. In sum, Fig. 4 attests to the removal of
the systematic errors in RuOx observed in Fig. 3 by means of
simple linear corrections based on the number of oxygen atoms
in the oxide.

Fig. 5 summarizes the MAEs and MAXs when no corrections
are applied, when O2(g) is corrected, and when O2(g) and the
oxides are corrected using eqn (8). A noteworthy feature of Fig. 5
is that both MAE and MAX values increase aer correcting O2(g)

for all GGAs and meta-GGAs, reaching MAE/MAX of 1.5/2.9 eV,
while hybrids show a slight improvement. Finally, mitigating
the errors using eqn (8) leads to the orange data in Fig. 5a and b,
which are remarkably close to the red dashed line marking
chemical accuracy. In fact, the largest nal MAE and MAX (0.11
and 0.20 eV, respectively) are in stark contrast with the largest
initial MAE and MAX (1.5 and 2.9 eV, respectively), illustrating
that the corrections based on x swily and inexpensively lower
the substantial DFT errors to the scale of chemical accuracy for
all functionals.
3.4 Solid-phase errors

In the previous sections, large gas-phase errors in the DFT-
calculated energies of RuOx were unveiled, suggesting
substantial deviations in reactions involving them. Although
the analysis has focused so far onmolecules, eqn (3) is also valid
for solids. Bearing in mind that DfG

exp
RuO2ðsÞ ¼ �2:66 eV,52 the

functional-dependent error 3XCRuO2ðsÞ was estimated using eqn (3),
as shown in Table S4.† Furthermore, Fig. S1† shows a compar-
ison against its gaseous counterpart ð3XCRuO2ðgÞ Þ. Encouragingly,
the solid phase is better described than the gas phase; we did
not observe any correlation between gas-phase and solid-state
errors, and only for the meta-GGAs the magnitude of the
solid-state error exceeds 0.3 eV. Indeed, the mean absolute
values of 3XCRuO2ðgÞ and 3XCRuO2ðsÞ calculated from Tables S3 and S4†
are signicantly different in all cases: 1.08 vs. 0.16 eV for GGAs,
1.06 vs. 0.82 eV for meta-GGAs, and 0.43 vs. 0.24 eV for hybrid
functionals.
This journal is © The Royal Society of Chemistry 2025
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Fig. 6 TPSS-calculated Pourbaix diagram for the Ru–water system showing the stability regions of Ru(s), RuO2(s) and RuO4(g) as a function of the
potentialU (V vs. SHE) and pH. (a) Uncorrected TPSS energies (“TPSS as is”), (b) TPSS plus solid-phase corrections for RuO2(s) (“SPC”). (c) TPSS plus
solid-state corrections for RuO2(s) and gas-phase corrections for RuO4(g) (“SPC + GPC”). The black dashed lines correspond to three different
concentrations of RuO4(g) marked by log(PRuO4(g)

)= −2,−5, and−8. The blue lines show the upper and lower limits of water stability. The stability
region of Ru(s) appears in dark orange, that of RuO2(s) in yellow, and that of RuO4(g) in beige.
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3.5 Impact on electrochemistry

Stability and durability are necessary features of thematerials used
in electrochemical and electrocatalytic applications.67–70 Pourbaix
diagrams are useful to assess the thermodynamic stability of
materials in aqueous media as a function of potential and pH,
allowing to anticipate regions of protection, passivation and
corrosion.35 Importantly, as bulk and surface Pourbaix diagrams
can be built entirely from DFT calculations,71–74 it is crucial to
appraise the DFT errors and uncertainty if an accurate picture of
stable phases under reaction conditions is sought aer.75

Below we illustrate the repercussions of DFT errors on the
bulk Pourbaix diagram of the Ru–water system, considering the
oxidations from Ru(s) to RuO2(s) and RuO4(g). This outlines
a stability region for RuO2(s), which deserves special attention
due to the negative impact of its dissolution to RuO4(aq) on the
durability and catalytic performance for the OER.31,76–78 Impor-
tantly, the degradation pathway involves compounds in the gas
and solid phases, such that different sorts of DFT errors should
be simultaneously addressed. Because Fig. 3a and b hinted
toward particularly large meta-GGA errors in the energies of
RuO4(g) and RuO2(g), TPSS is used as a case study.

In Fig. 6, the TPSS-based Pourbaix diagram for the Ru–water
system is shown at three correction stages: in Fig. 6a no
corrections are taken into account, in Fig. 6b only the solid-
phase correction of RuO2(s) is considered, and Fig. 6c includes
both the solid-phase and gas-phase corrections of RuO2(s) and
RuO4(g). We recall that the errors of RuO2(s) and RuO4(g) result
upon correcting the energy of O2(g) in their formation reactions
(eqn (1)). The three scenarios depict contrasting regions, so
whether and how many DFT errors are included can lead to
different conclusions. For instance, the “TPSS as is” region of
Ru(s) is smaller than when solid-phase and/or gas-phase
corrections are added, so uncorrected Ru(s) oxidation is not
accurately predicted.
This journal is © The Royal Society of Chemistry 2025
The solid-phase correction shortens the RuO2(s) region in
Fig. 6b, so that its vertical span is 0.10 V, in contrast to the 0.46 V
in Fig. 6a. When the gas-phase energy of RuO4(g) is also cor-
rected, the RuO4(g) region is shied upwards such that the
RuO2(s) phase has now a vertical width of 0.82 V, as shown in
Fig. 6c. To incorporate pressure effects in the gas phase, the
dashed lines in Fig. 6 mark three different partial pressures of
RuO4(g) (log(PRuO4(g)

) = −2, −5, and −8). Besides, the blue lines
delimit the water stability region in between O2(g) and H2(g)

evolution. Table S10† contains the equilibrium potentials at the
three correction stages in Fig. 6 for all functionals under study.

We close this section by stressing that additional phases can
and ought to be included to enrich Fig. 6, whether they are
gases, solids or aqueous species. In doing so, it is always
advisable to properly assess the DFT errors since not only free
molecules but also solids might be problematic.

4. Conclusions

DFT is widely employed to understand and improve the elec-
trocatalytic performance of Ru-based electrodes, which display
high activities for the CER and OER. Therefore, a proper
description of the thermochemistry of Ru oxides is crucial to
yield accurate predictions.

In this study, we analyzed the DFT-calculated free energies of
formation for several Ru oxides using various GGA, meta-GGA
and hybrid functionals. The gas-phase errors are substantial
and increase linearly with the number of oxygen atoms in the
compounds. The slopes of GGAs and meta-GGAs are negative
and around −0.46 eV per O atom, while those of hybrids are
positive and close to 0.59 eV per O atom. We elaborated an
energy-decomposition model that explains (i) the linear rela-
tionship between the number of oxygen atoms and the forma-
tion energies of Ru oxides and (ii) the positive and negative
slopes of the error trends.
J. Mater. Chem. A, 2025, 13, 12482–12491 | 12487
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We capitalized on the systematicity of the errors to provide
a swi and inexpensive correction scheme that lowers the
absolute errors to values close to chemical accuracy. In addi-
tion, RuO2(s) errors were computed and found to be smaller
than their gas-phase counterparts, displaying absolute values of
∼0.2 eV, except for the meta-GGAs for which the errors are
larger than 0.6 eV.

Finally, the effects of solid-state and gas-phase DFT errors of
RuOx on electrochemical stability were appraised by means of
bulk Pourbaix diagrams including Ru(s), RuO2(s), and RuO4(g)

phases. The resulting Pourbaix diagrams showed that uncor-
rected or partially corrected TPSS energies produce reshaped
regions visibly deviating from the fully corrected picture. In fact,
the stability region of RuO2(s) is underestimated if solids and
molecules are not corrected.

All in all, relying on DFT without being aware of its inac-
curacies might lead to faulty models of chemical, electro-
chemical and catalytic reactions involving Ru oxides. This work
provides a rational, inexpensive and semiempirical scheme to
detect and quantify such errors and align predictions with
experiments. Finally, this work can be used in future studies as
a starting point to unveil similar trends for other families of
oxidized electrocatalysts and enhance their DFT modelling.
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